
1/26

Theorem Proving as Constraint Solving
with Coherent Logic

Predrag Janičić Julien Narboux
University of Belgrade, Serbia University of Strasbourg, France

Dagstuhl Seminar 21472: ”Geometric Logic, Constructivisation, and Automated
Theorem Proving”, November 21-27, 2021.

Janičić, Narboux Proving as Constraints Solving with CL

2/26

Coherent Logic / Finitary Geometric Implications

A0(~x) ∧ . . . ∧ An−1(~x)⇒ ∃~y(B0(~x , ~y) ∨ . . . ∨ Bm−1(~x , ~y))

where universal closure is assumed, Ai denotes an atomic formula,
and Bj denotes a conjunction of atomic formulae.

Janičić, Narboux Proving as Constraints Solving with CL

3/26

Inference System for Coherent Logic

Γ, ax ,A0(~a), . . . ,An−1(~a),B0(~a, ~b) ∨ . . . ∨ Bm−1(~a, ~b) ` P

Γ, ax ,A0(~a), . . . ,An−1(~a) ` P
MP

where ax is

A0(~x) ∧ . . . ∧ An−1(~x)⇒ ∃~y(B0(~x , ~y) ∨ . . . ∨ Bm−1(~x , ~y))

Γ,B0(~c) ` P . . . Γ,Bm−1(~c) ` P

Γ,B0(~c) ∨ . . . ∨ Bm−1(~c) ` P
QEDcs (case split)

Γ,Bi (~a, ~b) ` ∃~y(B0(~a, ~y) ∨ . . . ∨ Bm−1(~a, ~y))
QEDas (assumption)

Γ,⊥ ` P
QEDefq (ex falso quodlibet)

Janičić, Narboux Proving as Constraints Solving with CL

4/26

Starting Ideas

The pure forward chaining approach to ATP does not take the
goal into account.

SAT/SMT solvers have been progressing a lot in the recent
years.

Encoding the problem of finding a Coherent Logic proof into
SAT/SMT theories can restore a form of multidirectional
reasoning.

Janičić, Narboux Proving as Constraints Solving with CL

5/26

Theorem Proving as Constraint Solving

In traditional automated proving:

the search is performed over a set of formulae and it
terminates once the goal formula or contradiction is found.
A proof can then be reconstructed as a byproduct of this
process.

In our approach, proving as constraint solving:

the search is performed globally over a set of possible proofs;
a proof of a given formula can be represented by a sequence of
natural numbers, meeting some constraints;
a proof is found by a solver that finds a sequence that meets
these conditions.

Janičić, Narboux Proving as Constraints Solving with CL

6/26

Related work

Surprisingly (as far as we know) this approach has not been
studied extensively. Only:

Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin,
Christopher Lynch, and Ralph Eric McGregor. Encoding First
Order Proofs in SAT, CADE-21, 2007.

Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch,
and Ralph Eric McGregor. Encoding First Order Proofs in
SMT. ENTCS, 198(2):71–84, 2008.

Janičić, Narboux Proving as Constraints Solving with CL

7/26

Inference System for Coherent Logic: Example

Consider the following set of axioms:
ax1: ∀x (p(x)⇒ r(x) ∨ q(x))
ax2: ∀x (q(x)⇒ ⊥)
and the conjecture: ∀x (p(x)⇒ r(x))

ax1, ax2, p(a), r(a) ` r(a)
QEDas

ax1, ax2, p(a), q(a),⊥ ` r(a)
QEDefq

ax1, ax2, p(a), q(a) ` r(a)
MP(ax2)

ax1, ax2, p(a), r(a) ∨ q(a) ` r(a)
QEDcs

ax1, ax2, p(a) ` r(a)
MP(ax1)

The same proof in a forward manner, in a natural language form:

