
Energy Efficient Naming in Beeping Networks

Ny Aina Andriambolamalala1 and Vlady Ravelomanana2

1 IRIF — University Paris Diderot — France. Ny-Aina.Andriambolamalala@irif.fr
2 IRIF UMR CNRS 8243 — University Paris Diderot — France vlad@irif.fr

Abstract. The Beeping network is a distributed communication model
in which all devices can communicate by sending or receiving only 1−bit
messages (beep). In this paper, we focus on resolving two fundamental
distributed computing problems, the naming and the counting problems.
As most of the time, devices are battery-powered, managing energy is
important in order to successfully terminate any distributed task. In a
distributed beeping network with n stations, we design energy efficient
randomized algorithms with an optimal running time of O(n logn) and
optimal O(logn) energy complexity.

Keywords: Distributed · initialization· naming · energy· optimal· beep

1 Introduction

The beeping model, introduced by Cornejo and Kuhn in 2010 [8], makes little
demands on the devices which need only be able to do carrier-sensing, differ-
entiating between silence and the presence of a jamming signal on the network
(considered as 1 − bit message or one beep). It is assumed that the devices
have unbounded local power computation. They note that carrier-sensing can
typically be done much more reliably and requires significantly less energy and
other resources than message-sending models. Minimizing such energy consump-
tion per node arises as nodes are battery-powered. Since sending or receiving
messages costs more energy than internal computations, energy consumption is
measured as the maximal number of time slots during which a node is awake
(beeps or listens to the network) [6, 20, 17, 14, 15, 14, 26]. In distributed com-
puting, in order to have a more realistic model, it is usually assumed that the
nodes have no prior information about the topology of the network and that the
nodes are initially indistinguishable (have no identifier denoted ID). With such
an assumptions, it is more difficult to design efficient and elegant distributed al-
gorithms. To break such initial symmetry, researchers designed various protocols
such as leader election ([6, 16, 13, 10, 11, 17, 24, 22, 15]) Maximal Independent Set
([1, 25]) and naming protocols also known as initialization algorithms ([19, 12,
20, 2, 7]). In this paper, we consider the naming problem on single-hop1 beeping
networks which consists of assigning a unique label ` ∈ {1, 2, ...n} to each of
the n nodes of the network. In the general case, when the nodes are initially
1 The underlying graph of the network is a complete graph.

2 Ny Aina Andriambolamalala and Vlady Ravelomanana

indistinguishable and no node knows n, we design an energy optimal random-
ized naming algorithm succeeding in O(n log n) time slots with high probability
2 (w.h.p.), with no node being awake for more than O(log n) time slots. We start
by presenting the basic brick of our algorithms, naming M nodes (M ≤ n) in
O(M log n) time slots with O(M + log n) energy (Section 2). We consider the
case where all nodes are initially indistinguishable and do not know n (Section
3). This latter algorithm can be adapted to solve the counting problem, which
consists of assigning to all nodes a common value representing their exact num-
ber (Section 3). Thereafter, we use derandomization techniques to adapt our
naming algorithm in order to have a deterministic algorithm even if n is not
known beforehand (Section 4). As customary in deterministic settings, we as-
sume that the nodes have unique ID ∈ {1, 2, ...N}, where N is an upper bound
of n. W.h.p., this deterministic version terminates with no node being awake for
more than O(log n) time slots. Finally, we prove a lower bound of Ω(log n) on
the energy complexity for the naming problem in beeping networks (Section 5).

1.1 The models

In a single-hop beeping network, nodes communicate with each other via a shared
beeping channel. As shown in the figure below, this can be used for modeling an
ad hoc network where all nodes are in each other’s communication range, the
nodes can send 1− bit messages and do a carrier sensing in order to detect any
transmission.

In each synchronous discrete time slot, each node independently decides whether
to transmit a beep, to listen to the network or to remain idle (asleep). Only lis-
tening nodes can receive the state of the common channel which can be, Beep if
at least one node is transmitting or Null when no node transmits. This model is
also called BL or Beep Listen model. There are many variants of beeping model
but in this paper, we use in general the BL except for the randomized counting
protocol where we will use the BCDL model (Beep with Collision Detection Lis-
ten) where transmitters can detect collision [1, 25].

