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Abstract
With the emergence of Mobile technologies, Internet of Things and

Sensor networks, ad hoc protocols have gained in importance dur-
ing the last decade. As the devices of such technologies are battery-
powered most of the time, conserving energy is a key problem on net-
work’s protocols design. In addition, randomness is a very important
issue of any computer system. Thus, in this paper, we address the en-
ergy consumption of the decentralized global random bit (resp. num-
ber) generation problem and the binary (resp. multi-valued) consen-
sus problem, two fundamental problems in decentralized networking.
For cases when each of the n devices of the network may crash, we
have designed a fault-tolerant Energy Conserving pseudo-random Bit
Generator protocol or ECBG and a fault-tolerant Energy Conserving
Binary Consensus protocol or ECBC having O(logn) time complex-
ity and a constant energy consumption per device. Such protocols
have O(n) bit complexity. We then adapted our protocol to design a
fault-tolerant Energy Conserving pseudo-random Number Generator
protocol or ECNGhaving O(log2 n) time complexity, O(log n) energy
consumption per device and conserving the O(n) bits complexity.

1 Introduction

Designing ad hoc network’s protocols became an important research field,
especially after the growth of Mobile devices [1], Internet of Things devices
(IoT) [2] and Sensors networks (as Body Area Networks or BANs [3]). All
such devices are battery-powered and for the most part have limited bat-
tery life, thus, managing their energy consumption is of paramount impor-
tance [4]. As a consequence, in addition to time complexity1, bit complex-
ity2, we focus on the energy complexity of the protocols. As transceiving

1It is measured by communication time’s number instead of local computations. In
this paper, we assume that internal computations are free [5].

2The total number of bits sent by all devices.
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uses more energy than internal computations (in [6], each sensor device con-
sumes respectively 1.8W, 0.6W and 0.05W when transmitting, receiving a
message and having radio switched off), the energy consumption of a proto-
col is measured by the maximum over all devices of the number of time slots
during which any device has its radio switched on (to listen or to transmit).
Such energy consumption also depends on the size of exchanged messages [7],
so, any reduction of the message’s size is highly desirable. Thus in this pa-
per, we consider the single-hop3 Beeping model, introduced by Cornejo and
Kuhn [8].

Beeping Model The Beeping Model is a harsh communication model in
which the devices are allowed to transmit only one-bit messages by sending a
jamming signal or a beep on a broadcast channel. Each device only needs to
be able to do carrier-sensing for detecting such signals and can not distinguish
between single and multiple transmitters. In [8], the authors noted that
such carrier-sensing can typically be done much more reliably and requires
significantly less energy and other resources than sending a message.

The Beeping Model can be simulated on existing Mobile, IoT and Sensor
networks devices by making each device broadcast a single-bit message at
each time slot of communication instead of sending a large sized message. It
also could be implemented in a new generation of Mobile, IoT and Sensor
devices [9–11] with specific sensing technologies that would allow them to
communicate only with beeps. This leads us to ad hoc networks with a
better energy conservation.

1.1 Addressed problems

Due to the limited battery life and many other possible causes, each de-
vice may fail by crashing, it can do any internal computations but can not
communicate on the network when in a sleeping4 state. In addition, it can
choose to wake up (switch on its radio) or to sleep at any time slot. In order
to use randomness, we assume that the devices are able to generate random
discrete variables (see for instance Devroye [12]). With such assumption, we
aim to design fault-tolerant protocols resolving the two following problems:

1.1.1 Fault-tolerant Energy Conserving pseudo-random Bit and
pseudo-random Number Generators (ECBG and ECNG)

On one hand, pseudo-random bit generators are important routines of any
computer system [13]. It consists of finding a protocol that allows all the
devices of a given network to generate a common binary value b ∈ {0, 1}
such that P[b = 0] ∼ P[b = 1] → 1/2. On the other hand, given a common

3Each device is at communication range of each other.
4When the device has radio switched off.
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value A to all devices, a pseudo-random number generator outputs a common
number m in each device picked randomly from [0, O(A)].

In a crash-prone ad hoc network, electing a leader to make a decision
(generating a random bit or a random number) may not work as the elected
device may crash at any time. As a consequence, a fault-tolerant protocol
that generates a random bit in such a model without any central controller
is very useful. Such a protocol can also be used to simulate more involved
distributions [12] in a decentralized manner, then can become a basic brick of
decentralized pseudo-random number generators [14] which are very useful
for many computing applications (in casino industry [15] or in blockchain [16]
for example).

