Predrag Jani¢i¢
University of Belgrade, Serbia

Julien Narboux

University of Strasbourg, France

Theorem Proving”, November 21-27, 2021.

«AOr 4Fr <= 4 A 1/26

Dagstuhl Seminar 21472: " Geometric Logic, Constructivisation, and Automated

it
v

Coherent Logic / Finitary Geometric Implications

Ao()?) VAN An_l(f) = 3)7(80()_(',)7) V...V Bm—l()?v)7))

where universal closure is assumed, A; denotes an atomic formula,
and B; denotes a conjunction of atomic formulae.

Janiti¢, Narboux Proving as Constraints Solving with CL

Inference System for Coherent Logic

-, -,

[ax,Ao(d), .., An-1(3), Bo(a,b) V ... V Bm-1(a, b) - P

F, ax, Ao(é), N ,Anfl(é') FP
where ax is

MP

Ao()?) VANPIRAN A,,,l()_(’) = HV(BQ()?,)7) V...V Bmfl()?,)7))

MB(O)FP ... raMFP b i
r, 30(5) V...V Bm_1(5) [y QEDcs (Case sp 1t)

QEDas (assumption)

-,

I, Bi(a,b) - 3y(Bo(a,y) V...V Bn-1(a,¥))

TIEPp QEDefq (ex falso quodlibet)

Janici¢, Narboux Proving as Constraints Solving with CL

Starting ldeas

@ The pure forward chaining approach to ATP does not take the
goal into account.

e SAT/SMT solvers have been progressing a lot in the recent
years.

@ Encoding the problem of finding a Coherent Logic proof into
SAT/SMT theories can restore a form of multidirectional
reasoning.

Janici¢, Narboux Proving as Constraints Solving with CL

Theorem Proving as Constraint Solving

@ In traditional automated proving:
e the search is performed over a set of formulae and it
terminates once the goal formula or contradiction is found.
e A proof can then be reconstructed as a byproduct of this
process.
@ In our approach, proving as constraint solving:
e the search is performed globally over a set of possible proofs;
e a proof of a given formula can be represented by a sequence of
natural numbers, meeting some constraints;
e a proof is found by a solver that finds a sequence that meets
these conditions.

Janici¢, Narboux Proving as Constraints Solving with CL

Related work

Surprisingly (as far as we know) this approach has not been
studied extensively. Only:
@ Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin,
Christopher Lynch, and Ralph Eric McGregor. Encoding First
Order Proofs in SAT, CADE-21, 2007.

@ Jeremy Bongio, Cyrus Katrak, Hai Lin, Christopher Lynch,
and Ralph Eric McGregor. Encoding First Order Proofs in
SMT. ENTCS, 198(2):71-84, 2008.

Janici¢, Narboux Proving as Constraints Solving with CL

Inference System for Coherent Logic: Example

Consider the following set of axioms:
axl: Vx (p(x) = r(x) V q(x))
ax2: Vx (q(x) = 1)

and the conjecture: Vx (p(x) = r(x))

a1, a2, p(a). a(a). LT r(a) o]
QEDas MP (ax2)
ax1, ax2, p(a), r(a) - r(a) ax1,ax2, p(a), q(a) - r(a)
QEDcs

ax1, ax2, p(a), r(a) Vv q(a) F r(a)
ax1,ax2,p(a) - r(a)

MP (ax1)

The same proof in a forward manner, in a natural language form:

Consider an arbitrary a such that: p(a). It should be proved that r(a).

1. r(a) Vv q(a) (by MP, from p(a) using axiom axl; instantiation: X +— a)
2. Case r(a):
3. Proved by assumption! (by QEDas)
4. Case q(a):
5. L (by MP, from g(a) using axiom ax2; instantiation: X — a)
6. Contradiction! (by QEDefq)
7. Proved by case split! (by QEDcs, by r(a), g(a))

\.

Janiti¢, Narboux Proving as Constraints Solving with CL

Encoded Proof: Example

0 1 00
1 1131
2. 2 20
3. 210
4. 3 30
5. 3140
6. 311
7 1 9

20 /*
4060 /*
0 /*

0 /*

40 /*
/*

6 0 /*

0 /*

4 /*
0 /*

/*

Nesting: 1; Step kind:0 = Assumption;
Branching: no; p2(a) */

Nesting: 1; Step kind:13 = MP-axiom:13;
Branching: yes; p4(a) or p6(a) */

From steps: (0) */

Instantiation */

Nesting: 2; Step kind:2 = First case;
Branching: no; p4(a) */

Nesting: 2; Step kind:10 =

QED by assumption; */

Nesting: 3; Step kind:3 = Second case;
Branching: no; p6(a) */

Nesting: 3; Step kind:14=MP-axiom:14);
Branching: no; p0() */

From steps: (4) */

Instantiation */

Nesting: 3; Step kind:11 = QED by EFQ;*/

Nesting: 1; Step kind:9 = QED by cases;*/

Janiti¢, Narboux Proving as Constraints Solving with CL

Constraints

@ We add constraints expressing that a sequence of integers
represents a valid proof.