1.2 Related works and new results

As a fundamental distributed computing problem [19], many results exist for
the naming problem. In [12], Hayashi, Nakano and Olariu presented a O(n) time
2 Event εn occurs with high probability if P[εn] ≥ 1− 1

nc for any constant c > 0

Energy Efficient Naming in Beeping Networks 3

randomized protocol for radio networks with collision detection (RNCD). Later,
Bordim, Cui, Hayashi, Nakano and Olariu [2] presented an algorithm terminat-
ing w.h.p. in O(n) time slots, and O(log n) energy. In [21], for radio network
with no collision detection (RNnoCD), Nakano and Olariu designed a protocol
terminating in O(n) time slots w.h.p. with O(log log n) energy. The results on
beeping model appeared very recently when Chlebus, De Marco and Talo [7]
presented their algorithm terminating in O(n log n) w.h.p. for the BL model
and provided Ω(n log n) lower bound on time complexity. Moreover, Casteigts,
Métivier, Robson and Zemmari [4] presented a counting algorithm for the BCDL
model terminating in O(n) time slots w.h.p. They noticed that adapting their
algorithm to BL model will cost a logarithmic slowdown in time complexity. The
following table compares existing results with ours.

Existing results

Problem Time Energy Succeed with
and Model complexity complexity probability

Randomized naming in RN NoCD [21], n known O(n) O(log logn) 1−O(1
n
)

Randomized naming in BL [7], n known Θ(n logn) - 1−O(1
n
)

Randomized Counting in BCDL [4] O(n) - 1−O(1
n
)

Our results

Randomized naming in BL network O(n logn) Θ(logn) 1−O(1
nc)

Indistinguishable nodes, n unknown, Theorem 2 c > 0

Unconditional Deterministic naming in BL O(n logn) O(n) -
Unique ID ∈ {1, N}, n unknown, Theorem 1
Derandomized Deterministic naming in BL O(n logn) O(logn) 1−O(1

nc)
Unique ID ∈ {1, N}, n unknown, Theorem 4 c > 0

Randomized Counting in BL O(n logn) Θ(logn) 1−O(1
nc)

Theorem 3 c > 0

2 New approach : deterministic naming of M nodes

In this section, for the sake of clarity, let N be a polynomial upper bound of n
(N = nc, c > 1 and c is constant), known in advance by the nodes and each node
has a unique identifier denoted ID ∈ {1, 2, ...N}. We will see in the following
sections that N can be randomly approximated by the nodes even if no node
knows n and that the nodes can randomly generate unique ID w.h.p. if they are
initially indistinguishable.
If M nodes (M ≤ n) hold such unique ID, they first encode their ID into binary
code-word denoted CID = [CID[1] CID[2]...CID[dlog2Ne]] such that CID[i] ∈
{0, 1} (CID[1] corresponds to 2dlog2 Ne and CID[dlog2Ne] corresponds to 20).
Each participant has to send its CID bit by bit during dlog2Ne = O(log n) time
slots in order to know if it has the maximal ID of all participants. During such
O(log n) time slots, each node detecting that any of its neighbors has a higher

4 Ny Aina Andriambolamalala and Vlady Ravelomanana

ID gets eliminated and at the end, the unique node holding the maximal ID
remains active and gets the next available label.
As a consequence, such an algorithm can be subdivided intoM deterministic sea-
sons S1, S2, ...SM (note that nodes don’t know M). In one season Sj , each node
sends its CID bit by bit during dlog2Ne steps t1, t2, ...tdlog2 Ne (corresponding
to CID[1],CID[2], ...CID[dlog2Ne]). One of such steps, ti consists of two com-
munication time slots ti0 and ti1 = ti0 + 1. If a node s has CID[i] = 0, s beeps
at ti0 and listens to the network at ti1 . Respectively, if s has CID[i] = 1, s
listens to the network at ti0 and beeps at ti1 . Each node knows if at least one
of them has CID[i] = 1. In this case, each node s having CID[i] = 0 becomes
inactive until the next season Sj+1 (s is eliminated for the current season). At
the end of season Sj , the last active node takes the label j. By looping these
computations until no node remains unlabeled, this method produces a naming
algorithm terminating in O(M log n) time slots.
For a better comprehension, we represent the algorithm as a binary tree as done
in [9]. One node of the tree represents any bit CID[i] of any device. Its root is
the first bit of CID and the leaves represent the last bit.