1.1.2 Fault-tolerant Energy Conserving Binary Consensus or ECBC

The binary consensus problem introduced by Pease, Shostak and Lamport in
1980 [17] is one fundamental issue in decentralized networking. In a message
passing system, given n devices denoted s1, s2, . . . , sn at most f of which
may fail, the problem consists in each device si beginning with an initial
value bi ∈ {0, 1} and deciding on a common output b ∈ {0, 1}. b satisfies the
3 conditions:
(a) The agreement condition : all devices decide on the same output.
(b) The validity condition: if a device decides b, then b is the initial value of
some device.
(c) The termination condition: every non-failing or correct device eventually
decides, with probability almost 1.

The consensus problem has many application issues in the computer sci-
ence area: we can cite the multiparty protocols, the reliable decentralized
databases, the multicast protocols or the time stamping protocols [18]. Ex-
tensive researches has recently focused on such a problem using the new
generation of Mobile [19], IoT [2] and Wireless devices [8].

Recently, with the growth of mobile robotics, multi-agent systems [11],
sensors networks [20] and blockchain [16], the consensus problem was very
well studied for the coordination of those decentralized systems.

1.2 Adversarial and failing scenarios

We consider a crash-prone network caused by a malicious adversary. If a
device crashes at a time slot, then starting from such time slot, it can no
longer send nor receive any messages. In this paper, we consider the Non-
adaptive (resp. Weakly-adaptive) adversary which chooses the failing devices
(resp. chooses the failing devices and the time when each device will fail)
before the execution of the protocol [21,22]. If a device never fails, it is said
to be correct. The only restriction for those adversarial scenarios is that the
adversary can fail up to f devices, where 0 ≤ f < n. Note that the presented

3



protocols in this paper tolerate up to f ≤ n − n1/γ failing devices for some
constant γ ≥ 1 not depending on n.

1.3 Related works

As a fundamental problem in decentralized system networks, there were
many important researches on the consensus problem since the 80’s. Such a
problem was introduced by Pease, Shostak and Lamport in 1980 [17] with
their binary consensus protocol terminating in polynomial time for systems
with byzantine5 devices.

The consensus problem was studied by many researchers but in this Sec-
tion, we only present a small digest of works related to the settings considered
in this paper. When up to f devices may fail and each device can send a
message to each of its neighbors, Toueg, Perry and Srikanth [23] designed a
protocol with f + 2 time complexity.

The first sub-linear time consensus protocol was designed in 1989 by
Chor, Merritt and Shmoys [24] and terminates in O(log n) time slots on a
synchronous crash-prone system. Such a protocol works on a network of
processes where at each time slot, each device can broadcast a message,
receive all incoming messages and perform some computations. Such a
model is referred to as the LOCAL communication model. They proved a
Ω(log n/log log n) lower bound for the time complexity on this model. More
recently, Amdur, Weber and Hadzilacos [25] proved a Ω(n) lower bound on
the bit complexity for the consensus problem even if the system is failure-
free. In 2010, Gilbert and Kowalski [21] achieved optimal bit complexity of
O(n) with almost optimal O(log n) time complexity for this system. Then
in 2011, Ashrafi, Malmirchegini and Mostofi [26] presented a consensus pro-
tocol for CR (Cognitive Radio) networks. In 2013, Abdaoui and Elfouly [27]
designed a protocol outputting binary consensus over a WSN (Wireless Sen-
sor Network) containing some faulty devices. One of the last results on the
problem was presented by Kowalski and Mirek in 2019 [22].

Results on the beeping model appeared in 2016, when Hounkanli, Miller
and Pelc [28] presented a consensus protocol using beep in a fault-prone MAC
(Multi Access Channel), terminating in logarithmic time. On their model,
the devices are fault-free but the channel is faulty. As already mentioned,
in order to optimize energy conservation on many networks (WSN, BANs,
IoT, CR . . . ), it could be interesting to simulate the beeping communica-
tion model on such networks. In this sense, there are many beeping proto-
cols addressing multiple decentralized problems: such as the leader election
problem [29], the network’s size approximation [30], the initialization and
the counting problems [31, 32] or the maximal independent set problem [7].
Recently, many consensus protocols were designed to be subroutines of the

5A byzantine device can deviate from the protocol by doing arbitrary computations.

4



blockchain [33].
For the multi-valued consensus problem, Turpin and Coan [34] extended

the binary consensus protocol designed in [35] in order to have a random-
ized multi-valued byzantine agreement which may output a value different
from all inputs. It terminates in 2f + 5 time slots using O(n3 log n) bits
of communication and does not respect the validity condition of the con-
sensus problem. To respect the validity condition, Neiger [36] adapted the
consensus protocol designed in [37] and obtained a multi-valued byzantine
consensus terminating in exponential time. These protocols both work on
the LOCAL model.

