
Beeping a Random Bit

Ny Aina Andriambolamalala, Vlady Ravelomanana
IRIF UMR CNRS 8243 — University of Paris — France

Email addresses: Ny-Aina.Andriambolamalala@irif.fr (Ny Aina
Andriambolamalala), vlad@irif.fr (Vlady Ravelomanana)

Preprint submitted to Elsevier September 19, 2018

Beeping a Random Bit

Ny Aina Andriambolamalala, Vlady Ravelomanana
IRIF UMR CNRS 8243 — University of Paris — France

Abstract

We consider networks of processors which interact with beeps. In a single-hop
network, nodes can communicate synchronously with each other by broad-
casting one bit through a shared channel. In each time slot, all nodes re-
ceive feedback from the channel and in the Beeping Model, each node learns
whether zero (Null) or at least one (Beep) node has transmitted. In such
model, a procedure generating uniformly at random a common bit b ∈ {0, 1}
can be used as a subroutine to generate random numbers according to vari-
ous distributions. In this work, we design a randomized distributed random
bit generator working with high probability in O(log log n) time slots and
satisfying limn→+∞ P[bit = 0] = limn→+∞ P[bit = 1] = 1

2
.

Keywords: Distributed Computing, Beep Model, Randomized Algorithms

1. Introduction

Pseudo random number generators are important routines of any com-
puter system [7, 8]. In distributed computing [9], the problem consists in
finding a protocol that allows all the participants of a given network to gen-
erate a common value picked from some set according to a given distribution.

Recently, Cornejo and Kuhn [3] have introduced the beeping communi-
cation model or the beeping model where the processors have very limited
communication capabilities. In this paper, we study a single-hop network of
nodes with the same communication model : the transmission of each node
reaches all other nodes (the underlying graph is complete). We also assume
that nodes are anonymous (identical and indistinguishable) but each node

Email addresses: Ny-Aina.Andriambolamalala@irif.fr (Ny Aina
Andriambolamalala), vlad@irif.fr (Vlady Ravelomanana)

Preprint submitted to Elsevier September 19, 2018

has the ability to generate locally a random number. The system under con-
sideration is synchronous and in each discrete time slot or round, each node
independently decides whether to transmit to the shared channel or not. In
every time slot the channel can be in one of the two following states :
- Null when no node is transmitting and
- Beep if at least one node is transmitting.
As a common assumption in this model [1, 3], we also assume that all nodes
receive the state of the channel immediately after each communication round.

In this paper, we are interested in designing a distributed protocol in a
single-hop beeping network of unknown size that outputs 0 or 1 with proba-
bility 1

2
. Such a question

(i) is not trivial due to the fact that beeping networks have an extremely
harsh model of communication

(ii) and quite natural since the uniform generation of a random bit can be
used to simulate much more involved distributions (see Devroye [4]).

2. Related works

In single-hop beeping networks, two important problems include the ap-
proximation of the size of the network or the design of leader election algo-
rithms.

Under the same settings as ours, Brandes et al. [1] designed an efficient
probabilistic counting algortithm working with probability greater than 1−
O(n−1) in O(log n) time slots. Their protocol outputs a linear approximation
of the number n of the nodes whose precision can be tuned. They have also
shown that Ω(log n) time slots are required for any randomized protocol able
to give linear approximation of the size of the network with high probability.

Leader election consists in the task of agreeing on the election of a single
node in a network. Many distributed routines require a distinguished node to
organize the tasks in the network and leader election is the subroutine that
provides such organizer. As it is one of the most fundamental problems in
distributed computing, leader election has been extensively studied over the
years under many models of communication and in many different network
settings [10, 11, 5, 13]. In particular, [6] proved that Ω(log n) time slots is
required to have a leader election protocol succeeding with probability higher
than 1− O(n−c) (for some c > 0) in radio networks with collision detection
(RNCD). Note that RNCD is a distributed model close to the beeping model.

3

The RNCD model has been introduced in [2] and under this setting, nodes
can send message other a shared channel and in each time slot the status of
the common channel is Null (no message), Single (exactly one sender) or
Collision (at least two senders). It is attempting to use a leader election
algorithm to furnish a solution to the current problem since the elected node
can dictate to the others the value of its own bit. We remark that due to the
logarithmic lower-bound in [6], leader election algorithms can provide correct
solution to our problem but they required at least Ω(log n) rounds to work
with high probability before generating a single random bit.

3. Result and main ideas of the proof

Throughout this paper, n designs the number of nodes of the network
and in the scenario we are considering, n needs not to be known beforehand
by the processors. Under these setting, we have the following result.

