
Optimal Naming in Multi-hop Beeping Networks

Ny Aina Andriambolamalala1 and Vlady Ravelomanana2

1 IRIF — University Paris Diderot — France. Ny-Aina.Andriambolamalala@irif.fr
2 IRIF UMR CNRS 8243 — University Paris Diderot — France vlad@irif.fr

Abstract. The naming or initialization problem is one fundamental
problem in distributed computing. In this paper, when the nodes do
not know neither n nor the number of their neighbors, but all nodes
have a unique identifier ID ∈ [1,N], we design a deterministic naming
and an exact counting algorithm with O(n+∆ log N) running times. Our
algorithms are optimal in time complexity in view of the Ω(∆ log N) and
the Ω(n) lower bounds given in ([5, 3]). If all nodes are initially indis-
tinguishable and know the diameter D of the network, we adapt our
algorithms to have a randomized naming and an exact counting algo-
rithm succeeding with high probability in O(n + ∆ logn + D log log n)
time slots.

1 Introduction

In order to compute decentralized tasks in a distributed system, researchers
designed various symmetry breaking protocols such as leader election ([4, 15, 13,
21, 20, 10, 11, 16, 23, 22, 14]), maximal Independent Set ([1, 24]) and naming or
initialization algorithms ([17, 12, 18, 2, 5]). In this paper, we consider the naming
problem on multi-hop beeping networks (the underlying graph of the network is
a non oriented connected graph). This consists of assigning to each of the n nodes
of the network, a unique label ` ∈ {1, 2, ...n}. In Section 2.2, when no node knows
n but all nodes know N and have unique ID ∈ [1, N] (N is the range of nodes
labels, i.e., labels are strings of O(logN) bits), we design a deterministic naming
algorithm terminating in O(n+∆ log N) time slots (∆ is the maximum degree of
the network). As a consequence, we show how to design a deterministic counting
algorithm with O(n+∆ log N) time complexity after which all nodes know the
exact number of the nodes in the network (Section 2.3). Finally, in Section 3, if all
nodes are initially indistinguishable (no node has ID) and no node knows n but
all nodes know D (D is the hop diameter of the network), we design randomized
naming and counting algorithms terminating in O(n+∆ log n+D log log n) time
slots with high probability 3 (w.h.p. for short).

1.1 The model

The beeping model, introduced by Cornejo and Kuhn in 2010 [6], makes little
demands on the devices which need only be able to do carrier-sensing, differ-
entiating between silence and the presence of a jamming signal on the network
3 Event εn occurs with high probability if P[εn] ≥ 1− 1

nc
for any constant c > 0

2 Ny Aina Andriambolamalala and Vlady Ravelomanana

(considered as 1− bit message or one beep). They note that carrier-sensing can
typically be done much more reliably and requires significantly less energy and
other resources than message-sending models. In such a model, communications
occur in synchronous time slots. In each time slot, a sensor can either beep
(transmit 1 − bit message), listen to the network or remain idle (asleep). Only
listening sensors know whether at least one of their neighbors was beeping or all
of them remained silent. This model is also called Beep Listen model (BL).

1.2 Related works

In single-hop radio networks (the underlying graph of the network is complete),
Hayashi, Nakano and Olariu ([12]) presented a O(n) running time random-
ized protocol solving the naming problem for the model with collision detec-
tion. Later, Bordim, Cui, Hayashi, Nakano and Olariu [2] presented O(n) time
complexity algorithm with O(log n) energy complexity 4. In [19], Nakano and
Olariu designed a naming protocol terminating in O(n) time slots w.h.p. with
O(log log n) energy complexity. Results on beeping model appeared recently
when Chlebus, De Marco and Talo [5] presented their naming algorithm termi-
nating in O(n log n) time slots w.h.p. for the BLmodel and provided a Ω(n log n)
lower bound on its time complexity. Moreover, Casteigts, Métivier, Robson and
Zemmari [3] presented a counting algorithm for the BL model terminating in
O(n log n) time slots w.h.p. and an Ω(n) lower bound. For the multi-hop model,
Czumaj and Davies [7] designed a deterministic depth first search(Dfs for short)
algorithm initializing the network in O(n log N) times slots. They start by elect-
ing a leader in O(D log N) time slots, calling the deterministic leader election
designed by Förster, Seidel and Wattenhofer [9]. Then, their Dfs algorithm vis-
its the leader first, which takes label 1. To choose which node to visit next, all
unlabeled neighbors of the leader have to send their ID bit by bit in order to
find which of them has the highest ID. The leader sends a token to such node
(let say s) with highest ID and the Dfs algorithm visits s which gets label 2.
They recursively applied this algorithm for all newly labeled node by sending a
token to its unlabeled neighbor holding the highest ID (the Dfs algorithm visits
such a node) and sending back such a token if no unlabeled neighbor remains.