Considering that our consensus protocol uses a distributed pseudo ran-
dom bit generator, designing such a protocol was studied in 1983 by Dwork,
Shmoys and Stockmeyer [38]. Then, in the 90′s, Micali and Rabin [39],
Beaver and So [18] addressed the problem for the LOCAL model. It re-
cently gained in importance with the growth of Mobile networks [19], IoT
devices [40], WSN [41] and the blockchain [15, 16]. As already remarked,
in a crash-prone system, our pseudo-random number generator protocol can
be more efficient than a leader election protocol for the generation of a ran-
dom number. As it is one of the most fundamental problems in distributed
computing, such leader election problem was extensively studied over the
years under many models of communication and in many different network
settings [42–48]. In particular, Ghaffari, Lynch and Sastry [49] proved that
Ω(log n) time slots are required to have a leader election.

1.4 Our main results

For n devices, at most f = n− n1/γ of which may crash (γ ≥ 1), we design
a fault-tolerant ECBG protocol outputting 0 or 1 with a probability close
to 1/2. Such a protocol terminates in O(log n) time slots, using O(n) bits
of communication and more importantly has a constant energy complex-
ity. Then, we used such protocol to design a distributed random number
generator terminating in O(log2 n) time slots with O(n) bit complexity and
O(log n) energy complexity. Note that as we can see in the simulation’s re-
sults presented in Section 4, such a protocol works for small values of n (for
n ≥ 50). The random bit generator can be adapted to have a ECBC pro-
tocol keeping the same complexities and the random number generator can
be used as a multi-valued consensus protocol not respecting the validity
condition [35]. The following Table 1 compares the existing results for the
consensus problem with ours.

1.5 Our new approach

The main idea of many distributed consensus protocols is to cause all the
devices to agree on the value held by the largest number of devices. Our
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Table 1: Showing exiting results and ours

Problem Models Failure Time and Bit Energy
complexities complexity

Existing results

Binary Local model crash O(log n) -
consensus [21] f ≤ n/3 O(n)

Multi-values Local model byzantine 2f + 5 = O(n)
Consensus [35] f ≤ n/3 O(n3 log n) -

Our results

Binary Beeping model crash O(log n) O(1)

Consensus f ≤ n− n1/γ O(n)
γ ≥ 1

Multi-values Beeping model crash O(log2 n) O(log n)

Consensus [35] f ≤ n− n1/γ O(n)

protocol design stands out from this approach and is based on the following
property and protocols:

1.5.1 The parity of the maximum of some discrete random vari-
able

There is a discrete random variable (r.v. for short) X distributed such that
if X1, X2, . . . , Xn are n random copies of X,

P
[

max
1≤i≤n

{Xi} is even
]
−−−→
n→∞

1

2
.

Such a maximum is of order O(log n). Our main idea is then to make each
device si generate a random copy Xi of the r.v. X and output b in function
of the parity of max1≤i≤n{Xi}. The time complexity of our protocol then
results from the communication time spent by all devices to find such a max-
imum. After generating Xi, each device si locally computes an interval I of
integers containing the maximum. Let us note the number of integer values
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in I by |I|: I = {I1, I2, ..., I|I|} where Ij is an integer value, Ij+1 = Ij + 1
such that I1 = 1 and I|I| = O(log n). After that, each device finds out if
it holds max1≤i≤n{Xi} by browsing6 through the interval I. At the end
of such a browsing protocol, the devices holding the maximum transmit its
parity to all the other devices. If the maximum is even, all devices output
0, otherwise, they output 1.

1.5.2 Browsing through the interval I

This uses a known procedure for finding the maximum value in a given
interval. It consists of checking each value in such interval one by one from
the last one. Each device si is initially in a sleeping state. The procedure
starts at time slot t0 = 0 when each device checks if the last value I|I| =
O(log n) of the interval I is equal to its random value Xi. Then, at each
time slot tj = t0 + j, each device si compares Xi to both values I|I| − j and
I|I|−j−1. If Xi = I|I|−j, then si wakes up to beep at tj . If Xi = I|I|−j−1,
then si wakes up and listens to the network at tj .

Remark 1 The main idea is that if a device does not detect any beep when
listening to the network, it has the maximum of all Xi. This can be incorrect
as there may be some values in I not picked by any device: there may be
some gaps in I. As a result, each device having Xi after one of these gaps
can pretend to have the maximum.