In this figure, we can see a simple
example for 5 nodes having ID ∈
{61, 60, 7, 6, 1}. The rightmost node s
represents the device having CID =
[00001]. On the first step t1 of the sea-
son S1, all nodes having CID[1] = 1
go left on the tree and nodes having
CID[1] = 0 go right. Then, all nodes
repeat the same for CID[2] on season
S2 and so on. We can see that s wakes
up 5 times on each node of the tree.

To simplify all these computations, we define Test(i) protocol as a subroutine
of our algorithms. It takes step number ’i’ as parameter, outputs each node
with a state ∈ {Eliminated,Active} as follows. For a node s calling Test(i)
at any step ti, if s has CID[i] = 0, s beeps at ti0 and listens to the network
at ti1 = ti0 + 1. If s hears beep at ti1 , Test(i) returns Eliminated. If s has
CID[i] = 1, s listens to the network at ti0 and beeps at ti1 . If s hears beep
at ti0 , Test(i) returns Active. So in step ti, all nodes receiving Test(i) =
Eliminated, becomes inactive until the next season. The last active node in the
current season takes a label.

Energy optimization principle: The latter algorithm is not energy efficient
because all nodes have to be awake during the whole O(M log n) time slots. To
improve such energy consumption, we remark that each node s must be awake
only during two specific sets of steps in order to know if any of its neighbors
has a higher ID. Thus, we introduce these two kinds of steps as steps to notify
(STN) and steps to listen (STL). As binary code-word are unique, there is at
least one bit differentiating any two code-words of any pair of nodes s1 and s2.

Energy Efficient Naming in Beeping Networks 5

The main goal of using STN and STL is to wake up only at these important bits
(steps).
Algorithm 1. Test(i) at any node s

Input : A unique code-word CID,the current step number i
Output: Active or Eliminated

1 if CID[i] = 0 then
2 s beeps at ti0 and listens at ti1 = ti0 + 1
3 if s hears beep at ti1 then
4 return Eliminated
5 end
6 else
7 s listens at ti0
8 if s hears beep at ti0 then
9 return Active

10 end
11 s beeps at ti1
12 end

Definition 1 (Step To Listen : STL). A STL is one step ti recorded by
the node s during any season Sj, on which s has to wake up, during all the
next seasons Sj+1, ...SM in order to listen at ti0 . Nodes waking up at any step
ti ∈ STL may not sleep after ti. At any step ti of season Sj, a node s2, having
Test(i) = Eliminated records i into STL because on the next season, s2 has
to wake up at ti in order to verify if it is still eliminated at this step.

Definition 2 (Steps To Notify : STN). A STN is a set of steps {ti, tk, ...}
recorded by the node s during any season Sj, on which s has to wake up, during
all the next seasons Sj+1, ...SM , beeping at ti1 . s sleeps after any step ti ∈ STN.
During any step ti of season Sj, a node s1 receiving Test(i) = Active (has
bit CID[i] = 1) knows there is at least one node s2 having CID[i] = 0. s1 saves
i into STN because on the next season, if s1 is active, it has to wake up on
ti in order to notify s2 that s2 is still eliminated at this step. When a node s1
adds any step ti to STN, it means that s1 has no more active neighbor holding
CID[k] = 1, k > i. Thus, s1 has to empty STL.

Description of Algorithm 2, the energy efficient algorithm: During the
first season S1, all nodes are initially awake and start to send their code-word
CID bit by bit. In any step ti, if a node s1 have Test(i) = Eliminated, s1
adds i into STL and sleeps until the next season. A node s2 with Test(i) =
Active adds i into STN, empties STL and moves to ti+1. A node s remaining
awake at the end of S1 sets ` = 1, empties STN and STL and sleeps. We can
generalize the algorithm for any season Sj . As at the end of the previous season
Sj−1, all nodes are sleeping, a node s3 wakes up only at the first step ti found
in its STL or STN. If such i ∈ STN, then s3 sleeps before moving on ti+1. But if
i ∈ STL, s3 acts as in season S1: if s3 has Test(i) = Eliminated, then s3 adds

6 Ny Aina Andriambolamalala and Vlady Ravelomanana

i into STL and sleeps until the next season. s3 stays awake and moves on ti+1

otherwise. At the end of season Sj , the last remaining awake node sets ` = j,
empties STN and STL and sleeps.