Theorem 1. In a single-hop beeping network of size n, there exists a ran-
domized algorithm that with probability at least 1 − O

(
1
nε

)
(for any ε > 0)

outputs 0 or 1 with probability tending to 1/2 within O(log log n) time slots.

The main ideas behind are the following. a) Since n is not known by the
nodes, an upper bound of log n is computed in O(log log n) rounds. b) Each
node v generates locally a discrete random variable Xv according to the same
distribution X. Our choice of this distribution is such that the maximum of
the n random variables grows as a polylogarithm in n so that this maximum
value can be found by means of a simple binary search giving raise to a
protocol with log-logarithmic time complexity. The parity of the maximum
can be then used by all the nodes of the whole network so that all the
participants agree on the value of a single random bit. We prove that our
algorithm outputs 0 or 1 with probability 1/2 ± o(1) but to output 0 or 1
with probability 1/2, the well-known von Neumann procedure can be used
to obtain a fair flip [12].

4. Algorithms

Throughout the rest of the paper, we will use the following notations. Let

pk = e−
√
k − e−

√
k+1, k ≥ 0 (1)

4

and let X be a discrete random variables such that

P[X = k] = pk . (2)

We have the following technical result.

Lemma 1. Let X1, X2, · · · , Xn be n independent copies of X. Then for
any fixed ε > 0 with probability greater than 1 − O(n−ε) all the Xis are less
than (1 + ε)2 log2 n.

Proof. By independence and for k sufficiently large, we have

P[∀i, Xi < k] = P[X1 < k]n =

(
k−1∑
i=0

pk

)n

=
(

1− e−
√
k
)n
≥ e−2ne

−
√
k

.

The proof is completed by letting k = (1 + ε)2 log2 n.
Suppose now that each node w of the network generates a (local) random
variable Xw such that P[Xw = k] = pk. We can then use the lemma above
to design a distributed algorithm (working under the beep model) that al-
lows the nodes to agree on a common value of order O(log log n) which re-
flects the logarithm of the maximum of the Xis. The deterministic proto-
col MaxRV given below computes distributively such a common value j s.t.
2j ≥ maxiXi.

Algorithm 1: MaxRVat a node w.
Input : Each node w holding a local random variable Xw s.t.

P[Xw = k] = pk.
Output: A common upper bound of max(dlog2Xwe).

1 for i ∈ {0, 1, · · · , dlog2Xwe} do
2 w beeps. /? w beeps until 2i ≥ Xw ?/

3 w stores the last round i when w beep or heard a Beep.
4 if w does not beep and learns that zero node has transmitted (Null)

then
5 w quits the protocol.

Observe that all the nodes quit the protocol as soon as all the participants
remain silent. Thus, using Lemma 1 we have the following.

5

Lemma 2. For any fixed ε > 0, with probability at least 1 − O(n−ε) after
2 log2 log n+O(1) time slots, the protocol MaxRV terminates with each node
being aware of a common value M such that ∀w, 2M ≥ Xw.

We are now ready to write the protocol to localize the node(s) w such
that Xw = maxiXi. Its principle is based on a simple binary search. In
what follows, Test(a, b) is a local operation that is called at some round t.
It works exactly in one round. During such a round, a node s beeps if its
random variable Xs verifies a ≤ Xs ≤ b, otherwise s listens. In any round,
Test(a, b) outputs Beep if and only if at least one node of the network beeps
during this round (that is at least one node v has a ≤ Xv ≤ b). Observe
that during such a round, all beeping nodes know they just beeped and all
listening nodes can check the status of the common shared channel : all the
nodes are aware of the result of the subroutine Test(a, b).
Algorithm 2: FindMax: a binary search based distributed proto-
col to find the maximum of bounded discrete random variables.

Input : B a positive integer (upper bound of all the involved random
variables).

Output: Each node v with a status(v) ∈ {Maximum, Eliminated}.
6 All nodes set INF = 0 and SUP = B.
7 while INF 6= SUP do
8 if Test(d(INF + SUP)/2e, SUP) = Null then
9 SUP = d INF+SUP

2
e − 1

10 else
11 INF = d INF+SUP

2
e

12 For each node s if Xs = SUP then
13 status(s) = Maximum
14 else
15 status(s) = Eliminated

We can now design the main subroutine that can output a random bit in
O(log log n) time slots.

6

Algorithm 3: MainProtocol at node w.
Output: 0 or 1

16 Each node w generates Xw such that P[Xw = k] = pk as defined by
(1).

17 Each node computes locally the same value B = 2MaxRV(). /? in
O(log log n) rounds ?/

18 Each node invokes FindMax(B). /? in O(log log n) rounds ?/
19 The nodes having the common maximum value M know their status

and send the parity of M to all the others.