1.3 Our approach

Our main idea is to parallelize the computation choosing which node the Dfs al-
gorithm will visit next. This can be done in O(∆ log N) time slots (section 2.1) if
the nodes are layered (see below). Having this in mind, we first elect a leader in
O(D + logN) rounds using the algorithm of Dufoulon, Burman and Beauquier
[8]. Then, we do a graph layering that consists of putting each node s into a
layer L(k), k being the hop distance between s and the leader. After O(D) time
slots of a beep wave [10], the leader belongs to the layer L(0), all nodes at hop
4 Energy complexity represents the total number of rounds during which a node is
awake either sending a message or listening to the network’s channel.

Optimal Naming in Multi-hop Beeping Networks 3

distance 1 from the leader belong to the layer L(1), and recursively, all nodes
at hop distance k from the leader belong to the layer L(k). Then, we assign to
each node a visit order for the Dfs algorithm, in O(∆ log N) time slots. Such
an ordering consists of assigning an Order ∈ [0, ∆] to each node such that the
Dfs algorithm visits the nodes having Order 0 first, then Order 1 and so on.
The goal here is to do these computations in parallel for all nodes so that when
the Dfs algorithm visits any node, the algorithm knows which node to visit next
within O(1) time slots. As a consequence, the precomputation of such visit order
leads to a new Dfs algorithm terminating in O(n) time slots.

2 N is known and the nodes have unique ID

2.1 Ordering the nodes in advance for the Dfs visit

To order each node as described in Section 1.3, we were inspired by the paral-
lelization procedure used in the broadcasting algorithm in [7]. Such a paralleliza-
tion firstly consists of waking only the nodes in layers {L(0),L(1)}, {L(3),L(4)}, ...{L(k),L(k+
1)} (such that k mod 3 = 0) to avoid conflicts. The neighbor of any node s in
layer L(k+1) (s ∈ L(k)) having the highest ID takes order 0, the second highest
ID takes order 1 and so on. When the Dfs algorithm visits a node v in any layer
L(l), l ≥ 0, it visits the neighbor of v in layer L(l+1) having order 0 first. Suppos-
ing that all nodes are layered as described in section 1.3 and have already encoded
their ID into binary code-word (noted CID), the algorithm is subdivided into
at most O(∆) seasons S0, S1, ...SO(∆) (the nodes do not have to know ∆). Each
season consists of dlog Ne+1 steps t0, t1, ...tdlog Ne and each step tj is subdivided
into four communication time slots tj0 , tj1 = tj0 + 1, tj2 = tj0 + 2, tj3 = tj0 + 3.
- at tj0 , the nodes in layer L(k), k ≥ 0 beeps in order to signify their neighbors
in layer L(k + 1) that they have to take an order.
- unordered nodes in layer L(k + 1) uppon hearing a beep at tj0 beep at tj1 to
notify those in layer L(k) that there remain unordered neighbors.
- at tj2 , the nodes in layer L(k + 1) have to send the jth bit of their CID.
- at tj3 , the nodes in layer L(k) have to notify the nodes in layer L(k + 1) that
at least one node in layer L(k + 1) has CID[j] = 1.
Description of the ordering algorithm: At the beginning, for all i ∈[
0, dD3 e