Algorithm 2. DeterministicNaming(N) on any node s

Input : Upper bound N of n, unique ID ∈ {1, 2, ...N}
Output: Node s has unique label ` ∈ {1, 2, ...M}
1 s encodes ID into binary code-word CID = {0, 1}dlog2 Ne,
2 s sets `← 0,STL← Null,STN← Null, S ← 1
3 while ` = 0 do
4 for i from 0→ dlog2Ne do
5 if i ∈ STL then
6 s wakes up at ti and if Test(i) = Eliminated then
7 s sleeps
8 end
9 end

10 if i ∈ STN then
11 s wakes up at ti ,does Test(i) and sleeps
12 end
13 if s is awake then
14 if Test(i) = Active then
15 s adds i to STN and empties STL
16 end
17 if Test(i) = Eliminated then
18 s adds i to STL and sleeps
19 end
20 end
21 end
22 if s is awake then
23 s stes `← S, empties STL, empties STN and sleeps
24 end
25 S ← S + 1

26 end

Lemma 1. In single hop beeping networks of size n, there is a deterministic
algorithm naming some M participating nodes in O(M log n) time slots with no
node being awake for more than O(M + log n) steps.

Proof. Algorithm 2 terminates deterministically in M × dlogNe = O(M log n)
time slots. In the following, let Ws be the total waking times of any node s in
Algorithm 2, WSTN , WSTL and Wother correspond to STN total waking time,
STL and other total waking times. Similarly, (WSTN)worst, (WSTL)worst and
(Wother)worst are the worst waking times of all nodes. We have

Ws =WSTN+WSTL+Wother ≤ (WSTN)worst+(WSTL)worst+(Wother)worst . (1)

Energy Efficient Naming in Beeping Networks 7

In order to find (WSTN)worst and (WSTL)worst, we can simulate a complete bi-
nary tree to be the Tree representation of the networks devices as done in [9].
In the figures below, the hexagons represent the STL waking steps of the black
node, the squares represent the STN waking steps and the circles represent the
other waking steps. The number inside these shapes represents the season dur-
ing which the node wakes up. For a better comprehension, we illustrate how we
obtained the two following figures in Appendix 2 and Appendix 3.

a) Worst case for STL.

The node s having (WSTL)worst

(the black node in Figure a))
wakes up T times in any step ti
of STL until no other node has
a higher ID. This value T is at
most half of participants on t1 and
gets halved every i. We can see (by
the diamonds shapes in Figure a)),
that s wakes up M

2
+1 times in sea-

son S1.

Furthermore, as for STL, a node
s wakes up at ti ∈ STN during as
many times as the number of nodes
with higher ID. I.e., half the num-
ber of participants at step t1. This
value gets halved every i and we
have

b) Worst case for STN.

(WSTL)worst ≤
M∑
i=1

(
M

2i
+ 1

)
≤ O(M) and (WSTN)worst ≤

M∑
i=1

(
M

2i
+ 1

)
≤ O(M)

(2)
A node s wakes up just once at any step ti not in STN and STL (we can see
that by the round shapes in Figure a) and b)). Hence, we have

(Wother)worst ≤
logN∑
i=1

O(1) ≤ O(logN) ≤ O(log n) . (3)

�
A Maple simulation is available in Appendix 1.

Theorem 1. In single-hop beeping networks of size n, if n is known in advance
by all nodes and nodes have unique ID ∈ {1, 2, ...N} (N is an upper bound of
n), there is an energy efficient deterministic naming algorithm, assigning unique
label to all nodes in O(n log n) rounds, with no node being awake for more than
O(n) time slots.

8 Ny Aina Andriambolamalala and Vlady Ravelomanana

Proof. Applying Lemma 1 to M = n, we reach the desired result. �

3 Energy Efficient Randomized algorithms

We assume that the total number of nodes is unknown and that nodes are ini-
tially indistinguishable. All the nodes have to know a linear approximation u of
n. This approximation problem was well studied in the distributed computing
area. Brandes, Kardas, Klonowski, Pająk and Wattenhofer [3] designed a ran-
domized linear approximation algorithm, terminating w.h.p. in O(log n) rounds.
Our main idea is to assign a unique ID uniformly from {1, 2, ...u3} to all nodes
and use the well known balls and bins problem for putting our n nodes into
d u
log ue = O(n

logn) groups.

Lemma 2. As a classical result (see for instance [23]), if n nodes randomly and
uniformly choose to enter into d n

logne groups, there is at most 4 log n nodes in
each group with high probability.

