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The solution

The use of a proof assistant such as Coq, Isabelle, PVS. . .
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Every triangle is isosceles.

• Let ABC be a triangle.

• Let D be the
perpendicular bisector of
[BC ] and let D ′ be the
bisector of ∠BAC .

• Let I be the intersection
of D and D ′.

• HI = IG ∧ AH = AG

• IB = IC

• HB = GC

• AB = AC
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• Julien Narboux (Coq) [Nar04]

Motivations

• We need foundations to combine the different formal
developments.
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• They are simple.
• 11 axioms
• two predicates (β AB C , AB ≡ CD)

• They have good meta-mathematical properties.
• coherent
• complete
• decidable
• categorical
• its axioms are independent (almost)

• They can be generalized to different dimensions and
geometries.
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History

1940 1951 1959 1965 1983
[Tar67] [Tar51] [Tar59] [Gup65] [SST83]

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

51 51 → 5 5 5
6 6 6 6

72 72 → 71 71 → 7
8(2) 8(2) 8(2) 8(2) 8(2)

91(2) 91(2) → 9(2) 9(2) 9(2)
10 10 → 101 101 → 10
11 11 11 11 11
12 12
13
14 14
15 15 15 15
16 16
17 17
18 18 18
19
20 → 201

21 21

20 18 12 10 10
+ + + + +

1 schema 1 schema 1 schema 1 schema 1 schema



Formalization

W. Schwabhäuser
W. Szmielew
A. Tarski

Metamathematische Methoden in der Geometrie

Springer-Verlag 1983



Overview I

About 200 lemmas and 6000 lines of proofs and definitions.

The first chapter contains the axioms.

The second chapter contains some basic properties of
equidistance.

The third chapter contains some basic properties of the
betweeness predicate (noted Bet). In particular, it
contains the proofs of the axioms 12, 14 and 16.

The fourth chapters provides properties about Cong, Col and Bet.

The fifth chapter contains the proof of the transitivity of Bet and
the definition of a length comparison predicate. It
contains the proof of the axioms 17 and 18.

The sixth chapter defines the out predicate which says that a
point is not on a line, it is used to prove transitivity
properties for Col.



Overview II

The seventh chapter defines the midpoint and the symmetric
point and prove some properties.

The eighth chapter contains the definition of the predicate
“perpendicular”, and finally proves the existence of
the midpoint.



Two crucial lemmas

∀ABC , β A C B ∧ AC ≡ AB ⇒ C = B

b b b

A B C

∀ABDE , β A D B ∧ β A E B ∧ AD ≡ AE ⇒ D = E .

b bb b

A BD E

(β A B C means B ∈ [AC ])



About degenerated cases

• We need specialized tactics.

• It is simple but effective !

• Still, the axiom system is important.
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• , There are fewer degenerated cases than in Hilbert’s axiom
system.

• , The axiom system is simpler.

• , It has good meta-mathematical properties.

• , Generalization to other dimensions is easy.

• / Lemma scheduling is more complicated.

• / It is not well adapted to teaching.
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3 GeoProof: A graphical user interface for proofs in geometry

4 Diagrammatic proofs in abstract rewriting



Automated deduction in geometry

• Algebraic methods (Wu, Gröbner bases, . . . )

• Coordinate free methods (the full-angle method, the area
method,. . . )



The area method

S.C. Chou, X.S. Gao, and J.Z. Zhang.
Machine Proofs in Geometry.
World Scientific, Singapore, 1994.



The elimination method

The elimination method :

1 Find a point which is not used to build any other point.
• The theorem must be stated constructively.

2 Eliminate every occurrence of this point from the goal.
• We need some theorem to eliminate the point.

3 Repeat until the goal contains only free points.

4 Deal with the free points.

5 Check if the remaining goal (an equation on a field) is true.
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The goal must be :

• stated constructively (as a sequence of constructions),

• using only two geometric quantities :

1 the signed area of a triangle (SABC = SBCA = −SBAC )

2 the ratio of two oriented distances AB

CD
where AB ‖ CD

• combined using arithmetic expressions (+,-,*,/).

Using these two quantities :

Geometric notions Formalization

A,B and C are collinear SABC = 0
AB ‖ CD SABC = SABD

I is the midpoint of AB AB

AI
= 2 ∧ SABI = 0

We can deal with affine geometry.
The method can be extended to deal with euclidean geometry.
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Construction
Elimination formulas

SABY = If
AY ‖ CD∧
A 6= Y∧
C 6= D

then AY

CD
=

bb b

YP Q
λSABQ + (1 − λ)SABP











AP

PQ
+λ

i.CD

PQ

ifA ∈ PQ

SAPQ

SCPDQ
otherwise1.

b b

b

b

bP Q

U

V

Y
SPUVSABQ+SQVUSABP

SPUQV

{

SAUV

SCUDV
ifA 6∈ UV

SAPQ

SCPDQ
otherwise.

b b

bb

P Q

R Y

SABR + λSAPBQ











AR

PQ
+λ

CD

PQ

ifA ∈ RY

SAPRQ

SCPDQ
otherwise.