Consider an arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) ∨ q(a) (by MP, from p(a) using axiom ax1; instantiation: X 7→ a)
2. Case r(a):
3. Proved by assumption! (by QEDas)
4. Case q(a):
5. ⊥ (by MP, from q(a) using axiom ax2; instantiation: X 7→ a)
6. Contradiction! (by QEDefq)

7. Proved by case split! (by QEDcs, by r(a), q(a))

Janičić, Narboux Proving as Constraints Solving with CL

8/26

Encoded Proof: Example

0. 1 0 0 2 0 /* Nesting: 1; Step kind:0 = Assumption;

Branching: no; p2(a) */

1. 1 13 1 4 0 6 0 /* Nesting: 1; Step kind:13 = MP-axiom:13;

Branching: yes; p4(a) or p6(a) */

0 /* From steps: (0) */

0 /* Instantiation */

2. 2 2 0 4 0 /* Nesting: 2; Step kind:2 = First case;

Branching: no; p4(a) */

3. 2 10 /* Nesting: 2; Step kind:10 =

QED by assumption; */

4. 3 3 0 6 0 /* Nesting: 3; Step kind:3 = Second case;

Branching: no; p6(a) */

5. 3 14 0 0 /* Nesting: 3; Step kind:14=MP-axiom:14);

Branching: no; p0() */

4 /* From steps: (4) */

0 /* Instantiation */

6. 3 11 /* Nesting: 3; Step kind:11 = QED by EFQ;*/

7. 1 9 /* Nesting: 1; Step kind:9 = QED by cases;*/

Janičić, Narboux Proving as Constraints Solving with CL

9/26

Constraints

We add constraints expressing that a sequence of integers
represents a valid proof.

The proofs by cases are encoded by associating nesting
information to each proof step.

The absence of function symbols in CL allows a trivial
encoding of matching of axiom arguments (no need to encode
the unification problem).

Janičić, Narboux Proving as Constraints Solving with CL

10/26

From CL to CL2 and Back

For convenience, we consider CL2, all formuae are of the form:

A0(~x) ∧ . . . ∧ An−1(~x)⇒ ∃~y(B0(~x , ~y) ∨ . . . ∨ Bm−1(~x , ~y))

where

m = 1 or m = 2;
each formula Bi consists of only one conjunct.

The axioms and the conjecture can be relatively simply
translated from CL to CL2 (by introducing new predicate
symbols)

The proof obtained for CL2 can be simply transformed to a
proof over the original CL language

Each proof has a form:
Proof ::= As∗ MP∗

(
QEDcs

(
Proof2

)
| QEDas | QEDefq

)
Janičić, Narboux Proving as Constraints Solving with CL

11/26

Overview

1 A maximal proof length M is given.

2 Proof steps and the constraints are encoded by natural
numbers.

3 A constraint solver (for linear arithmetic, for instance), is
invoked to find a model.

4 There is a proof of length ≤ M iff there is a model for the
constraints.

5 If there is a model, then a proof can be reconstructed from it.

6 A proof for a proof assistant can be constructed.

Janičić, Narboux Proving as Constraints Solving with CL

12/26

Optimizations

1 Symmetry breaking (for instance, if step s + 1 does not use
step the result of step s, then we order the two steps by the
lexicographic order (number of premises, number of the
lemma used)).

2 Memoization (use variables instead of duplicating constraints).

Janičić, Narboux Proving as Constraints Solving with CL

13/26

CL: a good framework for obtaining readable proofs

Gentzen: “I wanted to set up a formalism that comes as close as
possible to actual reasoning”
In CL:

no need for normalization to clausal form.

a better level of granularity compared to natural deduction.

Janičić, Narboux Proving as Constraints Solving with CL

14/26

Extension: inline lemmas

1 ”ABCD is a rectangle because ABCD is square”

2 ”ABC are collinear because BAC are collinear”

3 ”ABCD is a parallelogram because BCDA is a parallelogram”

Should these proof steps be implicit ?
It depends on the context: in high-school 1) should be explicit, 3)
is equivalent to the parallel postulate.
In Larus an option is available to consider all lemmas with at most
one assumption as implicit.