To avoid this problem, we introduce the following protocol.

1.5.3 Filling the possible gaps in I

Before executing the previous procedure, each device si locally and uniformly
chooses at random one time slot tj to witness for the presence of a beep during
the browsing procedure. Then, at tj , the devices that chose to witness at
tj wake up and listen to the network. Thus, at the next time slot tj + 1,
all devices hearing beep at tj wake up and beep to notify the next listening
devices that the maximum has already been found. As a result, if a device
si never hears a beep when listening to the network, it knows that its Xi is
the maximum of all random values.

2 Energy conserving random bit generator

Throughout the rest of the paper, we will use a r.v. X distributed as the
geometric distribution with parameter 1/2 denoted Geom(1/2). Let pk be
P[X = k] for all k > 0. For the sake of simplicity, we note the logarithm of n

6At each time slot t0, t1, . . . , tj , each device si checks if the corresponding value I|I|− j
in the interval I is equal to its generated value Xi and do some computation at tj .
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in base 2 by lg n and we suppose that log n and lg n are integer values. The
following technical result is important for our purpose:

Lemma 1 Let X1, X2, · · · , Xn be n independent copies of X distributed as
Geom(1/2). We have

(a) P
[

max
1≤i≤n

{Xi} ≤ 2 lg n

]
≥ 1−O

(
1

n

)
,

(b) P
[

max
1≤i≤n

{Xi} is even
]
≥ 1

2
−O

(
1

n

)
.

Proof. Let X1, X2, . . . , Xn be n random copies of Geom(1/2).
Proof of (a): Firstly, we have pk = 2−k−1.

P
[

max
1≤i≤n

{Xi} ≤ 2 lg n

]
= P [∀i ∈ {1, 2, . . . , n}, Xi ≤ 2 lg n] .

By definition,

P
[

max
1≤i≤n

{Xi} ≤ 2 lg n

]
=

(
2 lgn∑
k=0

pk

)n
.

And by replacing pk,

P
[

max
1≤i≤n

Xi ≤ 2 lg n

]
=
(

1− 2−2 logn−1
)n
.

Then, as for all x ∈]0, 12 [,

e−x−x
2 ≤ (1− x) ≤ e−x, (1)

P
[

max
1≤i≤n

{Xi} ≤ 2 lg n

]
≥ 1−O

(
1

n

)
.

Proof of (b): Let us set Pme = P [max1≤i≤n{Xi} is even ]. By definition,

Pme =

∞∑
k=0

(
2k+1∑
i=0

pi

)n
−

(
2k∑
i=0

pi

)n
,

=

∞∑
k=0

(
1− 2−2k−2

)n
−
(

1− 2−2k−1
)n
.

Then, by using (1),
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Pme ≥
∞∑
k=0

exp
(
−2−2k−2n− 2−4k−4n

)
− exp

(
−2−2k−1n

)
.

For k large enough, exp
(
−2−4k−4n

)
= 1−

(
n/24k16

)
+O

(
n2/28k

)
. Thus,

Pme ≥
∞∑
k=0

exp
(
−2−2k−2n

)(
1−

( n

24k16

))
− exp

(
−2−2k−1n

)
.

Using the Euler-Maclaurin summation formula, we get

Pme ≥
∫ 2 lgn

k= 1
3
lgn

exp
(
−2−2k−2n

)(
1− n

24k16

)
− exp

(
−2−2k−1n

)
dk.

By noting a = 1
3 lg n and b = 2 lg n,

Pme≥
∫ b

k=a
exp

(
−2−2k−2n

)
dk︸ ︷︷ ︸

F1

−
∫ b

k=a
exp

(
−2−2k−1n

)
dk︸ ︷︷ ︸

F2

−
∫ b

k=a
exp

(
−2−2k−2n

) n

24k16
dk︸ ︷︷ ︸

F3

.

We have

F3 =
1

2n log 2exp (1/4n3)
− 1

2n log 2exp
(
n1/12

)−
1

2n2/3 log 2exp
(
n1/12

) +
1

2n4 log 2exp (1/4n)
.

After a bit algebra, we get

F3 = O

(
1

n

)
,

and
F1 − F2 =

1

2

−γ + 2 log 2 + 3 log n

log 2
− 1

2

−γ + log 2 + 3 log n

log 2

+O

 1√
exp

(
n1/3

)
+O

(
1

n

)
,
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where γ is the Euler’s constant [50]. Then, we obtain

F1 − F2 ≥
1

2
,

and
Pme ≥

1

2
−O

(
1

n

)
.

