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This report is written in English as the maternal language of Marc Renault is English and
the supervisor, Adi Rosén, is not fluent enough in French.

Le contexte général

In online computation, the data is revealed one element at a time. Algorithms dealing with
online problems must make decisions upon receipt of each element without knowing the entire
sequences of elements. Online algorithms have many real world applications such as paging,
task scheduling, routing and investing algorithms. One classical abstract online problem is
termed the k-server problem. This problem is defined by a metric space, M, k mobile servers
and a request sequence σ. Each request is to a node of M and a server must be moved to the
requested node before the next request is revealed to the algorithm. The goal is to minimize
the distance traveled by the k servers over σ.

Competitive analysis is used to gauge the effectiveness of an algorithm against the optimal
manner in solving the problem. Although competitive analysis is a meaningful method for
performing a worst-case analysis, it has been criticized as being too pessimistic and that it
does not convey enough information about the performance of the algorithm analyzed. For
example, paging algorithms such as LRU (Least Recently Used), FIFO (First In First Our),
FWF (Flush When Full) and others have all been shown to be k-competitive, where k is
size of the cache, yet in practice, their performance varies dramatically between the different
algorithms [3, 17].

In light of this criticism, different models have been proposed to more realistically analyze
online algorithms. Recently, models of online algorithms with advice have been published
[7, 6]. The model presented is that with each data element an unrestricted oracle sends along
a predetermined and predefined number of bits to aid the algorithm in its computation. In
[7], the authors showed that there is a kO( 1

b
) competitive algorithm for the k-server problem

where k is the number of servers and b is the bits of advice. In [6] and [2], the authors explore
the amount of advice required for deterministic and random paging algorithms, scheduling
algorithms and routing algorithms to be 1-competitive and the change in the competitive
ratio as a function of the amount of advice.

Le problème étudié

The focus of the Master’s project was to continue the work of [7] by exploring special cases of
the k-server problem with advice. The motivation was to gain insight to help in determining
a lower bound for the k-server problem with advice on general metric spaces.

La contribution proposée

Over the course of the Master’s project:

• we formalized the proof for a 1-competitive deterministic algorithm with 1 bit of advice
for the k-server problem where N = k + 1.

• we extended the deterministic paging algorithm with 1 bit of advice presented in [6]
to the weighted paging problem with advice and show that it is 1-competitive. Then,
we present a method for reducing the k-server problem with advice on the star to the
weighted paging problem with advice and show that the 1-competitive solution for the
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weighted paging problem with advice remains 1-competitive for the k-server problem
with advice on the star.

• we developed an optimal algorithm with 1 bit of advice for the k-server problem on the
line and the cycle. This algorithm utilizes a minimum weighted matching between the
servers of the optimum and the algorithm for the advice where the server used by the
optimum to serve a request is matched to an adjacent server of the algorithm.

• we extended the algorithm for the k-server on the line to the k-server problem on the
spider graph and showed it to be 1-competitive.

Les arguments en faveur de sa validité

As there is no lower bound established for the k-server problem with advice and the best
result to date is a kO( 1

b
) competitive deterministic algorithm, the results of this Master’s are

currently the best results established for the metric spaces we considered.

Le bilan et les perspectives

The next step would be to extend the algorithm presented for the k-server problem on the
spider graph to the tree. Following that, we would hope to establish a lower bound for the
k-server problem on the tree with advice and, then, a lower bound on the general metric
space.

In a more general context, as online algorithms are typically approximation algorithms, it
would be interesting to explore if there is a connection between achievable competitive ratios
with advice and approximability results.

1 Introduction

1.1 Online algorithms

Online algorithms are algorithms that receive their input sequentially over time and have to
perform their operations after each piece of the input is received before they receive the next
piece of the input. Since the online algorithm does not have knowledge about the entire input
sequence, an operation performed upon receipt of a piece of the input may prove not to be
optimal in the future. The study of online algorithms tends to focus more on the quality of the
decisions made by the algorithm against an optimal algorithm rather than the computational
complexity of the algorithm.

A classical, simple, and illustrative online problem is called the ski rental problem [9].
Suppose that the cost to buy skis is e 200 while renting skis costs e 20. The problem is to
determine whether or not to buy skis. If we knew how many times we would go skiing the
problem would be trivial. However, as the future is uncertain (e.g. snow conditions), is there
a way to solve this problem with a guaranteed result? There is an online algorithm that
guarantees that we will not pay more than twice what is optimal. The algorithm works as
follows: rent skis until the cost of renting is equal to or exceeds the cost to buy skis. In the
example, we would rent skis 10 times and then buy them. If we go skiing 10 times or less, we
would be optimal. If we go skiing more than 10 times, we would spend e 400 while optimal
would have been to buy the skis initially for a cost of e 200.
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Online problems are prevalent in many areas such as financing, scheduling, routing, robot
motion, and memory management. For this Master’s project we focused on one particular
online problem, the k-server problem which is one of the most extensively studied online
problems. Although randomization does play an important role in many online algorithms,
our study focused on deterministic algorithms.

1.2 Competitive analysis

In the study of online algorithms, the most common method used to compare an online
algorithm’s performance to that of the optimal performance is called competitive analysis.
With competitive analysis, we are interested in the worst case, over all valid finite request
sequences, of the comparison of the performance of an online algorithm against the optimal
performance.

For the ski rental algorithm, we would say that it has a competitive ratio of 2. Alterna-
tively, we could say that our ski rental algorithm is 2-competitive or more specifically it is
strictly 2-competitive as the competitive ratio of our algorithm is exactly 2 (i.e. there are no
additive constants).

Different authors [9, 3, 11] have raised concerns over competitive analysis. Specifically,
it has been noted that competitive analysis is too pessimistic and does not convey enough
information about the performance of the analyzed algorithm. It has been shown that all
marking paging algorithms are k-competitive [16] which is optimally competitive for the
paging problem [15]. However, when the performance of FWF (Flush When Full), LRU
(Least Recently Used), and FIFO (First In First Out) are compared empirically it can be
shown that LRU performs better than FIFO which performs better than FWF [17].

1.3 k-server problem

The k-server problem was first presented in [14]. It consists of a metric space M, k mobile
servers and a request sequence σ. Each request of σ will be to a node of M and a server must
be moved to the requested node before the algorithm will receive the subsequent request. In
the most general k-server problem there are no restrictions placed on M, the k servers or the
locations of the requests. The goal is to minimize the distance traveled by the k servers over
σ.

The k-server problem is one of the most studied online problems. In [14], the authors
showed that the lower bound for the competitive ratio for a deterministic k-server algorithm
is k. In addition, they conjectured that there exists a k-competitive deterministic algorithm
for the k-server problem in any metric space. To date, the best results for the k-server problem
is the Work Function Algorithm, a deterministic algorithm that is 2k − 1-competitive [12].

1.3.1 Paging

The paging problem consists of a collection of pages, a cache or fast memory that can hold k

pages and a request sequence σ. Each request is for one of the pages. If the requested page is
in fast memory, the algorithm does not need to perform any operation. If the requested page
is not in fast memory, there is a page fault and the algorithm must bring the requested page
into fast memory. If the cache is full, the algorithm must evict a page to make room for the
requested page. The goal is to reduce the number of page faults.
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In [14], the authors show that the paging problem is in fact a special case of the k-server
problem where M is a uniform metric space.