@ The proofs by cases are encoded by associating nesting
information to each proof step.

@ The absence of function symbols in CL allows a trivial
encoding of matching of axiom arguments (no need to encode
the unification problem).

Janici¢, Narboux Proving as Constraints Solving with CL

From CL to CL2 and Back

@ For convenience, we consider CL2, all formuae are of the form:
Ao()_(') VANIVAN An_1(>_(‘) = 3)7(80()_(’,)7) V...V Bm—l(i; }7))

where
e m=1orm=2;
e each formula B; consists of only one conjunct.
@ The axioms and the conjecture can be relatively simply
translated from CL to CL2 (by introducing new predicate
symbols)

@ The proof obtained for CL2 can be simply transformed to a
proof over the original CL language

@ Each proof has a form:
Proof ::= As* MP* (QEDCS (Proof2) | QEDas | QEDefq)

Janici¢, Narboux Proving as Constraints Solving with CL

Overview

@ A maximal proof length M is given.

@ Proof steps and the constraints are encoded by natural
numbers.

© A constraint solver (for linear arithmetic, for instance), is
invoked to find a model.

@ There is a proof of length < M iff there is a model for the
constraints.

© If there is a model, then a proof can be reconstructed from it.

@ A proof for a proof assistant can be constructed.

Janici¢, Narboux Proving as Constraints Solving with CL

Optimizations

@ Symmetry breaking (for instance, if step s + 1 does not use
step the result of step s, then we order the two steps by the
lexicographic order (number of premises, number of the
lemma used)).

@ Memoization (use variables instead of duplicating constraints).

Janici¢, Narboux Proving as Constraints Solving with CL

CL: a good framework for obtaining readable proofs

Gentzen: "l wanted to set up a formalism that comes as close as
possible to actual reasoning”
In CL:

@ no need for normalization to clausal form.

@ a better level of granularity compared to natural deduction.

Janici¢, Narboux Proving as Constraints Solving with CL

Extension: inline lemmas

@ "ABCD is a rectangle because ABCD is square”

@ "ABC are collinear because BAC are collinear”

© "ABCD is a parallelogram because BCDA is a parallelogram”
Should these proof steps be implicit ?

Janici¢, Narboux Proving as Constraints Solving with CL

Extension: inline lemmas

@ "ABCD is a rectangle because ABCD is square”
@ "ABC are collinear because BAC are collinear”
© "ABCD is a parallelogram because BCDA is a parallelogram”

Should these proof steps be implicit ?
It depends on the context: in high-school 1) should be explicit, 3)
is equivalent to the parallel postulate.

Janici¢, Narboux Proving as Constraints Solving with CL

Extension: inline lemmas

@ "ABCD is a rectangle because ABCD is square”
@ "ABC are collinear because BAC are collinear”
© "ABCD is a parallelogram because BCDA is a parallelogram”

Should these proof steps be implicit ?

It depends on the context: in high-school 1) should be explicit, 3)
is equivalent to the parallel postulate.

In Larus an option is available to consider all lemmas with at most
one assumption as implicit.

Janici¢, Narboux Proving as Constraints Solving with CL

Example

Euclid Book I, Proposition 4: Side-Angle-Side
Euclid Book I, Proposition 5: In isosceles triangles the angles at
the base equal one another. Or, in formal terms:

YV A, B, C (isosceles(A, B, C) = congA(A,B,C,A,C,B))

Janici¢, Narboux Proving as Constraints Solving with CL

Output example

Consider arbitrary a, b, ¢ such that: isosceles(a, b, ¢). It should be
proved that congA(a, b, c, a, c, b).

1. CO/(C7 a, b) V ﬂCO/(C7 a, b) (by MP, using axiom cn_collb; instantiation: A —
¢, B a, Cwsb)
2. Case col(c, a, b):
3. L (by MP, from col(c, a, b), isosceles(a, b, c) using axiom nnncolNegElim;
instantiation: A— a, B— b, C — c)
4. Contradiction! (by QEDefq)
5. Case —col(c, a, b):
6. congA(a, b, c,a,c, b) (by MP, from isosceles(a, b, c), isosceles(a, b, c),
—col(c, a, b) using axiom proposition_04; instantiation: A — a, B — ¢, C — b, Xa
+ a, Xb > b, Xc v ¢)
7. Proved by assumption! (by QEDas)
8. Proved by case split! (by QEDcs, by col(c, a, b), ~col(c, a, b))

Janici¢, Narboux Proving as Constraints Solving with CL

The C4++ implementation — Larus — is available at:
https://github.com/janicicpredrag/Larus

«Or «Fr <= 4 > 25N 64 17/26

https://github.com/janicicpredrag/Larus

Experimental Results

We experimented with our implementation of the approach using
four sets of problems:

@ a corpus of 64 problems coming from the CL community

@ a corpus of 234 problems coming from the formalization of

Book 1 of Euclid’s Elements

© some crafted examples

@ a corpus of lemma about pseudo transitivity of collinearity
and compared to:

@ State of the art provers: Vampire, Eprover, Iprover

e Small (prolog based) provers: LeanCop, NanoCop

@ Provers generating Coq proofs or Coq's tactics: Zenon,
Cog-firstorder, Cog-sauto

@ A Coherent Logic prover: Geo

@ Similar approach for FOL: ChewTPTP

e Portfolio approach: lIsabelle SledgeHammer (without proof
reconstruction)

Janici¢, Narboux Proving as Constraints Solving with CL

Experimental Results (CL benches)

number of benchmarks = 64
60
8 501 .ee e —————————— - ,_’_/:'." =
g L. ‘ P g
o === 0: Vampire -
o - - - - B11
GEJ 404~ 1: Eprover ' B
5 -+ 2:lprover ;
g_ 3: Nanocop
%5 30 4 4: Leancop
s | 5: Zenon
'g 6: Chewtptp
2 20 1 7: Geo
—— 8: Larus |
10_--9:Coq-sauto e K0)
- = 10: Cog-firstorder
= 11: Isabelle
Vi
10° 10! 102

time in seconds

Janiti¢, Narboux Proving as Constraints Solving with CL

Experimental Results (Euclid)

number of benchmarks = 234

=== 0: Vampire
== 1: Eprover
- - 2:lprover
3: Nanocop
4: Leancop
----- 5: Zenon
6: Chewtptp
7: Geo
8: Larus
9: Cog-sauto
100 { - = 10: Cog-firstorder
- 11: Isabelle ! B34

200 A

150 A

number of problem solved

10° 10! 102
time in seconds

Janiti¢, Narboux Proving as Constraints Solving with CL

Proof Hints

o Using this approach, the user can add constraints either to
help the prover or to find a specific proof.
@ Examples:
e predicate r must appear somewhere in the proof:
fof (hintnameO, hint, r(?,?), _, _)

e ax2 must be used in the proof at step 3, instantiating both
arguments with the same value

fof (hintnameO, hint, _, 3, ax2(A,A))

@ Hints could be used within proof assistant for turning proof
sketches into formal proofs.

Janici¢, Narboux Proving as Constraints Solving with CL

Reconstruction of Proofs within ITP Systems

Using tactics rather than A-terms.

Using tactics we can mimic CL rules, preserve readability and
maintainability.

The generated Coq's proof is in declarative style.

Inlined lemmas are kept implicit.

Janici¢, Narboux Proving as Constraints Solving with CL

Example

Coq output (without inline lemmas)

Theorem proposition_-05 : forall A B C : MyT, isosceles AB C—> congA ABCAZC
B.

Proof.
intros a b c.
intros.
assert (cong a b a c) by applying (defisosceles a b c).
assert (triangle a b c) by applying (defisosceles a b c).
assert (col b a c \/ ~ col b a c) by applying (cn_collb b a c).
by cases on ((col bac) \/ (7 col bac)).
assert (7 col a b c¢) by applying (deftriangle a b c).
assert (col a b c) by applying (lemma_.collinearorder b a c).
assert (False) by contradiction_on (col a b c).
contradict .

}
- {
assert (cong a ¢ a b) by applying (lemma_congruencesymmetric a a b c).
assert (congA b a ¢ ¢ a b) by applying (lemma.ABCequalsCBA b a c).
(
e

assert (congA a b ¢ a ¢ b) by applying (proposition.04 a b c a ¢ b).
conclude.

s
Qed .

Janiti¢, Narboux Proving as Constraints Solving with CL

Classical vs. Intuitionistic Logic

While, for instance, in the resolution method, classical logic and
reasoning are deeply built-in, in the presented approach and when
using the prover, one can easily choose whether to use excluded
middle or not (and, hence, choose between classical and
intuitionistic setting), it is just a matter of adding axioms.

Janici¢, Narboux Proving as Constraints Solving with CL

Potential extensions/Future work

@ Test the prover on problems which are not in CL form and
study the impact of anti-skolemization and geometrization.

@ Improving the encoding used (e.g., by using some form of
incremental encoding, or some meta-theorems);

@ Improving the solving process (e.g., by using some other
SAT /SMT solvers, or by instructing SAT /SMT solvers to take
into account some specifics of input instances);

o Paralellisation

Janici¢, Narboux Proving as Constraints Solving with CL

Conclusions

@ Larus can generate readable and machine checkable proofs
and use proof hints.

@ Larus can not compete with state of the art provers, but can
compete with others provers generating Coq’s proofs.

@ The approach could be tried for other logics.

Janici¢, Narboux Proving as Constraints Solving with CL