�

Having defined this probability distribution, we can now define our pro-
tocol.

2.1 ECBG protocol

We design a decentralized ECBG protocol using a random variable dis-
tributed as Geom(1/2). Such a protocol outputs a common binary value
b ∈ {0, 1} at each device with

P [b = 1] ' P [b = 0] −−−→
n→∞

1

2
,

when the devices can only send 1−bit messages. At the beginning of the
protocol, all devices are in a sleeping state and the protocol is organized into
4 phases.

Phase 1: ∀i = 1, 2, . . . n, each device si locally generates one random
copy Xi of the r.v. X distributed as Geom(1/2) and computes a common
interval I = [1, 2 lg n].

Phase 2: Each device si sets δ = UAR({1, 2, . . . , Xi − 1} ∪ {Xi +
1, . . . , 2 lg n})7 in order to witness for a beep at tδ during Phase 3. There
are roughly Θ(n/ log n) devices witnessing for a beep at each time slot of
Phase 3. Note that if f < n devices crash, there may be some non-witnessed
time slots when all devices browse through I and the protocol may output
a biased bit. To circumvent such a problem, we make each device si set
τ = UAR({1, 2, . . . 2 lg n}\{δ,Xi}) and si will also witness for a beep at the
time slot tτ of Phase 3.

Phase 3: Remembering that the last integer value in the interval I is
I|I| = 2 lg n, if a device si has Xi = 2 lg n, it beeps at t0. In parallel, the
devices with Xi = (2 lg n) − 1 and those witnessing for a beep at t0 wake
up to listen to the network. If a device hears a beep at t0, it beeps at t1.
The devices witnessing for a beep at t1 and those having Xi = (2 lg n) − 2
listen to the network at t1. We generalize such executions for each time

7UAR(A) picks one value uniformly at random from the set A.
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slot tj , j = 0, 1, . . . , 2 lg n by defining the Transmit(j) and the Receive(j)
protocols. These protocols are executed by a single device si.

- Receive(j): if the device si chose to witness for a beep at tj (i.e.
j = δ or j = τ), or if Xi = (2 lg n)− j − 1, si listens to the network at tj .

- Transmit(j): If the device si heard a beep at tj − 1 or Xi =
(2 lg n)− j, it beeps at tj .

During the browsing procedure, all devices run Transmit(j) and Re-
ceive(j) in a parallel manner for all j = 0, 1, . . . , 2 lg n. If a device has to
beep and listen to the network at the same time, it prioritizes the beeping
computation.

Phase 4: After Phase 3, all devices wake up during two more time slots
(let us say tl and tl + 1). If a device si does not have Xi = max1≤j≤n{Xj}
(it heard a beep at least once during Phase 3), then it listens to the network
during those two time slots. In order to notify all devices that the maximum
is even or odd, each device si holding Xi = max1≤j≤n{Xj} encodes the
parity of max1≤j≤n{Xj} as follows: If Xi is even, it beeps at the first time
slot tl and remains silent at tl + 1. Otherwise, it remains silent at tl and
beeps at tl + 1. Thus, each device hearing a beep at tl (resp. tl + 1) knows
that the maximum is even (resp. odd) and consequently outputs b = 0 (resp.
b = 1).

Algorithm 1: ECBG( ) at a device si.
1 Phase 1: si locally generates one random copy Xi of Geom(1/2)

and sets I = [1, 2 lg n].
2 Phase 2: si sets δ = UAR({1, 2, . . . , 2 lg n} \ {Xi}) and

τ = UAR({1, 2, . . . , 2 lg n} \ {Xi, δ}).
3 Phase 3: for j from 1 to 2 lg n do
4 si runs Receive(j) and Transmit(j) in parralel.

5 Phase 4: during the next time slots tl and tl + 1,
6 if si beeped at least once and never heard beep during Phase 3 then
7 if Xi is even then
8 si beeps at tl and outputs b = 0.
9 else

10 si beeps at tl + 1 and outputs b = 1.

11 else
12 si listens to the network.
13 if si hears beep at tl then
14 si outputs b = 0.

15 if si hears beep at tl + 1 then
16 si outputs b = 1.
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2.2 ECBG protocol’s analysis

Lemma 2 If f ≤ n−O(lg2 n) devices fail (n−n1/γ < n−O(lg2 n), γ ≥ 1),
then each time slot of the browsing procedure is witnessed by at least one
correct device.