Janičić, Narboux Proving as Constraints Solving with CL

14/26

Extension: inline lemmas

1 ”ABCD is a rectangle because ABCD is square”

2 ”ABC are collinear because BAC are collinear”

3 ”ABCD is a parallelogram because BCDA is a parallelogram”

Should these proof steps be implicit ?
It depends on the context: in high-school 1) should be explicit, 3)
is equivalent to the parallel postulate.
In Larus an option is available to consider all lemmas with at most
one assumption as implicit.

Janičić, Narboux Proving as Constraints Solving with CL

14/26

Extension: inline lemmas

1 ”ABCD is a rectangle because ABCD is square”

2 ”ABC are collinear because BAC are collinear”

3 ”ABCD is a parallelogram because BCDA is a parallelogram”

Should these proof steps be implicit ?
It depends on the context: in high-school 1) should be explicit, 3)
is equivalent to the parallel postulate.
In Larus an option is available to consider all lemmas with at most
one assumption as implicit.

Janičić, Narboux Proving as Constraints Solving with CL

15/26

Example

Euclid Book I, Proposition 4: Side-Angle-Side
Euclid Book I, Proposition 5: In isosceles triangles the angles at
the base equal one another. Or, in formal terms:

∀ A,B,C (isosceles(A,B,C)⇒ congA(A,B,C ,A,C ,B))

Janičić, Narboux Proving as Constraints Solving with CL

16/26

Output example

Consider arbitrary a, b, c such that: isosceles(a, b, c). It should be
proved that congA(a, b, c , a, c, b).

1. col(c , a, b) ∨ ¬col(c , a, b) (by MP, using axiom cn col1b; instantiation: A 7→
c, B 7→ a, C 7→ b)

2. Case col(c , a, b):
3. ⊥ (by MP, from col(c, a, b), isosceles(a, b, c) using axiom nnncolNegElim;

instantiation: A 7→ a, B 7→ b, C 7→ c)
4. Contradiction! (by QEDefq)

5. Case ¬col(c , a, b):
6. congA(a, b, c , a, c, b) (by MP, from isosceles(a, b, c), isosceles(a, b, c),

¬col(c, a, b) using axiom proposition 04; instantiation: A 7→ a, B 7→ c, C 7→ b, Xa

7→ a, Xb 7→ b, Xc 7→ c)
7. Proved by assumption! (by QEDas)

8. Proved by case split! (by QEDcs, by col(c, a, b),¬col(c, a, b))

Janičić, Narboux Proving as Constraints Solving with CL

17/26

Implementation

The C++ implementation — Larus — is available at:
https://github.com/janicicpredrag/Larus

Janičić, Narboux Proving as Constraints Solving with CL

https://github.com/janicicpredrag/Larus

18/26

Experimental Results

We experimented with our implementation of the approach using
four sets of problems:

1 a corpus of 64 problems coming from the CL community
2 a corpus of 234 problems coming from the formalization of

Book 1 of Euclid’s Elements
3 some crafted examples
4 a corpus of lemma about pseudo transitivity of collinearity

and compared to:

State of the art provers: Vampire, Eprover, Iprover

Small (prolog based) provers: LeanCop, NanoCop

Provers generating Coq proofs or Coq’s tactics: Zenon,
Coq-firstorder, Coq-sauto

A Coherent Logic prover: Geo

Similar approach for FOL: ChewTPTP

Portfolio approach: Isabelle SledgeHammer (without proof
reconstruction)

Janičić, Narboux Proving as Constraints Solving with CL

19/26

Experimental Results (CL benches)

100 101 102

time in seconds

10

20

30

40

50

60

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

0
1 2

34

5 6

7

8

9
10

11

number of benchmarks = 64

0: Vampire
1: Eprover
2: Iprover
3: Nanocop
4: Leancop
5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Coq-sauto
10: Coq-firstorder
11: Isabelle