1
SABCD is a notation for SABC + SACD .



It can not prove automatically:

• Theorems involving a quantification over constructions.
• The pentagon can be constructed with ruler and compass.
• The heptagon can not be constructed with ruler and compass.
• . . .

• Theorems stated non constructively.
• Let C be a point such that AC = BC . . .

• . . .



It can not prove automatically:

• Theorems involving a quantification over constructions.
• The pentagon can be constructed with ruler and compass.
• The heptagon can not be constructed with ruler and compass.
• . . .

• Theorems stated non constructively.
• Let C be a point such that AC = BC . . .

• . . .



The implementation is done :
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• the reflection mechanism (some sub-tactics are written using
Coq itself).

We have to :

1 describe the axiomatic,

2 prove the elimination lemmas,

3 automate the elimination process thanks to some tactics.



The implementation is done :

• using Ltac (the tactic language of Coq),

• the reflection mechanism (some sub-tactics are written using
Coq itself).

We have to :

1 describe the axiomatic,

2 prove the elimination lemmas,

3 automate the elimination process thanks to some tactics.



The implementation is done :

• using Ltac (the tactic language of Coq),

• the reflection mechanism (some sub-tactics are written using
Coq itself).

We have to :

1 describe the axiomatic,

2 prove the elimination lemmas,

3 automate the elimination process thanks to some tactics.



The implementation is done :

• using Ltac (the tactic language of Coq),

• the reflection mechanism (some sub-tactics are written using
Coq itself).

We have to :

1 describe the axiomatic,

2 prove the elimination lemmas,

3 automate the elimination process thanks to some tactics.



The implementation is done :

• using Ltac (the tactic language of Coq),

• the reflection mechanism (some sub-tactics are written using
Coq itself).

We have to :

1 describe the axiomatic,

2 prove the elimination lemmas,

3 automate the elimination process thanks to some tactics.



Some tactics:

initialization translates the goal into the language.

simplification performs trivial simplifications.

unification rewrites all occurrences of a geometric
quantity into the same expression.

elimination eliminates a point from a goal.

free point elimination treat the goal in order to keep only
independent variables.

conclusion mainly apply a tactic to decide equalities on
fields.
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An example

The midpoint theorem

if A′ is the midpoint of [BC ] and
B ′ is the midpoint of [AC ] then
(A′B ′) ‖ (AB).

bb

b b

b

A B

C

A’B’



geoinit.

H : on_line_d A’ B C (1 / 2)

H0 : on_line_d B’ A C (1 / 2)

============================

S A’ A B’ + S A’ B’ B = 0

eliminate B’.

H : on_line_d A’ B C (1 / 2)

============================

1/2 * S A’ A C + (1-1/2) * S A’ A A +

(1/2 * S B A’ C + (1-1/2) * S B A’ A) = 0



basic simpl.

H : on_line_d A’ B C (1 / 2)

============================

1/2 * S A’ A C +

(1/2 * S B A’ C + 1/2 * S B A’ A) = 0

eliminate A’.

============================

1/2*(1/2 * S A C C + (1-1/2) * S A C B) +

(1/2*(1/2 * S C B C + (1-1/2) * S C B B) +

1/2*(1/2 * S A B C + (1-1/2) * S A B B))= 0



basic simpl.

============================

1/2*(1/2* S A C B) + 1/2*(1/2* S A B C) = 0

unify signed areas.

============================

1/2*(1/2* S A C B)+1/2*(1/2* - S A C B) = 0

field and conclude.

Proof completed.



What we learned

• We fixed some details about degenerated conditions.

• We clarified the use of classical logic

Example

Let Y on the line PQ such that PY

PQ
= λ (P 6= Q).

AY

CD
=











AP

PQ
+λ

CD

PQ

ifA ∈ PQ

SAPQ

SCPDQ
otherwise.

If A = Y it can happens that CD 6‖ PQ.
We need to perform a case distinction using classical logic.