]
, all nodes in layers L(3i) beep in parallel at time slot t00 . In season

S0, all unordered nodes in layers L(3i+ 1) hearing beep at t00 beeps at t01 and
start sending their CID bit by bit at t02 . If an unordered node s has CID[0] = 1
(j = 0), s beeps at t02 . Each node in layer L(3i) hearing beep at t02 beeps at
t03 . Each unordered node in layer L(3i+1), having CID[0] = 0 and hearing beep
at t03 becomes inactive until the end of S0. The remaining active nodes having
CID[1] = 1 (j = 1) beep at t12 , each node in layer L(3i) hearing beep at t12 beeps
at t13 and so on for all j from 2 to dlog Ne. The last remaining active unordered
node takes Order0, we start season S1 and so on. After these computations,
we have to apply it to layers {L(3i+ 1),L(3i+ 2)} and {L(3i+ 2),L(3i+ 3)} in
order to do an ordering for all nodes in all layers.

4 Ny Aina Andriambolamalala and Vlady Ravelomanana

Algorithm.1 Ordering(N) : Ordering the nodes for Dfs visits

Input : Common value N representing the maximal possible value of ID
Output: Each node s having an order Order
1 s sets Order← −2, status← Null, encodes ID into binary code-word

CID
2 for i from 0 to 2 do
3 if s in layer L(k) such that k mod 3 = i then
4 s sets status← source,Order← −1, j ← 0, count← 0, s beeps

at t00
5 end
6 if s in layer L(k) such that k mod 3 = i+ 1 then
7 s sets status← next,Order← −1, j ← 0, count← 0
8 end
9 while (Order = −1) ∧ (status 6= Null) do

10 if (status = next) ∧ (Order = −1) then
11 s beeps at tj1
12 end
13 if (status = next) ∧ (CID[j] = 1) then
14 s beeps at tj2
15 end
16 if status = source then
17 if s doesn’t hear beep at tj1 then
18 s sets status← Null and quits the algorithm
19 else
20 if s hears beep at tj2 then
21 s beeps at tj3
22 end
23 end
24 end
25 if (status = next) ∧ (CID[j] = 0) ∧ (s hears beep at

tj3) ∧ (j < dlog Ne) then
26 s sets status← inactive
27 end
28 if j < dlog Ne then
29 j ← j + 1
30 else
31 if status = next then
32 s sets Order← count
33 end
34 if status = inactive then
35 s sets status← next
36 end
37 j ← 0, count← count+ 1

38 end
39 end
40 end

Optimal Naming in Multi-hop Beeping Networks 5

Figure B.1 in Appendix B shows an example of execution of Algorithm.1.

Lemma 1. Algorithm.1 terminates in O(∆ log N) time slots. For any node s
in some layer L(k), let Ns(k) be the set of neighbors of s in layer L(k + 1).
After one execution of this algorithm, all nodes u ∈ Ns(k) have a unique order
Orderu ∈ {0, 1, ...|Ns(k)|} such that for any node s, if u, v ∈ Ns(k), u 6= v,
Orderu 6= Orderv (|Ns(k)| is the number of nodes in Ns(k)).

Proof. The main idea of Algorithm.1 is that each node has to send the binary
encoding of theis ID bit by bit. The nodes which do not have the highest ID
are eliminated. By the hypothesis, each ID is unique and after the dlog Ne time
slots when each node sent it ID bit by bit, only one node remains. Thus, after
each 4×dlog Ne time slots (4 corresponding to tj0 , tj1 , tj2 , tj3), one node gets an
order and quits the algorithm. As a consequence, after ∆ × 4 × dlog Ne steps,
all nodes in layers 3i + 1, i ∈ [0, dD3 e] are ordered. This is done 3 times (line
3 of Algorithm.1) to add order to all the nodes of the network, implying the
3×∆× 4× dlog Ne = O(∆ log N) time complexity of the algorithm. �

2.2 Naming algorithm

We start by electing a leader in O(D+ logN) time slots using [8]. Then, we put
each node s into a layer L(k), 0 ≤ k ≤ D in O(D) rounds (this can be done using
for instance the beep waves tool described in [10, paragraph 5.3]). We can now
call Algorithm.1 to order all the nodes. With such an ordering, the deterministic
naming algorithm visits all nodes one by one starting by the leader by means of
a Dfs algorithm. Any node s can take one of these 7 status:
- Active if s is the currently visited node.
- Supposing that the Active node is in any layer L(k), its neighbors in layer
L(k + 1) are called its Children neighbors.
- Activated if s was already visited but has remaining unlabeled Children.
- Waiting if s has never been visited.
- ActiveLayer if s is in the same layer as the currently Active node.
- Supposing that the currently Active node is in any layer L(k), s is Ac-
tiveChildLayer if it is in layer L(k + 1).
- Done if s is already visited and has no remaining unlabeled Children.
Not to be confused with round’s definition in the literature, here, we redefine one
round tj as a set of 14 communication sub-steps tj0 , ...tj13 , such that tji = tj0 +i.

– At tj0 , tj1 , tj2 , all nodes in any layer {L(0),L(1)}, {L(3),L(4)},{L(k),L(k+
1)} such that (k mod 3 = 0) do some computations in parallel to de-
termine if they are ActiveLayer or ActiveChildLayer. At tj3 , tj4 , tj5
(resp. tj6 , tj7 , tj8), we do the same computation for all nodes in any layer
{L(1),L(2)},{L(4),L(5)},{L(k+1),L(k+2)} (resp. {L(2),L(3)}, {L(5),L(6)},
{L(k + 2),L(k + 3)}).

– At tj9 , the Active node s (let suppose that s is in any layer L(l)) beeps
for asking if there is any unlabeled Children nodes in layer L(l + 1).

6 Ny Aina Andriambolamalala and Vlady Ravelomanana

– All unlabeled ActiveChildLayer nodes in layer L(l + 1) hearing beep at
tj9 beep at tj10 to notify the Active node that there remain unlabeled
Children nodes.

– tj11 is the feedback step when a Children node beeps in order to notify the
previously Active node that it gets labeled.

– tj12 is the notification step when all nodes hearing beep at tj11 beeps in order
to notify its Children that one of their 2-hop neighbors in layer L(l + 1)
gets labeled.

– When the Active node has no more unlabeled Children, it has to beep in
order to notify the precedent Active node in layer L(l− 1) at tj13 which is
revisited by the Dfs algorithm.

With these 14 sub-steps, we can now explain the execution of our naming algo-
rithm. We first define Test() protocol for doing all computations during tj0 to tj8
in any round tj as follows. At tj0 , Active node in layer L(0),L(3), ...L(k)(such
that k mod 3 = 0), beeps. The Waiting nodes in layers L(1),L(4), ...L(k + 1)
hearing beep at tj0 set status← ActiveChildLayer
and beep at tj1 . All Waiting nodes in layer L(0),L(3), ...L(k) hearing beep at
tj1 set status ← ActiveLayer and beep at tj2 . All Waiting nodes in layer
L(1),L(4), ...L(k + 1) hearing beep at tj2 set status ← ActiveChildLayer
and a counter labeled ← 0. We do the same computations at tj3 , tj4 , tj5 (resp.
tj6 , tj7 , tj8) for layers {L(1),L(2)}, ...{L(4),L(5)},{L(k + 1),L(k + 2)} (resp.
{L(2),L(3)}, {L(5),L(6)},{L(k + 2),L(k + 3)}).
Description of the naming algorithm. At the beginning, all nodes set
status←Waiting. The leader gets label `← 0, sets status← Active. During
t00 to t08 (j = 0), all nodes compute their status by evoking status ← Test().
At t09 , the Active node (leader) beeps. All ActiveChildLayer nodes hearing
beep at t09 set status← Children and beep at t010 . All new Children nodes
that have no labeled neighbors counter set a counter labeled ← 0. The new
Children node having Order = labeled sets status ← Active, gets label
` ← 1 = (j + 1) and beeps at t011 . The Active node hearing beep at t011 sets
status ← Activated and beeps at t012 . Children nodes hearing beep at t112
increment labeled← labeled+ 1. If the Active node s does not hear a beep at
t011 , s sets status ← Done, beeps at t013 and quits the algorithm. All Chil-
dren nodes reset status←Waiting. The Activated node hearing beep at t013
sets status ← Active. After that, we do the same computations for the new
Active node as follows. During t10 to t18 (j = 1), all nodes compute their status
by evoking status← Test(). At t19 , the Active node (node with label 1) beeps.
All ActiveChildLayer nodes hearing beep at t19 set status← Children and
beep at t110 . All new Children nodes that have no labeled neighbors counter
set a counter labeled ← 0. The new Children node having Order = labeled
sets status ← Active, gets label ` ← 2 = (j + 1) and beeps at t111 . the Ac-
tive node hearing beep at t111 sets status ← Activated and beeps at t112 .
ActiveLayer nodes hearing beep at t111 beep at t112 . Children nodes hear-
ing beep at t112 increment labeled ← labeled + 1. ActiveChildLayer nodes
hearing beep at t112 increment labeled ← labeled + 1. If the Active node s