Numerous deterministic algorithms such as FWF, FIFO and LRU have been shown to
be k-competitive for the paging problem [10, 15]. It has been proven that for the paging
problem, a competitive ratio of k is competitively optimal for deterministic algorithms [15].

A variation of the paging problem is the weighted paging problem. The motivation for
this variation comes, for example, from distributed computing where the cost to retrieve a
page may vary due to the different communication costs with the different systems. The cost
of page faults varies depending on the page that faults.

In [4, 3], the authors show that the weighted paging problem can be expressed as a k-server
problem on a star graph and that there is a k-competitive algorithm for it.

1.3.2 Special metric spaces

Many of the special cases of the k-server problem are restrictions applied to the metric space
M. The following is a listing of some such special cases and the known results for deterministic
algorithms:

N = k + 1 The restriction in this case is that N , the number of nodes of M, is 1 more than
k. In [14], the authors present a k-competitive deterministic algorithm.

k-server on the line The restriction in this case is that M can be embedded on the real
line. In [4], the authors showed that for the k-server problem on the line there is a
k-competitive deterministic algorithm.

k-server on the cycle The restriction in this case is that M can be embedded on a circle.
The WFA with a competitive ratio of 2k − 1 is the best result for the k-server problem
on the cycle. Prior to that, in [8], the authors showed that there is a O(k3)-competitive
deterministic algorithm for the k-server problem on the cycle.

k-server on the tree The restriction in this case is that M can be embedded on the real
tree. In [5], the authors showed that the k-competitive algorithm of [4] for the line could
be generalized to the tree and that it remains k-competitive.

1.4 Online algorithms with advice

The authors of [7] and [6] present similar methods of strengthening an online algorithm by
providing it with some quantifiable information about the future. The interest in online
algorithms with advice is to provide insight into the impact information can have on the
effectiveness of an algorithm. In other words, we are exploring the impact different amounts
of future information have on the competitive ratio. This advice is provided by an oracle
with no computational restrictions. For this project, we are continuing the work done by [7]
by continuing the exploration of advice on the k-server problem.

Although the study of online algorithms with advice has been mainly theoretical, there
are practical applications particularly in the areas of distributed computing and wireless
computing where the cost of communication is not negligible. In those instances, it can be
useful to know a guaranteed performance of an algorithm of a remote device as a function of
the amount of information communicated to the device.
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1.5 k-server problem with advice

In [7], the authors present a deterministic algorithm for the k-server problem with advice

with a competitive ratio of kO( 1

b
) where Θ(1) ≤ b ≤ log(k).

In [6], the authors present a 1-competitive deterministic algorithm for the paging problem
with 1 bit of advice.

1.6 Preliminaries

From [1, 3], online algorithms can be expressed as a request-answer system that consists of a
request set R, a sequence of finite nonempty answer sets A1, A2, . . . and a sequence of cost
functions costn : Rn × A1 × A2 × · · · × An → R

+ ∪ {∞} for n = 1, 2, . . .. In the context of a
request-answer system, it is possible to define a deterministic online algorithm as a sequence
of functions, gi : Ri → Ai for i = 1, 2, . . ..

As online problems are minimization or maximization problems, we are trying to minimize
or maximize some cost over a request sequence, σ = r1, . . . , rn. Let ALG(σ) and OPT(σ)
be the cost to an online algorithm and the optimum over σ respectively. Returning to the
definition of [1, 3], we can more formally define ALG(σ) = costn(σ, ALG[σ]) where ALG[σ] =
< a1, . . . , an >∈ A1 × · · · × An and aj = gj(r1, . . . , rj) for j = 1, . . . , n.

With a risk of a slight abuse of notation, we will note the cost of a subsequence of σ

as ALG(ri, . . . , rj) = costi,...,j(ri, . . . , rj , ALG[ri, . . . , rj ]) where ri, . . . , rj is a subsequence of
σ such that all the requests between ri ∈ σ and rj ∈ σ are contained in ri, . . . , rj . Also,
ALG[ri, . . . , rj ] =< ai, . . . , aj >∈ Ai × · · · × Aj where < ai, . . . , aj > is a subsequence of
< a1, . . . , an >. and the initial configuration is the configuration of ALG at ri−1 ∈ σ Further,
ALG(ri) = ALG(r1, . . . , ri) − ALG(r1, . . . , ri−1) represents the cost to ALG to process a
request ri.

If it is possible to break the processing of a request into operations, we will denote the
costs to the separate operations for a request by using primes. For example, if there are
two operations performed by ALG per request, then ALG(ri) = ALG(ri)

′ + ALG(ri)
′′ where

ALG(ri)
′ is the cost for the first operation and ALG(ri)

′′ is the cost for the second operation.
For a minimization problem, we say that an algorithm is c-competitive or has a competitive

ratio of c, if, for every finite σ, ALG(σ) ≤ cOPT(σ) + ζ where ζ is a constant that is not
dependent on the length of σ. When ζ = 0, we say that the algorithm is strictly c-competitive.

The k-server problem consists of a metric space, M = (M, dist) where M is a set of
nodes and dist : M × M → R

+ is a metric on M . A metric on M implies that dist(x, y)
is symmetric (dist(x, y) = dist(y, x) for all x, y ∈ M), has triangle inequality (dist(x, z) ≤
dist(x, y) + dist(y, z) for all x, y, z ∈ M) and dist(x, y) = 0 if and only if x = y. The k-
server also consists of k mobile servers and a request sequence σ. It should be noted that
|M | = N > k and the length of σ is n.

Lazy k-server algorithms are k-server algorithms that move, at most, one server to serve a
request and will only do so if the request is not covered by server. By the triangle inequality
property of the metric space, it can be shown that any k-server algorithm can be converted to
a lazy algorithm without increasing the cost. In [14], the authors prove the following lemma:

Lemma 1.1. For any algorithm B, there is a modified algorithm B′ that is lazy, does not cost

more, and is online if B is.

The paging problem consists of a collection of N pages, P , a cache or fast memory that
can hold k pages and a request sequence σ.
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For the weighted paging problem, there is a function wt : P → R
+. Let p be the page

requested at ri. If there is a page fault for ri, the cost to the algorithm is wt(p).
Formally, we will quantify and define online algorithms with advice in the same manner

as [7]. The advice will be an additional b bits of information provided with each request. Let
U be a finite set known as the advice space. The advice space is considered to have a size of
2b for some b ≥ 0 which could allow for an inaccuracy of the results by, at most, a factor of
2. The online algorithm has access to U via a query ui : R∗ → U . So, a deterministic online
algorithm with advice can be expressed as a sequence of pairs (gi, ui) where gi : Ri × U i →
Ai. The cost of a deterministic algorithm with advice is ALG[σ] = costn(σ, ALG[σ]) where
ALG[σ] =< a1, . . . , an >∈ A1 × · · · × An and aj = gj(r1, . . . , rj , ui, . . . , uj) for j = 1, . . . , n.
This model allows for the expression of everything from classical online algorithms to optimal
algorithms.

1.7 Outline

In Section 2, we present a 1-competitive algorithm for the k-server problem with advice where
N = k+1. In Section 3, we present a 1-competitive algorithm for the weighted paging problem
and the k-server problem on the star. In Section 4, we present an optimal algorithm for the
k-server problem on the line and the cycle. In Section 5, we extend the algorithm used for
the k-server problem on line to the k-server problem on the spider graph, a graph with one
node of degree greater than 2. Finally, we end with a brief discussion in Section 6.