Proof. The probability to enter any group Gi is logn
n . As a consequence, if |Gi|

denotes the number of nodes in group Gi, then E[|Gi|] = log n. Hence, by mean
of Chernoff bound, |Gi| ≤ 4 log n with probability at least 1− 1

n2 . �
We sequentially run DeterministicNaming(u3) on each group one by one such
that each group works during at most dlog u3e = O(log n) time slots to name
themselves and during an extra O(log n) rounds where the last labeled node
sends its label bit by bit to the next group. As DeterministicNaming(N)
outputs a labeling of the M participants such that ` ∈ {1, 2, ..M}, after the call
of this algorithm, all nodes have to update their label such that the first label
outputted by DeterministicNaming(N) in season S1 of a group Gk must be
the next available label after the last label outputted in group Gk−1.
In order to know if any node s has the last label of its group, we modify De-
terministicNaming(N) algorithm such that a node labeled at season Sj wakes
up during the entire season Sj+1 and listens to the network to find remaining
unlabeled nodes. This extra O(log n) waking time doesn’t affect our O(log n)
energy complexity.

Theorem 2. In single-hop beeping networks of size n, if n is unknown by all
nodes and nodes are initially indistinguishable, there is an energy efficient ran-
domized naming algorithm, assigning a unique label to all nodes in O(n log n)
w.h.p, with no node being awake for more than O(log n) time slots.

Proof. Using DeterministicNaming(N), the latter described algorithm is quasi
deterministic. As by [3], u = Θ(n), if we note TD, the time complexity of De-
terministicNaming(N = u3) algorithm, our naming algorithm terminates in
d u
log ue × TD time. By Lemma 2, the number of participants is O(log n), and

using Lemma 1 we get TD = O(log2 n), implying the O(n log n) time complexity
of Algorithm 3.
Therefore, as each node s is awake only during the execution of Deterministic-
Naming(u3) and O(log n) extra times for notifying the next group and checking

Energy Efficient Naming in Beeping Networks 9

if s has the last label, the energy complexity is O(log n). �
By doing some adaptation, we can design an algorithm with O(n log n) time
complexity and O(log n) energy complexity on this problem on single-hop BL
network. �

Theorem 3. In single-hop beeping networks of size n, if n is unknown by all
nodes and nodes are initially indistinguishable, there is an energy efficient ran-
domized counting algorithm allowing all the nodes to know the exact number
of the participating nodes, terminating in O(n log n) w.h.p, with no node being
awake for more than O(log n) time slots.

Proof. If at the end of the last group Gd u
log u e, all nodes wake up and the last

labeled node sends its label bit by bit, this corresponds w.h.p. to the exact
number of nodes on the network. �

4 Deterministic energy efficient naming algorithm

As the randomized part of our algorithm is the assignment of all nodes to d n
logne

groups of size O(log n), our goal is to do a deterministic assignment with a very
small error rate. In order to do so, we use a hash function in order to map each
node’s ID to d n

logne values, such that the nodes holding the same value belong
to the same group.

Theorem 4. In single-hop beeping networks of size n, if n is known in advance
by all nodes and nodes have a unique ID ∈ {1, 2, ...N} (N is an upper bound of
n), there is an energy efficient deterministic naming algorithm, assigning unique
label ` ∈ {1, 2, ...n} to all nodes in O(n log n), having no node being awake for
more than O(log n) time slots, with probability of error less than O

(
1
nc

)
, c > 0.

Proof. Celis, Reingold, Segev and Wieder [5] construct such hashing function, by
encoding integer values into binary code-word of length O(log n log log n), such
that there is at most O(logn

log logn) integers mapped to the same code-word w.h.p.
By using such a hash function to replace randomness on our algorithm (as local
computations, no message has to be sent), we prove the latter Theorem. �

5 Lower bound on energy complexity

In [7], the authors presented an Ω(n log n) lower bound for the running time
of any randomized naming algorithm. Note that in [6], Chang et al studied
the energy complexity of leader election, approximate counting and census in
several models of wireless radio networks with messages of unbounded size. In
this paragraph, we prove that O(log n) time is necessary and sufficient for one
node to be the unique transmitter of 1 single bit in the beep model with constant
probability. Our proof uses Yao’s minimax principle [27]. The idea is to adapt
Liu and Prabhakaran [18] proof for the lower bound on broadcasting algorithm
in radio networks. Let’s recall Yao’s minimax principle.