The MainProtocol algorithm has the following properties which prove
Theorem 1.

Lemma 3. (i) For any ε > 0 with probability at least 1 − O(n−ε) Main-
Protocol terminates in O(log log n) time slots and (ii) it returns 0 with
probability at least 1

2
−O

(
1

logn

)
.

Proof. The part (i) is a consequence of Lemma 1. For part (ii), let P0 be
the probability that MainProtocol returns 0. As the probability that the
maximum of the Xis is even satisfies

P[max
1≤i≤n

Xi is even] ≥ P[max
1≤i≤n

Xi is even and is unique] (3)

we have

P0 ≥
∞∑
k=1

(
n

1

)
p2k

(
2k−1∑
i=0

pi

)n−1

≥
∞∑
k=1

(
1− e−

√
2k
)n

. (4)

As k is large, we have

p2k =
e−
√
2k

2
√

2k

(
1−O

(
1√
k

))
and

(
1− e−

√
2k
)n
≥ exp

(
−ne−

√
2k − 2ne−2

√
2k
)
.

(5)
By choosing L such that ne−

√
8L � 1√

L
, we then get

P0 ≥
∞∑

k=L

n
e−
√
2k

2
√

2k
e−ne

−
√
2k

(
1−O

(
1√
L

))
. (6)

7

Using the Euler-Maclaurin summation formula, after some algebra we get

∞∑
k=L

n
e−
√
2k

2
√

2k
e−ne

−
√

2k

=
1

2
− 1

2
e−ne

−
√
2L

+ O

(
ne−

√
2L

√
L

e−ne
−
√
2L

)
(7)

To complete the proof, it suffices to choose L = O(log2 n) such that ne−
√
2L =

nc for some c > 0 but ne−
√
8L � 1√

L
.

5. Conclusion

In the Beeping Model [3] which is typically an extremely harsh broadcast
model relying only on carrier sensing, we design a randomized algorithm that
is able to produce a random bit within O(log log n) time slots. The work
presented in this paper shows that beeping networks is powerful and efficient
enough to generate random numbers as our algorithm can be used as a way
to simulate/generate random real numbers represented in floating-point with
arbitrary precision [4] and random number generators are fundamental tools
for various simulations and applications of Monte Carlo methods [7, 8].

[1] P. Brandes, M. Kardas, M. Klonowski, D. Pająk and R. Wattenhofer
(2016). “Approximating the size of a radio network in beeping model”,
In Proc. Int. Coll. on Structural Information and Communication Com-
plexity – SIROCCO, 358 – 373.

[2] I. Chlamtac and S. Kutten (1985). On broadcasting in radio networks–
problem analysis and protocol design, IEEE Transactions on Communi-
cations, 33(12), 1240 – 1246.

[3] A. Cornejo and F. Kuhn (2010). “Deploying wireless networks with
beeps”, In Proc. of the 24th Int. Symp. on Distr. Computing – DISC,
148 -âĂŞ 162.

[4] L. Devroye (1986). “Non-Uniform Random Variate Generation”, http:
//www.nrbook.com/devroye/

[5] M. Ghaffari and B. Haeupler (2013). “Near optimal leader election in
multi-hop radio networks”, In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, 748 – 766.

8

[6] M. Ghaffari, N. Lynch and S. Sastry (2012). “Leader election using lone-
liness detection”, Distributed Computing, 25(6), 427 – 450.

[7] D.E. Knuth (1998). “The Art of Computer Programming, Volume 2:
Seminumerical Algorithms”, Addison-Wesley, Reading, MA

[8] A.M. Law (2014). “Simulation Modeling and Analysis”, McGraw-Hill,
New York

[9] N. Lynch (1996). “Distributed Algorithms”, Morgan Kaufmann Publish-
ers.

[10] R. Metcalfe and D. Boggs (1976). “Ethernet: Distributed packet switch-
ing for local computer networks”, Communications of the ACM, 19(7),
395 – 404.

[11] K. Nakano and S. Olariu (2002). “A survey on leader election protocols
for radio networks”, In International Symposium on Parallel Architec-
tures, Algorithms and Networks. IEEE I-SPAN, 71 – 76.

[12] J. von Neumann (1951). “Various techniques used in connection with
random digits”, National Bureau of Standards Applied Math Series, 12,
36 – 38.

[13] D. E. Willard (1986). “Log-logarithmic selection resolution protocols in
a multiple access channel”. SIAM J. on Comp., 15(2), 468-477.

9