2 k-server problem with advice where N = k + 1

The k-server problem where N = k +1 is a special case where the number of nodes, N , of the
metric space is 1 more than the number of servers. The node that does not contain a server
is called the hole.

For example, BALANCE, an algorithm presented in [13], is shown to be a k-competitive for
the k-server problem without advice where N = k +1. We present an algorithm, NEAREST,
with 1 bit of advice that is 1-competitive for the k-server problem with advice where N = k+1.
Although the concept of the algorithm and the results were known before beginning the
Master’s project, we formalized the analysis.

2.1 1-competitive algorithm with 1 bit of advice

The algorithm will have two stages. The first stage is used to match the configurations of
ALG and OPT such that the hole of ALG and OPT match and that ALG has a subset of
servers that correspond to servers of OPT from which OPT will use to serve any subsequent
requests. Let V be the set of servers that have not served a request. For the initial stage, our
algorithm will use the nearest server of V .

In the second stage, the algorithm makes use of marked servers. A marked server is a
server that has responded to a request and the bit of advice from the last request served by
the server was a 1. Let W be the set of marked servers in ALG and let Y be the set of
unmarked servers. The algorithm will serve each request of this stage with the closest server
of Y . At the start of the request sequence, all the servers are considered unmarked.

More formally, the algorithm can be defined as follows:
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Algorithm NEAREST: If V is not empty, let t be the nearest server of V else let t be
the nearest server of Y . Serve the request with t and update the marking of t based on the
advice.

2.1.1 Advice

A single bit of advice will be sent along with each request. The advice for ri will be:
1, if the location of ri will remain covered by a server in OPT

until the next request at this same location or the end of the
request sequence.

0, otherwise.

2.2 Analysis

For the analysis that follows, we will, without loss of generality, assume that OPT is lazy.

Claim 2.1. Let rl be a request to the hole of ALG after there have been k + 1 requests to the

hole of ALG. At rl, the hole of ALG and the hole of OPT are at the same node.

Proof. Given that NEAREST is a lazy algorithm and that, for the first k + 1 requests to the
hole of ALG, NEAREST will use a server of V or Y , the hole of ALG changes after serving
each request and does not repeat until all the servers of NEAREST have served a request.
Therefore, after k + 1 requests to the hole of ALG, every node has received a request.

Assume to the contrary that the node requested by rl is covered by a server in OPT but
not in ALG. This implies that at the previous request to this node the 1 bit of advice was a
1. If the advice was a 1, ALG would not have moved the server, so there would not be a hole
in ALG at this node which is a contradiction.

Claim 2.2. Let rl be a request to a node not covered by a server in W after there have been

k + 1 requests to the hole of ALG. For rl, OPT will always use a server in the same position

as a server of ALG in Y .

Proof. Let t be the server of ALG at the same position as the server that OPT uses for rl.
Claim 2.1 shows that such a server exists. Let rm be the previous request served by t. Assume
to the contrary that t ∈ M . This implies that the advice at rm should have been 0, but since
t ∈ M the advice was a 1 which is a contradiction.

Theorem 2.3. NEAREST is 1-competitive.

Proof. Let rq be the k + 1th request to the hole of ALG. From r1 to rq, the algorithm either
has a server at the position of the request or uses the nearest server of V or Y to serve the
request. The cost for this can be bounded by (k + 1)d where d is the diameter of the metric
space as ALG only moves a server k + 1 times over the first q requests.

By Claim 2.1, after rq, any request to the hole of ALG is to the hole of OPT and, from
Claim 2.2, OPT will only use a server that is at the position of a server of ALG in Y . Since
NEAREST always uses the closest server of Y ,

ALG(rq, . . . , rn) ≤ OPT(rq, . . . , rn)

and over the entire request sequence,

ALG(σ) ≤ OPT(σ) + (k + 1)d.
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3 k-server problem with advice on the star

The star graph is a graph where one vertex has a degree greater than 1. The rest of the
vertices are leaves. The vertex with a degree greater than 1 is known as the centre. As shown
in [4] and [3], the k-server problem on the star can simulate the weighted paging problem.

In this section, we present a 1-competitive algorithm called WEIGHTED-MARK for the
weighted paging problem with advice and show that it can be used to construct an algorithm
for the k-server problem with advice on the star. This algorithm is an extension of the
algorithm for paging with advice found in [6] to the weighted paging problem with advice.

3.1 1-competitive algorithm with 1 bit of advice for the weighted paging

problem

For each page request, ri, 1 bit of advice is given which indicates whether the requested page
is marked or not. At any given instance there are two sets of pages in fast memory, marked
pages and unmarked pages. At the start of the algorithm all the pages in fast memory are
unmarked. The algorithm is defined as follows.

Algorithm WEIGHTED-MARK: If the requested page is not in fast memory, then evict
an arbitrary unmarked page and bring the requested page into fast memory. For every re-
quest, if the 1 bit of advice is a 1, mark the requested page otherwise unmark the requested
page.

3.1.1 Advice

1 bit of advice will be given with each request. The advice will be as follows:
1, if the requested page will be in OPT’s fast memory the next

time it is requested or at the end of the request sequence.
0, otherwise.

3.1.2 Analysis

Claim 3.1. For every request after the first k distinct page requests, whenever ALG has a

page fault so does OPT.

Proof. Assume to the contrary that, after the first k distinct page requests, ALG has a page
fault when OPT does not. Let rf be that request. Let p be the requested page at rf . As
we have had k distinct requests, for OPT to have p in its fast memory it must have been
requested earlier in the request sequence. Let rp be the last request, before rf , where p was
requested. At some request between rp and rf , ALG evicts p. This implies that the advice
given at request rp was a 0 which is a contradiction.

Theorem 3.2. WEIGHTED-MARK is 1-competitive.

Proof. For the first k distinct page requests, the cost to WEIGHTED-MARK can be bounded
by kw where w is weight of the heaviest page.

After the first k distinct page requests, the cost incurred by ALG and OPT are the same
as shown by Claim 3.1. Therefore, ALG(σ) ≤ OPT(σ) + kw.
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3.2 Reducing the k-server problem on the star to the weighted paging

problem

In this section, we present a method of reducing the k-server problem with advice on the star
to the weighted paging problem with advice and, in the reduction, we keep the same number
of bits of advice. This reduction enables us to show that the k-server problem on the star is
1-competitive with 1 bit of advice. The reduction is based on the reduction from the weighted
paging problem to the k-server problem as informally described in [3].

Given an instance of the k-server problem on the star graph, STAR, we will construct an
instance of the weighted paging problem, PAGE.

3.2.1 Configuration

STAR consists of k mobile servers and a metric space M = (M, dist) where M is the set of
nodes, |M | = N , dist(x, y) is the distance between x and y in M and there exists a c ∈ M

such that, for all x, y ∈ M , dist(x, y) = dist(x, c) + dist(y, c) where x 6= y. c will denote the
centre of the star.

We will now build an instance of the weighted paging problem PAGE. For each m ∈ M ,
there will be a page, pm, in PAGE such that wt(pm) = 2dist(m, c) where wt(pm) is the weight
of pm. The size of the fast memory of PAGE will be k.

For each m ∈ M such that there is a server at m in the initial configuration of STAR, pm

will be in the fast memory of PAGE for its initial configuration.