Proof. Each of the n devices chooses to witness for the presence of a beep
at one of the 2 lg n time slots of Phase 3. So, by means of a Chernoff bound,
at least n/4 lg n devices witness at each time slot with a probability greater
than 1− exp (−n/16 lg n). Then, the devices rechoose uniformly at random
to witness for a beep at one of these 2 lg n time slots. In the scenario where
f = n − lg2 n devices fail, the lg2 n correct devices may chose to witness at
the same time slot. So, no correct device witnesses at the other 2 lg n − 1
time slots. When the devices rechoose to witness for a beep at on of the
2 lg n time slots, the lg2 n correct devices are redistributed into these 2 lg n
time slots. As a result, by means of a Chernoff bound, each time slot is then
witnessed by at least Θ(lg n) correct devices with a probability of almost
1−O(n−1). �

Lemma 3 During the execution of the protocol 1, each device wakes up dur-
ing at most 7 time slots.

Proof. Each device si may wake up to listen to the network during 3
time slots during the Phase 3 of the ECBG protocol: at tj when it has
Xi = 2 lg n− j−1, at tδ and at tτ . In the same way, si may wake up to beep
twice: at tj when Xi = 2 lg n− j, at tτ + 1 or tδ + 1 if it heard a beep at tτ
or tδ. In addition, each devices wakes up in a deterministic manner during
the last 2 time slots of the protocol. �

Theorem 1 In single hop beeping networks of size n, if up to f ≤ n− n1/γ
devices may fail by crashing, the ECBG procedure outputs 0 or 1 with a
probability close 1/2. Such a protocol succeeds in O(log n) time slots using
O(n) bits of communication and O(1) energy complexity.

Proof. The maximum of all random values is in I = [1, 2 lg n]. By
Lemma 1, if up to f ≤ n−n1/γ devices may fail, such a maximum is even with
a probability greater than 1/2 − O

(
(n− f)−1

)
= 1/2 − O

(
n−1/γ

)
. Then,

by browsing through the interval I, all the devices know if they hold the
maximum after O(log n) time slots and by Lemma 3, the energy complexity
is constant.

During each time slot of the Phase 3, at most Θ(n/ log n) devices may
beep. Thus, the bit complexity of the protocol is at most O(n/ log n) ×
O(log n) = O(n).

By Lemma 2, at any time slot of the browsing procedure, there is at
least one correct device listening to the network. Thus, at the end of the
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execution of the ECBG procedure, all correct devices have the same output
value with a probability greater than 1−O

(
n−1/γ

)
for some constant γ ≥ 1

depending on the number of crashing devices f . �
We simulate these results in Section 4.2 and note that such simulations

succeed even if the network’s size n is small (n ≥ 50).

2.3 ECNG protocol

In this Section, given a value A = O(nα), α > 0 to all devices, we design
a protocol outputting a common number m = UAR({0, 1, . . . O(A)}) in a
distributed manner. To do so, we make all devices compute logA binary
values m1,m2, . . . ,mlogA such that mi ∈ {0, 1} is computed by executing
the ECBG protocol. Then, m is obtained by the decimal conversion of the
binary value m1m2 . . .mlogA. Such a protocol is subdivided into logA + 1
steps.

Step 0: To save energy, we distribute all devices such that a device only
participates to the computation of one binary value mi. Each device then
chooses to enter into a group Gd such that d = UAR({1, 2, . . . , logA}) and
sets mi = 0,∀i = 0, 1, . . . logA.

Step 1: All devices in the group G1 compute b ← ECBG() during
2 lg n+2 time slots while all the devices in the other groups remain sleeping.
All devices in G1 then set m1 = b. After these 2 lg n + 2 time slots, those
devices in G1 transmit m = m1m2 . . .mlogA bit by bit and all devices in G2

wake up to listen to the network for 2 logA time slots. During such trans-
mission, one bit value mi is sent during two time slots. mi = 0 is encoded
by one beep followed by a silent time slot. Similarly, mi = 1 is encoded by
one silent time slot followed by a beep.

Step 2: All devices in G2 compute m2 ← ECBG(). Then, they send
the new value of m bit by bit as in Step 1 while all devices in G3 listen to
the network.

Step 3 to Step logA− 1: The next logA − 3 steps work exactly as
Step 1 and Step 2.

Step logA: The devices in GlogA compute mlogA ← ECBG(). After
that, they send m bit by bit and all the other devices listen to the network
during 2 logA time slots.
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Algorithm 2: ECNG() at a device si.

1 Step 0: si sets d = UAR({1, 2, . . . , logA}) and enters the group
Gd. si locally creates m = m1m2 . . .mlogA where mi = 0
∀i ∈ {1, 2, . . . , logA}.