Optimal Naming in Multi-hop Beeping Networks 7

does not hear a beep at t111 , s sets status ← Done, beeps at t113 and quits
the algorithm. All Children nodes, ActiveLayer nodes and ActiveChild-
Layer nodes reset status ← Waiting. Activated node hearing beep at t113
sets status← Active. Then we do the same computations for j from 2 to O(∆).
Figure B.2 in Appendix B shows an example of execution of the 5th round of
Naming() algorithm.
Algorithm.2 Test() at any node s

Input : Layered nodes having unique ID ∈ [1,N]
Output: Each node s with status ∈

{Active,Waiting,ActiveLayer,ActiveChildLayer}
1 for i from 0 to 2 do
2 if s is Active and has layer L(k + i) such that k mod 3 = 0 then
3 s beeps at tj3i
4 end
5 if s is Waiting and has layer L(k + i+ 1) such that k mod 3 = 0

and hears beep at tj3i then
6 s sets status← ActiveChildLayer and beeps at tj3i+1

7 end
8 if s is Waiting and has layer L(k + i) such that k mod 3 = 0 and

hears beep at tj3i+1
then

9 s sets status← ActiveLayer and beeps at tj3i+2

10 end
11 if s is Waiting and has layer L(k + i+ 1) such that k mod 3 = 0

and hears beep at tj3i+2
then

12 s sets status← ActiveChildLayer, labeled← 0
13 end
14 end

Lemma 2. The While loop of Algorithm.3 (lines 9 to 41) terminates in O(n)
rounds assigning to each node a unique label ` ∈ [0, 2n].

Proof. As the time complexity of Dfs algorithm is at most 2n, the While loop
in line 9 of Algorithm.3 terminates after at most 2n time slots. We can see in
line 20 of Algorithm.3 that the labeling ` assigned to each node s corresponds
to the time slot when s is visited first by the Dfs algorithm. Thus, after the
While loop of Algorithm.3, each node has a label ` ∈ [0, 2n]. �
Lemma 2 show that we don’t have a correct labeling ` of the network such
that ` ∈ {1, 2, ...n}. The following Lemma is important to locally compute such
correct labeling without sending any message.

Lemma 3. For any node s, let `(s) be a labeling of s (`(s) ∈ {1, 2, ...n}, `(s) is
unique). Let `A(s) (as Assigned label) be the label assigned by the While loop of
Algorithm.3 to s in any layer L(k) (`A(s) ∈ [0, 2n]). For all nodes and all k ≥ 0,

`(s) =
`A(s) + L(k)

2
(1)

8 Ny Aina Andriambolamalala and Vlady Ravelomanana

Algorithm.3 Naming(N) at any node s

Input : A common value N representing the maximal possible value of ID
Output: Each node s having unique label `