3.2.2 Requests

Let σSTAR be the request sequence for STAR. We build the request sequence of PAGE, σPAGE,
as follows. The length of σSTAR and the length of σPAGE are equal and, for all ri ∈ σPAGE,
ri = {pm : m is the node requested by ri ∈ σSTAR}

3.3 Responses from PAGE to STAR

In this section we will present an algorithm to converts the responses of a complete and cor-
rect paging algorithm, PAGE-ALG, to σPAGE on PAGE to a series of response for σSTAR on
STAR and show the costs differ by a constant not dependant on σ.

Algorithm PAGE-STAR: Whenever PAGE-ALG evicts a page, pe, if there is a server
at the node e in STAR, then move the server from e to c else do nothing.

Whenever PAGE-ALG moves a page, pm, into fast memory, if there is a server at the
centre in STAR, then move a server from c to m else do nothing.

We will show that either case where PAGE-STAR does nothing while PAGE-ALG performs
some action cannot happen.

3.3.1 Analysis

Claim 3.3. Let pm be a page in PAGE-ALG and let m be the node in PAGE-STAR that

pm represents. If pm is in fast memory in PAGE-ALG, then there is a server at node m in

PAGE-STAR.
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Proof. This is true for the initial configuration of both PAGE-ALG and PAGE-STAR. Assume
that it is true from operation 1 to i − 1 of PAGE-ALG. At operation i, PAGE-ALG will do
one of two operations. They are:

1. PAGE-ALG evicts a page. Let pe be the page evicted from fast memory and let e be
the node it represents in PAGE-STAR. As the claim was true for the previous action,
there is a server on node e. Let s be the server of PAGE-STAR at e. PAGE-STAR will
move s from e to c.

2. PAGE-ALG brings a page into fast memory. Let pm be the page to be brought into fast
memory and let m be the node it represents in PAGE-STAR. In order for PAGE-ALG
to bring a page into fast memory, there must be at least one vacant memory slot. As
the claim was true for the previous action and given that there is a vacant memory
slot, there must be a server at the centre in PAGE-STAR. Therefore, PAGE-STAR will
move a server from c to m.

Therefore, after performing operation i, the claim remains true.

Lemma 3.4. The response algorithm, PAGE-STAR, is complete and correct for STAR.

Proof. Let pm be the page requested at ri of σPAGE. By definition of the request sequences,
m will be the page requested at ri of σSTAR. Upon serving ri, pm will be in the fast memory
of PAGE-ALG. From Claim 3.3, we know that if pm is in fast memory, then, in PAGE-STAR,
there is a server at m upon serving ri. Therefore, PAGE-STAR is complete and correct for
STAR.

Lemma 3.5. PAGE-STAR(σSTAR) ≤ PAGE-ALG(σPAGE) + 1
2kw where PAGE-ALG is any

algorithm used for PAGE and w is the page with the largest weight.

Proof. Let A be the set of pages initially in fast memory that will be evicted before the end
of σ and are not part of the final configuration in PAGE-ALG, let B be the multiset of pages
that enter and exit fast memory over σPAGE, and the pages that are evicted from the initial
configuration and are part of the final configuration in PAGE-ALG. Let C be the set of pages
in fast memory at the end of the request sequence that are not part of the initial configuration
in PAGE-ALG. Let wt(p) be the weight of page p.

We can express PAGE-ALG(σPAGE) =
∑

b∈B
wt(b)+

∑
c∈C

wt(c). Let β = 1
2

∑
a∈A

wt(a).

As |A| ≤ k, then β ≤ 1
2kw where w is the page with the largest weight. By the construction

of the weighted paging instance, w is equal to twice the distance of the longest branch of the
star graph.

For every b ∈ B, the cost to PAGE-ALG is wt(b) when it is brought into fast memory
and nothing when b is evicted. For every b ∈ B, PAGE-STAR will move a server from the
centre to mb and move a server from mb to the centre according to Lemma 3.3 where mb is
the node that b represents in PAGE-STAR. The cost to PAGE-STAR will be equivalent to
wt(b) for every b ∈ B which is the same cost to PAGE-ALG.

Evicting a page, pm, has no cost to PAGE-ALG, but the equivalent action in PAGE-
STAR is to move a server to the centre which costs 1

2wt(pm). So, for the pages in the initial
configuration that are evicted, the cost to PAGE-STAR is more than the cost to PAGE-ALG
by β.

For every c ∈ C, PAGE-ALG pays wt(c) when c is brought into fast memory. As the page
is never evicted, PAGE-STAR mimics bringing c into fast memory by moving a server from
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the centre to mc. The cost to PAGE-STAR is 1
2wt(c). Let γ = 1

2

∑
c∈C

wt(c). As |C| ≤ k,
then γ ≤ kw.

Therefore, PAGE-STAR(σSTAR) ≤ PAGE-ALG(σPAGE) + β − γ. As γ is positive and
β ≤ 1

2kw, PAGE-STAR(σSTAR) ≤ PAGE-ALG(σPAGE) + 1
2kw.

3.4 Responses from STAR to PAGE

In this section, we will present an algorithm that converts the responses of a k-server algo-
rithm, STAR-ALG, to σSTAR on STAR to a series of response for σPAGE on PAGE and show
the costs differ by a constant not dependant on σ. The reduction from an instance of the
weighted paging problem, PAGE, to an instance of the k-server problem on the star graph,
STAR, is the inverse of the reduction from STAR to PAGE in Section 3.2. It is informally de-
scribed in [3]. Without loss of generality, we will assume that the responses by STAR are lazy.

Algorithm STAR-PAGE: Whenever STAR-ALG moves a server from node e to the centre,
if pe is in fast memory, evict page pe otherwise do nothing.

Whenever STAR-ALG moves a server from the centre to node m, if pm is not in fast
memory, bring pm into fast memory otherwise do nothing.

We will show that in the case where STAR-PAGE does nothing while STAR-ALG moves a
server cannot happen.

3.4.1 Analysis

Claim 3.6. Let pm be a page in STAR-PAGE and let m be the node in STAR-ALG that

pm represents. If there is a server at node m in STAR-ALG, then pm is in fast memory in

STAR-PAGE.

Proof. This is true for the initial configuration of both STAR-PAGE and STAR-ALG. Assume
that it is true from operation 1 to i − 1 of STAR-ALG. At operation i, STAR-ALG will do
one of two operations. They are:

1. STAR-ALG moves a server from node e to the centre. As the claim was true for the
previous action, pe is in fast memory where pe is the page represented by e in STAR-
PAGE. So, STAR-PAGE will evict pe

2. STAR-ALG moves a server from the centre to m. As the claim was true for the previous
action, pm is not in fast memory where pm is the page represented by m in STAR-PAGE.
So, STAR-PAGE will bring pm into fast memory.

Therefore, after performing operation i, the claim remains true.

Lemma 3.7. The response algorithm, STAR-PAGE, is complete and correct for PAGE.

Proof. Let m be the node requested at ri of σSTAR. By definition of the request sequences,
pm will be the page requested at ri of σPAGE. Upon serving ri, there will be a server at m in
STAR-ALG. From Claim 3.6, we know that if there is a server at m, then pm will be in fast
memory in STAR-PAGE upon serving ri. Therefore, STAR-PAGE is complete and correct
for STAR.
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Lemma 3.8. STAR-PAGE(σPAGE) ≤ STAR-ALG(σSTAR) + 2kl where STAR-ALG is any

algorithm used for STAR and l is length of the longest branch.