Janičić, Narboux Proving as Constraints Solving with CL

20/26

Experimental Results (Euclid)

100 101 102

time in seconds

50

100

150

200

nu
m

be
r o

f p
ro

bl
em

 so
lv

ed

0
1

2

3 4

5 6

7

8

9
10

11

number of benchmarks = 2340: Vampire
1: Eprover
2: Iprover
3: Nanocop
4: Leancop
5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Coq-sauto
10: Coq-firstorder
11: Isabelle

Janičić, Narboux Proving as Constraints Solving with CL

21/26

Proof Hints

Using this approach, the user can add constraints either to
help the prover or to find a specific proof.

Examples:

predicate r must appear somewhere in the proof:

fof(hintname0, hint, r(?,?), _, _)

ax2 must be used in the proof at step 3, instantiating both
arguments with the same value

fof(hintname0, hint, _, 3, ax2(A,A))

Hints could be used within proof assistant for turning proof
sketches into formal proofs.

Janičić, Narboux Proving as Constraints Solving with CL

22/26

Reconstruction of Proofs within ITP Systems

Using tactics rather than λ-terms.

Using tactics we can mimic CL rules, preserve readability and
maintainability.

The generated Coq’s proof is in declarative style.

Inlined lemmas are kept implicit.

Janičić, Narboux Proving as Constraints Solving with CL

23/26

Example

Coq output (without inline lemmas)

Theorem p r o p o s i t i o n 0 5 : f o r a l l A B C : MyT, i s o s c e l e s A B C −> congA A B C A C
B.

Proo f .
i n t r o s a b c .
i n t r o s .
a s s e r t (cong a b a c) by app l y i n g (d e f i s o s c e l e s a b c) .
a s s e r t (t r i a n g l e a b c) by a pp l y i n g (d e f i s o s c e l e s a b c) .
a s s e r t (c o l b a c \/ ˜ c o l b a c) by app l y i n g (cn co l 1 b b a c) .
by c a s e s on ((c o l b a c) \/ (˜ c o l b a c)) .
− {

a s s e r t (˜ c o l a b c) by app l y i n g (d e f t r i a n g l e a b c) .
a s s e r t (c o l a b c) by app l y i n g (l emma c o l l i n e a r o r d e r b a c) .
a s s e r t (F a l s e) by c o n t r a d i c t i o n o n (c o l a b c) .
c o n t r a d i c t .
}

− {
a s s e r t (cong a c a b) by app l y i n g (lemma congruencesymmetr ic a a b c) .
a s s e r t (congA b a c c a b) by app l y i n g (lemma ABCequalsCBA b a c) .
a s s e r t (congA a b c a c b) by a pp l y i n g (p r o p o s i t i o n 0 4 a b c a c b) .
conc l ude .
}

Qed .

Janičić, Narboux Proving as Constraints Solving with CL

24/26

Classical vs. Intuitionistic Logic

While, for instance, in the resolution method, classical logic and
reasoning are deeply built-in, in the presented approach and when
using the prover, one can easily choose whether to use excluded
middle or not (and, hence, choose between classical and
intuitionistic setting), it is just a matter of adding axioms.

Janičić, Narboux Proving as Constraints Solving with CL

25/26

Potential extensions/Future work

Test the prover on problems which are not in CL form and
study the impact of anti-skolemization and geometrization.

Improving the encoding used (e.g., by using some form of
incremental encoding, or some meta-theorems);

Improving the solving process (e.g., by using some other
SAT/SMT solvers, or by instructing SAT/SMT solvers to take
into account some specifics of input instances);

Paralellisation

Janičić, Narboux Proving as Constraints Solving with CL

26/26

Conclusions

Larus can generate readable and machine checkable proofs
and use proof hints.

Larus can not compete with state of the art provers, but can
compete with others provers generating Coq’s proofs.

The approach could be tried for other logics.

Janičić, Narboux Proving as Constraints Solving with CL