2 Step 1 to Step logA− 1: for k from 1 to logA− 1 do
3 if si ∈ Gk then
4 si computes b← ECBG() during the first 2 lg n+ 2 time

slots of the Step k.
5 It sets mk = b and sends m bit by bit as follows.
6 for l from 1 to logA do
7 if ml = 0 then
8 si beeps at t2l
9 else

10 si beeps at t2l+1

11 if si ∈ Gk+1 then
12 si remains sleeping during the first 2 lg n+ 2 time slots of the

Step k. Then, it wakes up and listens to the network during
the next 2 logA time slots as follows.

13 for l from 1 to logA do
14 if si hears beep at t2l then
15 It sets ml = 0

16 if si hears beep at t2l+1 then
17 It sets ml = 1

18 Step logA: if si ∈ GlogA then
19 si computes b← ECBG() during the first 2 lg n+ 2 time slots of

the Step logA.
20 It sets mlogA = b and sends m bit by bit as described before

(lines 6− 10).
21 else
22 si listens to the network and updates m (as in lines 13− 17)

Theorem 2 In single hop beeping networks of large size n, if a value A is
given in advance to all devices and if up to f ≤ n− n1/γ devices may crash,
the ECNG protocol outputs a common value m = UAR({0, . . . O(A)}) in
O(log n logA+ log2A) time slots. Such a protocol uses O(n) bits of commu-
nication with O(logA) energy complexity.

Proof. The time complexity of ECNG() comes from the 2 log n + 2 time
slots per step taken to run ECBG() and the 2 logA time slots per step
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used to transmit m bit by bit. As there are logA + 2 steps, we obtain a
O(log n logA+ log2A) time complexity.

During the execution of the ECNG protocol, by Lemma 3, a device
s ∈ Gi wakes up during at most O(1) time slots when running the ECBG()
protocol at Step i. It wakes up during O(logA) time slots at the Step logA.
Thus, the ECNG protocol has O(logA) energy complexity.

By the proof of Theorem 1, one step of the protocol 2 uses O(n/ logA)
bits of communication. As a result, the protocol 2 has O(n) bit complexity.

The ECNG() protocol succeeds if each call of ECBG() succeeds. Thus,
it succeeds with a probability greater than(

1−O
(

1

n

))O(logn)

≥ 1−O
(

1

n9/10

)
.

�

3 Energy Conserving Binary Consensus protocol

In this Section, each device si has an initial binary input value bi ∈ {0, 1}.
Having a decentralized protocol outputting 0 or 1 with a probability around
1/2, we design a binary consensus protocol as follows:

Each device si executes ECBG( ), then, wakes up during two more time
slots tz and tz + 1 in order to communicate its input value bi to all the other
devices. If bi = 0, then it beeps at tz, otherwise, it beeps at tz + 1. Then, in
order to respect the validity condition of the consensus problem, if a device
si has bi = 0 (resp. bi = 1) and does not hear a beep at tz + 1 (resp. tz), it
outputs b = 0 (resp. b = 1). For the agreement condition, if si has bi = 0
(resp. bi = 1) and hears a beep at tz + 1 (resp. tz), it outputs the value b
returned by ECBG( ).

These adaptations lead us to the following result:

Theorem 3 In single hop beeping networks of size n, if up to f ≤ n− n1/γ
devices may fail by crashing, ECBC( ) terminates in O(log n) time slots,
using O(n) bits of communication and having O(1) energy complexity.

Proof. On one hand, by adding the previously described adaptations, all de-
vices know all input values. The validity condition of the consensus problem
is then respected. On the other hand, by Lemma 2, if up to f ≤ n − n1/γ
devices may fail, all correct devices have the same output. As a result, the
ECBC protocol respects the agreement and the termination conditions of
the consensus problem. �
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Algorithm 3: ECBC( ) executed by a device si.
23 si sets b← ECBG( ). Noting that tz is the next time slot after such

execution,
24 if bi = 0 then
25 si beeps at tz and listens to the network at tz + 1. if si hears

beep at tz + 1 then
26 si outputs b.
27 else
28 si outputs bi.

29 else
30 si listens at tz and beeps at tz + 1.
31 if si hears beep at tz then
32 si outputs b.
33 else
34 si outputs bi.