Proof. For this analysis, we will assume, without the loss of generality, that there is an
additional branch with a length of 0 used to represent any requests to the centre of the star.

Let A be the set of nodes covered at the initial configuration but not in the final config-
uration of STAR-ALG, let B be the multiset of nodes that are covered and uncovered over
σSTAR, and the nodes that are covered in both the initial configuration and the final configu-
ration of STAR-ALG. Let C be the nodes that are covered in the final configuration that are
not part of the initial configuration of STAR-ALG. Let dist(x, y) be the distance between the
positions of x and y on the star and let c be the centre of the star.

We can express STAR-ALG(σSTAR) =
∑

a∈A
dist(a, c)+2

∑
b∈B

dist(b, c)+
∑

e∈C
dist(e, c).

Let β =
∑

a∈A
dist(a, c). As |A| ≤ k, then β ≤ kl where l is the length of the longest branch.

By the construction of the STAR instance, 2l is equal to the weight of the heaviest page.
For every b ∈ B, the cost to STAR-ALG is 2dist(b, c). The equivalent actions in page

would be to bring pb into fast memory and to evict it. So, the cost to STAR-PAGE will be
equivalent to 2dist(b, c) for every b ∈ B.

Moving a server to the centre in STAR-ALG is equivalent to evicting a page in STAR-
PAGE which has no cost to STAR-PAGE. So, for the servers in the initial configuration that
moved, the cost to STAR-ALG is more than the cost to STAR-PAGE by β.

For every e ∈ C, STAR-ALG pays dist(e, c) when e is brought into fast memory. STAR-
PAGE mimics this by bringing pe into fast memory. The cost to STAR-PAGE is equivalent
to 2dist(e, c). Let γ = 2

∑
e∈C

dist(e, c). As |C| ≤ k, then γ ≤ 2kl.
Therefore, STAR-PAGE(σPAGE) ≤ STAR-ALG(σSTAR) − β + γ. As β is positive and

γ ≤ 2kl, STAR-PAGE(σPAGE) ≤ STAR-ALG(σSTAR) + 2kl.

3.5 WEIGHTED-MARK applied to the k-server problem with advice

Theorem 3.9. PAGE-STAR is 1-competitive for the k-server problem with advice when

PAGE-ALG is WEIGHTED-MARK.

Proof. In Lemma 3.5, we show that

PAGE-STAR(σSTAR) ≤ WEIGHTED-MARK(σPAGE) +
1

2
kw (1)

and from Theorem 3.2, we know that WEIGHTED-MARK is 1-competitive. Specifically, we
show that

WEIGHTED-MARK(σPAGE) ≤ PAGEOPT(σPAGE) + kw (2)

where PAGEOPT be the optimum for PAGE and w is the page with the largest weight.
Combining the Equations 1 and 2, gives:

PAGE-STAR(σSTAR) ≤ WEIGHTED-MARK(σPAGE) +
1

2
kw

≤ PAGEOPT(σPAGE) +
3

2
kw. (3)

Let STAROPT be the optimal algorithm for σSTAR and let STAR-PAGE be the response
for an instance of PAGE from the algorithm STAR-PAGE based on STAROPT responses.
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From Lemma 3.8, we get STAR-PAGE(σPAGE) ≤ STAROPT(σSTAR) + 2kl where l is length
of the longest branch. Since PAGEOPT(σPAGE) ≤ STAR-PAGE(σPAGE),

PAGEOPT(σPAGE) ≤ STAROPT(σSTAR) + 2kl (4)

Applying Equations 4 to Equation 3 and the fact that w = 2l, we get:

PAGE-STAR(σSTAR) ≤ STAROPT(σSTAR) + 5kl.

4 k-server problem with advice on the line

There is an algorithm, DOUBLE-COVERAGE, for the k-server problem on the line that is
k-competitive [4]. For every request, ri, the algorithm moves both adjacent servers towards
ri until one of the servers reaches the request. Inspired by this algorithm without advice, we
present an optimal algorithm, COMPLIANT, with 1 bit of advice that serves each request
with an adjacent server.

4.1 Minimum weighted matching on the line

Our algorithm for the line relies on a minimum weighted matching between the servers of
OPT and ALG such that the server used by OPT for a request is matched to an adjacent
server of ALG. We will show that there always exists such a minimum weighted matching.

Lemma 4.1. Let A and B be two sets of points of equal size on the line. For any a ∈ A

there is a minimum weighted matching between the points of A and the points of B such that

a is matched to a point b ∈ B that is adjacent to a on the line.

Proof sketch. An exhaustive proof of the various configurations of 4 points on the line where
a matched to e ∈ B such that e in not adjacent to a and b is matched to c ∈ A. See Appendix
A for the full proof.

4.2 Potential Function

Our proof that COMPLIANT is optimal makes use of positive potential functions and the
following lemma.

Lemma 4.2. Let Φ′

i and Φi be two functions that map the configurations of ALG and OPT to

a real number where Φ′

i ≥ 0 and Φi ≥ 0 such that Φ′

i is calculated at the end of an operation,

that is not the final operation, performed by ALG or OPT to serve ri while Φi is calculated

at the end of the final operation performed by ALG or OPT for ri. Given the two following

conditions for each request, ri, in σ:

• OPT(ri) ≥ Φ′

i − Φi−1

• −ALG(ri) ≥ Φi − Φ′

i

then ALG(σ) ≤ OPT(σ) + Φ0

Proof sketch. Add the two conditions and sum over the entire request sequence. See Appendix
B for the full proof.
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4.3 Optimal algorithm with 1 bit of advice on the line

The algorithm COMPLIANT always serves a request by an adjacent server. There is at most
2 adjacent servers on the line. The bit of advice will indicate if the server to use is the one
to the right or the left of the request. The server indicated by the advice is based on the
minimum weighted matching between the servers of OPT and COMPLIANT.

Algorithm COMPLIANT: Serve the request as directed by the advice.

4.3.1 Advice

1 bit of advice will be given with each request. Let s be the server used by OPT to serve
request ri. The advice with ri will be based on the minimum weighted matching between the
servers of OPT and ALG immediately after OPT serves ri where s is matched to an adjacent
server of ALG. Lemma 4.1 shows that such a matching always exists. The one bit of advice
will be as follows:

1, if s is matched to the server of ALG immediately to the right
of ri.

0, otherwise.

4.3.2 Analysis

For the analysis of our algorithm, we will break up the process of serving a request, ri, by
OPT and ALG into two operations. They are:

1. OPT serves ri

2. ALG serves ri

Lemma 4.3. Let Φi be the weight of the minimum weighted matching between the servers of

ALG and OPT after operation 2 and let Φ′

i be the weight of the minimum weighted matching

between the servers of ALG and OPT after operation 1. For each request of σ, COMPLIANT

meets the two conditions of Lemma 4.2.

Proof. Without loss of generality, we assume that OPT is lazy. Let s be the server used by
OPT to serve ri and let x be the distance that s is moved. Let q be the server that s is
matched to when calculating Φi−1. Let Φ

′
∗

i be the weight of the matching after operation 1
using the same matching as was used to calculate Φi−1.