10 Ny Aina Andriambolamalala and Vlady Ravelomanana

Theorem 5 (Yao’s minimax principle [27] – Theorem 3). Let 0 < λ < 1/2. Let
P be a probability distribution over the set of inputs. Let A denote the set of all
deterministic algorithms that err with probability at most 2λ over P. For A ∈ A
let C(A,P) denote the expected running time of A over P. Let R be the set of
randomized algorithms that err with probability at most λ for any input, and let
E(R, I) denote the expected running time of R on input I. Then, for all P and
all R ∈ R,

min
A∈A

C(A,P) ≤ 2max
I

E(R, I) .

This principle offers a generic tool that permits to prove randomized lower bound
by reducing this task to that of proving deterministic lower bound.

Lemma 3. Let s be any given node of the beeping network. For any randomized
algorithm, the expected running time for s to be the unique sender of exactly 1
bit is Ω(log n).

Proof. We prove lemma 3 on the BCDLCD beeping network which is a stronger
model than the harsh BL model. That is, in the following proof, all non-idle
nodes (senders and listeners) will be (temporarily) able to distinguish between
exactly 1 node or at least two nodes have sent the same bit. W.l.o.g., fix a given
time slot t and suppose that the node s has to recognize that it is the unique
sender of a bit equals to 0. Define a configuration of a network at any given time
slot as the union of 4 sets of nodes: a set of idle nodes, a set of listeners, a set of
nodes transmitting the bit 1 (resp. 0). Adapting the methods in [18, §3] for our
purpose, we define a family Fk as the set of all configurations of the n nodes such
that k nodes hold a 0 and n−k nodes hold 1. Observe that a node holding a bit
can be idle. We assign to this family the weight c

k logn where c is a normalization
factor (1/c =

∑n
k=1

1
k logn and c ∼ 1 as n is large). During the deterministic time

slot t, we can suppose that j stations are awake, k stations hold 0. We observe
that any station s succeeds to send its bit (equals to 0) without any collision if
- it is one of the non-idle stations and it sends a 0 and
- the k − 1 other holders of 0 at this time are idle.
Thus the probability that a unique station is sending 0 over the union of the Fk

(i.e. F = ∪nk=1Fk) is

c

n∑
j=1

(
j
1

)(
n−j
k−1
)

k
(
n
k

)
log n

=
c

log n

j

n

n−j+1∑
k=1

(
n−j
k−1
)(

n−1
k−1
) = O

(
1

log n

)
.

We have just shown that there is a probability distribution such that the prob-
ability that there is a unique sender of 1 bit in any one deterministic step is
O(1/ log n). Thus, over the probability distribution we pick, the expected run-
ning time of any deterministic algorithm that errs with probability 1 − Ω(1)
allowing a node to be the unique sender of 1 bit is Ω(log n). �
Consequently we have the following lower bound.

Theorem 6. The energy complexity of any randomized algorithm solving the
naming problem with constant probability is Ω(log n).

Energy Efficient Naming in Beeping Networks 11

Proof. To prove this, fix any given free label ` ∈ {1, · · · , n}. A node that picked
that number has to signal to the others that it picks the label `. Such a signal
consists in Ω(1) bit(s) and at least 1 of these bits has to be the only bit present
on the shared channel at some given time t. By Lemma 3, this requires Ω(log n)
transmissions to succeed with constant probability. �

Conclusion

In this paper, we focus on the naming problem in single-hop beeping networks.
We start by a randomized version, when the nodes do not have any information
about the size n of the network and are initially indistinguishable, terminating
in optimal O(n log n) time slots w.h.p., and optimal O(log n) energy complexity.
We have also established that for the same task, Ω(log n) awake time slots is
necessary for any randomized algorithm with constant probability of success. Our
algorithm can be used for the counting problem, returning the exact number of
nodes in O(n log n) time slots, with O(log n) energy complexity. We also design
an energy-efficient unconditional deterministic naming algorithm terminating in
O(n log n) time slots with O(n) energy. By means of derandomization, we devise
an energy-efficient deterministic naming algorithm that errs with probability less
than O

(
1
nc

)
terminating in O(n log n) time slots and O(log n) energy complexity.