Benchmarks

Some examples

Ceva
Menelaus
Pascal
Pappus
Desargues
Centröıd
Gauss-Line

> 40 examples

average time : 9 seconds
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GeoProof combines these features:

• dynamic geometry

• automatic theorem proving

• interactive theorem proving (using Coq/CoqIDE)



Motivations

• The use of a proof assistant provides a way to combine
geometrical proofs with larger proofs (involving induction for
instance).

• There are facts than can not be visualized graphically and
there are facts that are difficult to understand without being
visualized.

• We should have both the ability to make arbitrarily complex
proofs and use a base of known lemmas.

• The verification of the proofs by the proof assistant provides a
very high level of confidence.
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Overview of GeoProof

Construction tools

Measures and 

tests tools

Visualization tools

Working window

Description of the figure

Undo/Redo Selection Manipulation Help

Status bar

Labels



Dynamic geometry features

• points, lines, circles, vectors,
segments, intersections,
perpendicular lines,
perpendicular bisectors,angle
bisectors. . .

• central symmetry, translation
and axial symmetry

• traces

• text labels with dynamic
parts:

• measures of angles,
distances and areas

• properties tests (collinear-
ity,orthogonality,. . . )

• layers

• Computations use arbitrary

precision

• Input: XML

• Output: XML, natural
language, SVG, PNG, BMP,
Eukleides (latex), Coq

Missing features:

• loci and conics

• macros

• animations



Proof related features

1 Automatic proof using an embedded ATP

2 Automatic proof using Coq

3 Interactive proof using Coq



Interactive proof using Coq

Init // Construction // Goal
Definition

// Proof

• GeoProof loads the library (Guilhot or Narboux) and updates
the interface.

• The user performs the construction.

• It translates each construction as an hypothesis in Coq syntax.

• It translates the conjecture into Coq syntax.

• It translates each construction into the application of a tactic
to prove the existence of the newly introduced object.
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Interactive proof using Coq
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Definition

// Proof
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Typical use

Construction // Conjecture // Proof



• We want to extend GeoProof to perform proof in different
domains,

• first we concentrate on abstract rewriting.
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Running Example

Definition

The composition of two relations
a

−→ and
b
−→ is defined by:

∀xy , x
a.b
−→ y ⇐⇒ ∃z , x

a
−→ z

b
−→ y

Example

If
a

−→ and
b
−→ are transitive and

b.a
−→⊆

a.b
−→ then

a.b
−→ is transitive.



Running example

x a.b // y a.b // z
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Diagrams as proofs

Diagrams can be seen as proofs hints.



Diagrams as proofs

Diagrams can be seen as proofs hints objects.



Diagrams

Diagrams can be defined by labeled oriented graphs verifying some
properties.



Diagrammatic formulas

Formulas which can be represented by a diagram are those of the
form:

∀ u
∧

i

Hi ⇒
∨

i

∃ ei

∧

j

Cij

where Hi and Cij are predicates of arity two.

This class of formulas is exactly what is called coherent logic by
Marc Bezem and Thierry Coquand.
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Inference rules

The system contains five rules of inference:

intros to introduce hypotheses in the context,

apply to use the information contained in a universal
diagram to enrich the factual diagram,

conclusion to conclude when the factual diagram contains
enough information,

substitute and reflexivity deals with equality.
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Inference rules

The system contains five rules of inference:

intros to introduce hypotheses in the context,

apply to use the information contained in a universal
diagram to enrich the factual diagram,

conclusion to conclude when the factual diagram contains
enough information,

substitute and reflexivity deals with equality.



Correctness and completeness

Intuitionist vs classical logic

For the class of formulas considered intuitionist and classical
provability coincide.

Theorem

The system is correct and complete for the coherent logic
(restrained to predicate of arity two).



Induction
The system can be extended to deal with well founded induction.

Newman’s lemma
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A better understanding of diagrammatic

reasoning

To have a diagrammatic proof system we need:

1 Visualization by a syntax that mimic the semantic.

2 An inference system which is complete and does not change
the conclusion.

intro apply* conclusion



Conclusion

• Foundational work about the formalization of geometry.

• Automation of affine geometry, clarification of the role of
classical logic and correction of some proofs.

• A user interface: GeoProof.

• Formalization of diagrammatic proof in abstract rewriting.
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Perspectives

• Formalize other ATP methods (Wu. . . ).

• Adapt GeoProof to the education.

• Toward a diagrammatic logic (category theory, projective
geometry, . . . ).
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Solution

• Let ABC be a triangle.

• Let D be the
perpendicular bisector of
[BC ] and let D ′ be the
bisector of ∠BAC .

• Let I be the intersection
of D and D ′.

• HI = IG ∧ AH = AG

• IB = IC

• HB = GC

• AB = AC

bA

bB
b

C

b I

b

G

b

H
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