If s moves closer to q, then Φ
′
∗

i −Φi−1 = −x and if s moves away from q, then Φ
′
∗

i −Φi−1 =
x. Φ′

i ≤ Φ
′
∗

i since Φ′

i is the weight of the minimum weighted matching. Therefore, Φ′

i − Φi−1

is at most x which satisfies the first condition of Lemma 4.2.
Let ALG use server t as indicated by the advice and pay y to serve request ri.
For the matching used to calculate Φ′

i, s is matched to t and t is adjacent to ri. Let Φ∗

i be
the weight of matching after operation 2 using the same matching as was used to calculate
Φ′

i. So, Φ∗

i − Φ′

i = −y. Φi ≤ Φ∗

i since Φi is the weight of the minimum weighted matching.
Therefore, Φi − Φ′

i ≤ −y which satisfies the second condition of Lemma 4.2.

Theorem 4.4. COMPLIANT is optimal.

Proof. Immediately from Lemmas 4.2 and 4.3, and that Φ0 = 0 as OPT and ALG start from
the same configuration.
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4.4 k-server problem with advice on the cycle

In this section, we show that it is possible to extend the algorithm COMPLIANT to the cycle
and that it remains optimal with 1 bit of advice.

The algorithm and the analysis for the cycle are essentially the same for the line and the
cycle. However, there are certain terms in the algorithm and the analysis on the line that
do not directly translate to the cycle such as “right”, “left”, “to the left”, “to the right”,
“between” and “move towards”. In order to define these concepts with respect to the cycle,
we will first choose an arbitrary node to be 12 o’clock. Then, “right” can be defined as the
clockwise direction and “left” can be defined as the counterclockwise direction. If a node x

is “to the right” of a node y on the line, this would translate to x being closer to y in the
clockwise direction starting from y than the counterclockwise direction starting from y and
vice versa for “to the left” on the cycle. If a node x is “between” two nodes y and z line, this
would translate to x being on the shortest path between y and z on the cycle. If a server is
“moving towards” node x on the cycle, this would mean that a server is approaching x along
the shortest path between the server’s position and x. If a server is “moving away” from node
x on the cycle, this would mean that a server is approaching x along the longest path between
the server’s position and x. Finally, dist(x, y) is the distance of the shortest path between x

and y on the cycle. With these definitions, the algorithm and the analysis translate directly
from the line to cycle.

5 k-server with advice on the spider

In this section, we will take our algorithm for the line and extend it to the spider graph. A
spider graph is a graph that has 1 vertex with a degree greater than 2. We call this vertex
the centre. A line formed from the centre to a leaf will be referred to as an arm.

Our algorithm, COMPLIANT-MOVE, has 2 bits of advice and is 1-competitive.

5.1 Non-lazy optimum

The advice and the competitive analysis will be based on a non-lazy optimum. The definition
of the non-lazy optimum will be based on the lazy optimum. Let OPTl be the lazy optimum
and let OPTnl be a non-lazy optimum. Before serving the first request, OPTnl will move to
the centre all the servers that will pass through the centre to serve the first request served by
that server. OPTnl will only move one server per request and that server is the same server
as OPTl. Let s be the server that OPTnl uses for a request ri and let rj be the subsequent
request that s serves. If s will pass through the centre to serve rj in OPTl, then OPTnl will
move it to the centre immediately after serving ri.

Lemma 5.1. On the spider graph, the cost to OPTnl is equal to the cost OPTl over any σ.

Proof. Let s be the server used by OPTnl and OPTl to serve request ri. If s and ri are on the
same arm, then both OPTnl and OPTl move s to ri. As s did not pass through the centre,
s is at the same position in OPTnl and OPTl before serving ri.

If s and ri are not on the same arm in OPTl, then the cost for OPTl to serve ri is the
distance from s to the centre and the distance from centre to ri. The cost to OPTnl is the
distance from centre to ri. However, as OPTl is lazy, s is at the position of the previous
request it served or at its initial position before serving ri and, according to the definition
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of OPTnl, it would have moved s to the centre either after serving a prior request or before
serving the first request. The distance OPTnl moved s prior to ri is the same as the distance
between s and the centre that OPTl moves s in order to serve ri. Therefore, over the entire
request sequence the cost to OPTnl is equivalent to OPTl.

5.2 Potential Function

As with the the line, our proof that COMPLIANT-MOVE is 1-competitive makes use of
positive potential functions. The following lemma is slightly modified from Lemma 4.2.

Lemma 5.2. Let Φ′

i and Φi be two functions that map the configurations of ALG and OPT

to a real number where Φ′

i ≥ 0 and Φi ≥ 0 such that Φ′

i is calculated at the end of an

operation, that is not the final operation, performed by ALG or OPT to serve ri while Φi is

calculated at the end of the final operation performed by ALG or OPT for ri. Given the three

following conditions for each request, ri, in σ where OPT(ri) = OPT(ri)
′ + OPT(ri)

′′ and

ALG(ri) = ALG(ri)
′ + ALG(ri)

′′:

• OPT(ri)
′ ≥ Φ′

i − Φi−1

• −ALG(ri)
′ ≥ Φi − Φ′

i

• OPT(ri)
′′ = ALG(ri)

′′

then ALG(σ) ≤ OPT(σ) + Φ0

Proof sketch. Add the first two conditions, apply the third condition and sum over the entire
request sequence. See Appendix C for the full proof.

5.3 1-competitive algorithm with 2 bits of advice

For the algorithm, an additional arm will be added to the spider with a single node at a
distance of 0 from the centre to the end of the arm. This arm will be used to represent
requests that occur on the centre.

There will be two stages to the algorithm. The initial stage will be the first k requests
and it is used to match the configuration of ALG to OPTnl after rk. The cost to ALG for the
initial stage can be bounded by 2kd where d is the diameter of the spider graph. The second
stage makes use of minimum weighted matching between the servers of ALG and OPTnl. The
cost to ALG over the second stage is the same as the cost to OPTnl.

5.3.1 Advice and algorithm from r1, . . . , rk

From r1 to rk, two bits of advice will be sent along with each request. The two bits of advice
for ith request, ri, during the first k requests are:
Bit 1: 1, if, after the kth request, the position of ri is occupied by a

server in OPTnl.
0, otherwise

Bit 2: 1, if, after the kth request, the position of ith server at the start
of the request sequence is occupied by a server in OPTnl.

0, otherwise
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From r1 to rk, COMPLIANT-MOVE will serve each request with the closest server. Im-
mediately after serving rk, COMPLIANT-MOVE will match the configuration of OPTnl.

The two bits of advice over the first k requests are used to provide the algorithm with the
configuration of OPTnl. As OPTnl only moves one server, s, per request, the k servers are
either at their initial position, the position of a request or the centre of the spider. The two bits
of advice indicate which requests and which initial positions are still occupied immediately
after rk. The difference between k and the positions occupied by servers as per the 2 bits of
advice is the number of servers present at the centre of the spider.

5.3.2 Advice and algorithm from rk+1, . . . , rn

Following the kth request, the advice will be based on a minimum weighted matching between
the servers of ALG and ORGnl. Only the arm where the request is located will be considered
in the minimum weighted matching. Any servers at the centre will be ignored for the minimum
matching on the arm. It is possible that OPTnl would have more servers on the branch than
ALG or vice versa. In that case, a number of dummy servers equal to the difference between
the servers of OPTnl and ALG will be placed at the position of the centre for the minimum
weighted matching on the arm.