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. Distributed computing 26(4), 195–208 (2013)

2. Bordim, J.L., Cui, J., Hayashi, T., Nakano, K., Olariu, S.: Energy-efficient ini-
tialization protocols for ad-hoc radio networks. In: International Symposium on
Algorithms and Computation. pp. 215–224. Springer (1999)

3. Brandes, P., Kardas, M., Klonowski, M., Pająk, D., Wattenhofer, R.: Approximat-
ing the size of a radio network in beeping model. In: International Colloquium
on Structural Information and Communication Complexity. pp. 358–373. Springer
(2016)

4. Casteigts, A., Métivier, Y., Robson, J.M., Zemmari, A.: Counting in one-hop beep-
ing networks. to appear Theoretical Computer Science (2016)

5. Celis, L.E., Reingold, O., Segev, G., Wieder, U.: Balls and bins: Smaller hash fam-
ilies and faster evaluation. SIAM Journal on Computing 42(3), 1030–1050 (2013)

6. Chang, Y.J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential sepa-
rations in the energy complexity of leader election. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing. pp. 771–783. ACM
(2017)

7. Chlebus, B.S., De Marco, G., Talo, M.: Naming a channel with beeps. Fundamenta
Informaticae 153(3), 199–219 (2017)

8. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: International
Symposium on Distributed Computing. pp. 148–162 (2010)

9. Fuchs, M., Hwang, H.K.: Dependence between external path-length and size in
random tries. arXiv preprint arXiv:1604.08658 (2016)

12 Ny Aina Andriambolamalala and Vlady Ravelomanana

10. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio net-
works. In: Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms. pp. 748–766 (2013)

11. Ghaffari, M., Lynch, N., Sastry, S.: Leader election using loneliness detection. Dis-
tributed Computing 25(6), 427–450 (2012)

12. Hayashi, T., Nakano, K., Olariu, S.: Randomized initialization protocols for packet
radio networks. In: ipps. p. 544. IEEE (1999)

13. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Efficient algorithms for leader
election in radio networks. In: Proceedings of the twenty-first annual symposium
on Principles of distributed computing. pp. 51–57. ACM (2002)

14. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Energy-efficient size approximation
of radio networks with no collision detection. In: International Computing and
Combinatorics Conference. pp. 279–289 (2002)

15. Kardas, M., Klonowski, M., Pajak, D.: Energy-efficient leader election protocols for
single-hop radio networks. In: Parallel Processing (ICPP), 2013 42nd International
Conference on. pp. 399–408. IEEE (2013)

16. Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: Sublinear
bounds for randomized leader election. In: International Conference on Distributed
Computing and Networking. pp. 348–362. Springer (2013)

17. Lavault, C., Marckert, J.F., Ravelomanana, V.: Quasi-optimal energy-efficient
leader election algorithms in radio networks. Journal of Information and Com-
putation 205(5), pages–679 (2007)

18. Liu, D., Prabhakaran, M.: On randomized broadcasting and gossiping in radio
networks. In: Computing and Combinatorics, 8th Annual International Conference,
COCOON 2002, Singapore, August 15-17, 2002, Proceedings. pp. 340 – 349 (2002)

19. Nakano, K.: Optimal initializing algorithms for a reconfigurable mesh. Journal of
Parallel and Distributed Computing 24(2), 218–223 (1995)

20. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for radio networks
with no collision detection. In: International Conference on Parallel Processing,
2000. pp. 263–270 (2000)

21. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop ra-
dio networks with no collision detection. IEEE Transactions on Parallel and Dis-
tributed Systems 11(8), 851–863 (2000)

22. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE
Trans. on Parallel Distrib. Syst. 13(5), 516 – 526 (2002)

23. Raab, M., Steger, A.: “balls into bins”—a simple and tight analysis. In: International
Workshop on Randomization and Approximation Techniques in Computer Science.
pp. 159–170. Springer (1998)

24. Ramanathan, M.K., Ferreira, R.A., Jagannathan, S., Grama, A., Szpankowski, W.:
Randomized leader election. Distributed Computing 19(5-6), 403–418 (2007)

25. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed al-
gorithm for maximal independent set selection. In: Proceedings of the 2013 ACM
symposium on Principles of distributed computing. pp. 147–156. ACM (2013)

26. Vlady, R.: Time-optimal and energy-efficient size approximation of radio networks.
In: Distributed Computing in Sensor Systems (DCOSS), 2016 International Con-
ference on. pp. 233–237. IEEE (2016)

27. Yao, A.C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977. pp. 222–
227 (1977)