Remark 2 (The multi-valued consensus protocol) As the extension of
the binary consensus to a multi-valued consensus presented in [34], without
any adaptation, our distributed random number generator can be used as a
multi-valued consensus protocol that does not respect the validity condition
of the consensus problem. Note that as in [34], all the correct nodes decide
on the same number but it may be no node’s input value. A common value
A = O(nα), α > 0 is given to each device and all nodes have a initial lo-
cal value Vi = UAR({0, 1, . . . , A}). By running the ECNG() protocol, each
node has the same output value m = UAR({0, 1, . . . , O(A)}), leading us to
the following result.

Theorem 4 In single hop beeping networks of large size n, if each device
has a local input value Vi ∈ {0, 1, . . . , A} and if up to f ≤ n − n1/γ devices
may fail by crashing, there is a multi-valued consensus protocol outputting
the same value for all devices in O(log n logA + log2A) time slots. Such a
protocol uses O(n) bits of communication, has O(logA) energy complexity
and does not respect the validity condition of the consensus problem.

Proof. As all devices run the ECNG() protocol without any adapta-
tion, the proof for the time complexity, the energy complexity and the bit
complexity are given in the proof of Theorem 2.

As ECNG() outputs a common value for all correct devices, it respects
the agreement and the termination conditions of the consensus problem.

ECNG() does not respect the validity condition of the consensus problem
since it can output a value not held by any correct device.
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4 Simulation’s results

In this Section, we show two simulation results for Lemma 2 and for Theo-
rem 1.

4.1 Simulating the Lemma 2

The maple code of this first simulation is accessible on http://www.irif.fr/
~nixiton/witness.mw or http://www.irif.fr/~nixiton/witness.pdf. We
did a maple simulation for n devices, n varying from 102 to O(107). For
each value of n, we simulated each device choosing to witness at a time
slot tδ, δ = UAR({1, 2, . . . , log n}). We then simulated that n − 1.1 log2 n
devices crash and that all correct devices witness at time slot t4. After
that, we simulated all devices re-choosing to witness at a time slot tτ , τ =
UAR({1, 2, . . . , log n}). In the following Figure, for each value of n in the
x − axis, we show the minimal number of correct devices witnessing at all
time slots of the browsing procedure. We can see there that each time slot
is witnessed by at least two correct device.

4.2 Simulating the Theorem 1

In this second simulation (http://www.irif.fr/~nixiton/parity.mw or
http://www.irif.fr/~nixiton/parity.pdf), for each value of n from 50
to 105, we simulated each device generating one random value using the
Geom(1/2) distribution. Then we simulated the presence of n−n1/γ crash-
ing devices, for a fixed γ = 5. In the following Table, we show the result of
such simulations. For each value of n, we did the simulation n times, then,
show how many time the result was even. If we denote this first variable by
N , we can see that N ∼ n/2 for all values of n. We then show its difference
with n/2. We finally compare this latter value with a theoretical error rate
n1−1/γ/13 = O(n1−1/γ).
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n N |N − n/2|
∣∣∣n1−1/γ

13

∣∣∣
50 28 3 2
100 56 2 4
500 290 40 12
1000 513 13 20
3000 1521 21 47
6000 3004 4 82
10000 5115 115 122
100000 50186 186 770

In the following Figure, the x − axis represents the values taken by n.
The y−axis represents how many times the result held by the correct devices
was even when we did the simulation n times. The red line represents our
simulation’s result and the grey lines are the theoretical results.

5 Conclusion

In this paper, we have developed a decentralized random bit generator out-
putting a common binary value 0 or 1 with a probability of almost 1/2 in
O(log n) time slots when up to f ≤ n−n1/γ devices may crash. Our approach
stands out from the commonly used approach in randomized decentralized
protocols, consisting of the devices sending a message with a certain probabil-
ity at each time slot. In contrast, it consists of the devices locally generating
a random value and communicating in a deterministic manner at each time
slot. It uses O(n) bits of communication and has O(1) energy complexity.
We then used the latter protocol to design a random number generator out-
putting a value m picked uniformly at random from {0, 1, . . . , A} for some
value A = O(nα) in O(log n logA + log2A) time slots. Such a protocol has
O(n) bit complexity and O(logA) energy complexity. We finally developed a
fault-tolerant binary consensus protocol succeeding with the same complex-
ities. Note that all of our protocols tolerate up to n− n1/γ crashing devices
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for some constant γ ≥ 1.
Our protocols are designed for the beeping networks but can be simulated

on many other network such as the Wireless Sensor Networks, Body Area
Networks or Internet of Things in order to optimize the energy conservation
on these networks. Many open problems remain on this area, like finding a
multi-valued consensus protocol with polynomial time complexity respecting
the validity condition or optimizing the energy consumption.
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