Let s be the server used by OPTnl for request ri. Similarly to the line, the advice will be
based on the configuration of OPTnl immediately after serving ri with s and the configuration
of ALG before it serves ri where s is matched to an adjacent server of ALG.

Bit 1 indicates the direction of the server to use. Bit 2 indicates whether or not s is moved
to the centre after serving the request. The two bits of advice for ri are defined as follows:
Bit 1: 1, if s is matched to the server of ALG adjacent to ri towards

the centre.
0, otherwise.

Bit 2: 1, if, after serving the ri with s, OPTnl will move s to the
centre.

0, otherwise
From rk+1 to rn where n is the length of the request sequence, σ, COMPLIANT-MOVE

will serve each request from an adjacent server as directed by the first bit of advice. If the
second bit is a 1, COMPLIANT-MOVE will then move the server used for ri to the centre.

5.3.3 Algorithm: COMPLIANT-MOVE

Algorithm COMPLIANT-MARK(ri, adv) where ri is the request at time i and adv is
the advice.

if i ≤ k then

Use the nearest server.
if i = k then

Match the configuration of the OPTnl based on the 2 bits advice from r1 to rk.
end if

else

if the first bit of advice = 0 then

17



Use t, where t is the adjacent server to ri in the direction away from the centre.
else

Use t, where t is the adjacent server to ri in the direction towards the centre.
end if

if the second bit of advice = 1 then

Move t to the centre
end if

end if

5.3.4 Analysis

For the analysis of the COMPLAINT-MOVE algorithm, we will break up the process of
serving a request, ri, by OPTnl and ALG into three operations. They are:

1. OPTnl serves ri with s.

2. ALG serves ri with t.

3. OPTnl moves s and ALG moves t to the centre if required.

As with the algorithm for the line, we will make use of potential functions that use a
minimum weighted matching between the servers of OPTnl and the servers of ALG. In the
case of the spider graph, we will calculate a minimum weighted matching per arm. The
minimum weighted matching is the same as described in Section 5.3.2.

Claim 5.3. Let srvALG(a, ri) and srvOPTnl
(a, ri) be the number of servers that ALG respec-

tively OPTnl has on an arm a ∈ α after serving request ri where α is the set of all the arms

of the spider graph. For any a ∈ α, srvOPTnl
(a, rl) ≥ srvALG(a, rl) where l ≥ k.

Proof. The proof is by induction on the request sequence σ from rk to the end of the request
sequence.

After serving rk, ALG matches the configuration of OPTnl. As they have the same
configuration, srvOPTnl

(a, rk) = srvALG(a, rk) for all a ∈ α.
Assume that srvOPTnl

(a, rj) ≥ srvALG(a, rj) for all a ∈ α where rj is from rk to rl−1. Let
s be the server used by OPTnl to serve rl, let t be the server used by ALG and let b ∈ α be
the arm where rl is located.

If s and t are both located at the centre before serving rl, the number of servers on b

increase by 1 for both ALG and OPTnl. Therefore, srvOPTnl
(b, rl) ≥ srvALG(b, rl).

If s is located at the centre and t is not before serving rl, then the number of servers on
b increase by 1 for OPTnl. Therefore, srvOPTnl

(b, rl) ≥ srvALG(b, rl).
If s and t are both located on b before serving rl, then the number of servers on b does

not change for either ALG or OPTnl. Therefore, srvOPTnl
(b, rl) ≥ srvALG(b, rl).

If s is on b and t is at the centre before serving rl, then the number of servers on b

increase by 1 for ALG. The first bit of advice is based on the minimum weighted matching
of the servers of OPT and ALG on the arm of rl that matches s to an adjacent server, t.
The servers at the centre are not used in the minimum weighted matching. If OPT has more
servers than ALG on the arm, the difference will be made up by dummy servers of ALG being
placed at the centre. So, if t is at the centre before serving rl and s is not, this implies that
srvOPTnl

(b, rl−1) > srvALG(b, rl−1) as this is the only manner in which s can be matched to a
dummy server of ALG. Therefore, srvOPTnl

(b, rl) ≥ srvALG(b, rl).
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Finally, after serving rl, if OPTnl moves s to the centre, then ALG will move t to the
centre. The number of servers on b decreases by 1 for both OPTnl and ALG. Therefore,
srvOPTnl

(b, rl) ≥ srvALG(b, rl).

Lemma 5.4. Let rl be a request of σ where l > k. Let φa,l be the weight of the minimum

weighted matching between the servers of ALG and OPTnl of an arm a ∈ α after operation 3

where α is the set of all the arms of the spider graph. Let φ′

a,l be the weight of the minimum

weighted matching between the servers of ALG and OPTnl of an arm a ∈ α after operation 1.

Let Φl =
∑

a∈α φa,l and Φ′

l =
∑

a∈α φ′

a,l. For each rl, COMPLIANT-MOVE meets the three

conditions of Lemma 5.2.

Proof. Let dist(x, y) be the distance between two points x and y, and let c be the centre. Let
s be the server used by OPTnl to serve request rl and let t be the server used by ALG to
serve request rl.

The cost to OPTnl to serve rl can be broken into the cost for operation 1 and the cost
for operation 3 to OPTnl. The cost to ALG to serve rl can be broken into the cost for
operation 2 and the cost for operation 3 to ALG. So, OPTnl(ri) = OPTnl(ri)

′ + OPTnl(ri)
′′

and ALG(ri) = ALG(ri)
′+ALG(ri)

′′ where OPTnl(ri)
′ is the cost for operation 1, OPTnl(ri)

′′

is the cost for operation 3 to OPT, ALG(ri)
′ is the cost for operation 2 and ALG(ri)

′′ is the
cost for operation 3 to ALG.

Let p be the server of ALG to which s is matched for the minimum weighted matching
used to calculate Φl−1 and let a be the arm where rl is positioned. If s is at the centre, then
we could take it to be matched to a dummy server of ALG at the centre for the minimum
weighted matching used to calculate Φl−1 as Claim 5.3 shows that OPTnl has more servers
on a than ALG and, if both s and p are at the centre, the weight between s and p would be
0. As the only server moved between the configuration of the servers of ALG and OPT used
to calculate Φl−1 and Φ′

l is s, Φ′

l − Φl−1 ≤ dist(rl, s) = OPTnl(ri)
′, meeting condition 1 of

Lemma 5.2 as the greatest increase would result in s moving away from p on a.
By Lemma 4.1 and the definition of the first bit of advice, there is a minimum weighted

matching for the configurations of the servers of ALG and OPT used to calculate Φ′

l such
that t and s are matched. ALG moves t to rl at operation 2. If s and t remain at rl after
operation 3, then the only change in the configurations of the servers of ALG and OPT
used to calculate the minimum weighted matching at Φ′

l and Φl is t. Since, t moves to s,
Φl − Φ′

l = −dist(t, rl) = ALG(ri)
′, meeting condition 2 of Lemma 5.2.