1 s do leader election algorithm as described in [8]
2 if s is Leader then
3 s gets layer L(0), status← Active, `← 0, labeled← Null
4 else
5 s gets layer L(k) using the beep waves tool described in [10,

paragraph 5.3]), s sets statusWaiting
6 end
7 s sets round counter j ← 0, num← Ordering(N)
8 while status 6= Done do
9 s sets status← Test() during tj0 to tj8

10 if s is Active then
11 s beeps at tj9
12 end
13 if s is ActiveChildLayer and hears beep at tj9 then
14 s sets status← Children and beeps at tj10 if labeled = Null

then
15 s sets labeled← 0
16 end
17 end
18 if s is Children and labeled = num then
19 s sets status← Active, `← j + 1 and beeps at tj11
20 end
21 if s is Active then
22 if s hears beep at tj11 then
23 s sets status← Activated and beeps at tj12
24 else
25 s sets status← Done and beeps at tj13
26 end
27 end
28 if s is ActiveLayer and hears beep at tj11 then
29 s beeps at tj12
30 end
31 if (s is Children or ActiveChildLayer) and hears beep at tj12

then
32 s sets labeled← laleled+ 1
33 end
34 if s is Activated and hears beep at tj13 then
35 s sets status← Active
36 end
37 if (s is Children or ActiveChildLayeror ActiveLayer) then
38 s sets status←Waiting
39 end
40 s sets j ← j + 1

41 end
42 s sets `← `+L(k)

2 + 1

Optimal Naming in Multi-hop Beeping Networks 9

Proof. We first proceed by induction on k. As 0+0
2 = 0, property (1) is always

true for k = 0. Let now suppose that property (1) is satisfied by every nodes in
any layer L(k), k > 0. In layer L(k+1), all nodes have an ordering 0 ≤ Order ≤
∆ such that the node having Order = 0 is labeled first. We can apply a proof
by induction on Order to all nodes in layer L(k + 1). To do so, we start by
proving that property (1) is true for all nodes having Order = 0.
-(i) For any node s having Order = 0 in layer L(k + 1), we can considering its
parent as root of a network of diameter 2 where all nodes are at distance 1 from
the root. As s is visited first by the Dfs algorithm after his parent, we have

`(s) = `(root) + 1 and `A(s) = `A(root) + 1 (2)

By our induction hypothesis,

`(root) =
`A(root) + k

2

As a consequence,

`(s) =
`A(root) + k

2
+ 1 =

`A(root) + k + 2

2
=
`A(root) + 1 + k + 1

2

Using property (2),

`(s) =
`A(s) + (k + 1)

2

Thus, property (1) is satisfied for all nodes having Order = 0 in L(k + 1).

-(ii) Let now suppose that property (1) is satisfied by all nodes having Order =
i, i > 0 in layer L(k+ 1). For any node s, v in layer L(k+ 1) having respectively
Order = (i+ 1) and Order = i, such that s and v are connected to the same
node in layer L(k), let note ST (s) (resp. ST (v)) the sub-tree rooted in s (resp.
v). |ST (s)| is the number of nodes in St(s). tDone(s) denotes the time slot when
a node s is Done. We remark that `A(v) can be interpreted as the first time
when v is visited. By analyzing the behavior of Algorithm.3, we have

`A(s) = tDone(v) + 2 and tDone(v) = `A(v) + 2× |ST (v)|

As a consequence,

`A(s) = `A(v) + 2× |ST (v)|+ 2 and `(s) = `(v) + |ST (v)|+ 1 (3)

By applying our induction hypothesis on Order to (3),

`(s) =
`A(v) + (k + 1)

2
+ |ST (v)|+ 1 =

`A(v) + (k + 1) + 2|ST (v)|+ 2

2

Using (3), we prove that property (1) is true for all nodes in layer L(k + 1). �
We can see an example illustrating Lemma 3 in Figure B.2 (k) of Appendix B.

10 Ny Aina Andriambolamalala and Vlady Ravelomanana

Theorem 1. In multi-hop beeping networks of size n where all nodes have unique
ID ∈ [0,N] and know N, there is a deterministic naming algorithm, assigning
unique label ` ∈ {1, 2, ...n} to all nodes in O(n+∆ log N) time slots.