If s and t move to the centre at operation 3, then they will not be included in the minimum
weighted matching of Φl. However, as shown in the previous paragraph, when s and t remain,
the weight of the minimum weighted matching decreases by −dist(t, rl). This decrease is when
s is matched to t and, since they are at the same position, contribute a weight of 0 to Φl.
Therefore, if s and t are no longer on the arm, then Φl − Φ′

l must be less than or equal to
−dist(t, rl) = ALG(ri)

′, meeting condition 2 of Lemma 5.2.
For operation 3, ALG will only move t to the centre if s is moved to the centre as per the

definition of the second bit of advice. Since both s and t served rl, if they move to the centre,
the cost will be dist(rl, c) to both ALG and OPTnl. In that case, OPTnl(ri)

′′ = ALG(ri)
′′ =

dist(rl, c). If s and t do not move to the centre, then OPTnl(ri)
′′ = ALG(ri)

′′ = 0. Therefore,
condition 3 of Lemma 5.2 is met.

Claim 5.5. Let rl be a request where l > k. If the advice for request rl indicates to ALG to

use a dummy server, then there exists a server of ALG at the centre.
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Proof. Let a be the arm where rl is positioned. From Claim 5.3, OPTnl will have the same
number of servers or more servers on each arm of the spider graph than ALG and, as per
the definition of the first bit of advice, if the advice indicates to use a dummy server of ALG
then OPTnl has more servers on a than ALG. Therefore, as ALG and OPTnl have the same
number of servers, there must be a server of ALG at the centre.

Corollary 5.6. COMPLIANT-MOVE is correct.

Proof. Follows immediately from Claim 5.5.

Theorem 5.7. COMPLIANT-MOVE is 1-competitive.

Proof. From r1 to rk, all requests are served by the closest server. Therefore, ALG(r1, . . . , rk) ≤
kd where d is the diameter of the spider graph. Immediately after serving the kth request,
ALG matches the configuration of the OPTnl. This can be bounded by kd.

From rk+1 to rn, ALG(rk+1, . . . , rn) = OPT(rk+1, . . . , rn)+Φk. This follows immediately
from Lemmas 5.4 and 5.2.

For the entire request sequence, ALG(σ) ≤ OPT(σ) + Φk + 2kd. Since the configurations
of ALG and OPTnl match after serving rk, Φk = 0. Therefore, ALG(σ) ≤ OPT(σ) + 2kd

6 Conclusions

To date, there is no lower bound established for the k-server problem with advice. In [7],

the authors present a deterministic algorithm that is kO( 1

b
) competitive. All of the results

presented here are 1-competitive or better with 2 or less bits of advice and they are the
best solution to date for the particular problem. Specifically, our algorithms for the k-server
problem on the line and the cycle take 1 bit of advice and are optimal which is clearly the
best results possible.

The work presented here could be continued by extending the algorithm for the k-server
problem with advice on the spider graph to the tree and, following that, establish a lower
bound for the k-server problem with advice on the tree. Ideally, a lower bound for the k-server
problem with advice on the tree could be useful in establishing a lower bound for the k-server
problem with advice on a general graph.

In a more general context, it would be interesting to continue exploring online algorithms
with advice and to establish results, ideally lower bounds as a function of the bits of advice, for
those algorithms. As online algorithms often fall into the general category of approximation
algorithms, it would be interesting to compare the results of online algorithms with and
without advice to that of the approximability results of the offline version to see if any
correlations can be established.
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A Full Proof for Lemma 4.1

Lemma A.1. Let A and B be two sets of points of equal size on the line. For any a ∈ A

there is a minimum weighted matching between the points of A and the points of B such that

a is matched to a point b ∈ B that is adjacent to a on the line.

Proof. Given a minimum weighted matching between the sets A and B on the line, let a ∈ A

be matched to a server e ∈ B such that e is not adjacent to a and let b ∈ B be a point
that is adjacent to a and between a and e on the line. Let c ∈ A be the point to which b is
matched. Let dist(x, y) be the distance between the points x and y on the line. Without loss
of generality, assume that b and e are to the right of a.

If c is between b and e, then dist(a, b) + dist(c, e) ≤ dist(a, e), so a can be matched to b

and c can be matched to e without increasing the cost of the matching.
If c is to the right of e, then dist(a, b) + dist(e, c) ≤ dist(a, e) + dist(b, c) since dist(a, b) +

2dist(b, e)+dist(e, c) = dist(a, e)+dist(b, c). So, a can be matched to b and c can be matched
to e without increasing the cost of the matching.

If c is to the left of a, then dist(a, b) + dist(c, e) = dist(c, b) + dist(a, e) since dist(a, b) +
dist(c, e) = dist(a, e) + 2dist(a, b) + dist(c, b) = dist(a, b) + dist(c, e). So, a can be matched to
b and c can be matched to e without increasing the cost of the matching.

B Full Proof for Lemma 4.2

Lemma B.1. Let Φ′

i and Φi be two functions that map the configurations of ALG and OPT

to a real number where Φ′

i ≥ 0 and Φi ≥ 0 such that Φ′

i is calculated at the end of an operation,

that is not the final operation, performed by ALG or OPT to serve ri while Φi is calculated

at the end of the final operation performed by ALG or OPT for ri. Given the two following

conditions for each request, ri, in σ:

• OPT(ri) ≥ Φ′

i − Φi−1

• −ALG(ri) ≥ Φi − Φ′

i

then ALG(σ) ≤ OPT(σ) + Φ0

Proof. Adding the two conditions gives

OPT(ri) − ALG(ri) ≥ Φi − Φi−1.

Therefore,
ALG(ri) ≤ OPT(ri) + Φi−1 − Φi.

Summing over all the requests gives
∑

ri∈σ

ALG(ri) ≤
∑

ri∈σ

OPT(ri) +
∑

ri∈σ

(Φi−1 − Φi).

The last sum is a telescoping sum. So,

ALG(σ) ≤ OPT(σ) + Φ0 − Φn

where n is the length of σ. Since Φn ≥ 0,

ALG(σ) ≤ OPT(σ) + Φ0.
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C Full Proof for Lemma 5.2

Lemma C.1. Let Φ′

i and Φi be two functions that map the configurations of ALG and OPT

to a real number where Φ′

i ≥ 0 and Φi ≥ 0 such that Φ′

i is calculated at the end of an

operation, that is not the final operation, performed by ALG or OPT to serve ri while Φi is

calculated at the end of the final operation performed by ALG or OPT for ri. Given the three

following conditions for each request, ri, in σ where OPT(ri) = OPT(ri)
′ + OPT(ri)

′′ and

ALG(ri) = ALG(ri)
′ + ALG(ri)

′′:

• OPT(ri)
′ ≥ Φ′

i − Φi−1

• −ALG(ri)
′ ≥ Φi − Φ′

i

• OPT(ri)
′′ = ALG(ri)

′′

then ALG(σ) ≤ OPT(σ) + Φ0

Proof. Adding the first two conditions gives

OPT(ri)
′ − ALG(ri)

′ ≥ Φi − Φi−1.

Therefore,
ALG(ri)

′ ≤ OPT(ri)
′ + Φi−1 − Φi.

Using condition 3,

ALG(ri)
′ + ALG(ri)

′′ ≤ OPT(ri)
′ + OPT(ri)

′′ + Φi−1 − Φi

which is equivalent to
ALG(ri) ≤ OPT(ri) + Φi−1 − Φi.

Summing over all the requests gives

∑

ri∈σ

ALG(ri) ≤
∑

ri∈σ

OPT(ri) +
∑

ri∈σ

(Φi−1 − Φi).

The last sum is a telescoping sum. So,

ALG(σ) ≤ OPT(σ) + Φ0 − Φn

where n is the length of σ. Since Φn ≥ 0,

ALG(σ) ≤ OPT(σ) + Φ0.
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