Proof. The time complexity of Algorithm.3 is the sum of
- leader election complexity (line 1 of Algorithm.3) : O(D + logN)
- layering complexity (line 5 of Algorithm.3): O(D)
- Ordering(N) complexity (line 8 of Algorithm.3) : O(∆ log N) by Lemma 1
- and the While loop in line 9 of Algorithm.3 times Test() complexity (O(1)):
O(n) by Lemma 2.
By Lemma 3, line 42 of Algorithm.3 assigns to each node a label ` ∈ {1, 2, ...n}
after O(D + logN+D +∆ log N+2n) = O(n+∆ log N) time slots without any
additional communication. �

2.3 Counting algorithm

Our main idea to design a counting algorithm is to adapt Algorithm.3 such that
the last node labeled by Algorithm.3 has to broadcast its label.

Theorem 2. In multi-hop beeping networks of size n where all nodes have unique
ID ∈ [0,N] and know N, there is a deterministic counting algorithm, assigning
to all nodes the exact number of participants in O(n+∆ log N) time slots.

Proof. we add 2 additional communication steps tj14 , tj15 to each round tj of Al-
gorithm.3 in order to have an end notification step for the Naming() algorithm.
- After calling the Ordering(N) algorithm, each node know how many Chil-
dren nodes it has. Then, we add a Children node counter to each node that
decreases every time a Children node gets labeled. When the Leader has only
one remaining Children node, it beeps at tj14 . An unlabeled node s hearing
beep at tj14 knows that it is last labeled node in layer L(1). When s has only
one remaining Children node, it beeps at tj14 to notify the last node in layer
L(2) and so on.
- An unlabeled node v hearing beep at tj14 that no have any Children node
know that it is the last labeled node on the network. v starts sending an end
notification in tj15 and all nodes hearing beep at tj15 beep at t(j+1)15 and waits
for the broadcast from v. v broadcasts ` in O(D + log n) time slots. �

3 n is unknown and the nodes are indistinguishable

If the nodes are indistinguishable and n is unknown, we have to use randomness
in order to generate unique ID for breaking symmetry on the network. To do
so, the nodes have to know an upper bound of n. In order to find such an upper
bound, we use the following results. Let Y be the following discrete probability
distribution. Given α ∈]0, 1],

pk = P[Y = k] = e−
1+α
1−αk − e−

1+α
1−α (k+1)

Optimal Naming in Multi-hop Beeping Networks 11

By taking a suitable value of α (α = 2
7), we have

pk = P[Y = k] = e−
9
5k − e− 9

5 (k+1) (4)

The following Lemma states that the maximal of n copies of random variables
distributed as (4) is of the order of Θ(log n).

Lemma 4 (Bounds of the maximum). For 1 ≤ j ≤ n, let (Yj) be n inde-
pendent copies of a random variable distributed as (4). We have

P
[
1

2
log n ≤ max

1≤j≤n
Yj ≤

3

4
log n

]
≥ 1−O

(
1

n
1
3

)
(5)

Proof.

P
[
max
1≤j≤n

Yj ≥
1

2
log(n)

]
= 1−

 1
2 log(n)∑
j=0

e−
9
5 j − e− 9

5 (j+1)

n

= 1−
(
1− e− 9

5 (
1
2 log(n)+1)

)n
.

Since (1− x) ≤ e−x , after a bit algebra, we have

P
[
max
1≤j≤n

Yj ≥
1

2
log(n)

]
≥ 1− (e−ne

− 9
5
(1
2

log(n)+1)

)n ≥ 1−O
(

1

en
1
10

)
In the same way, since (1 − x) ≥ e−x−x

2

, the probability that the maximum is
at most 3

4 log(n) is 3
4 log(n)∑
δ=0

e−
9
5 δ − e− 9

5 (j+1)

n

=
(
1− e− 9

5 (
3
4 log(n)+1)

)n
≥ e−n

− 7
20−n− 34

20 ≥ 1−O
(

1

n
1
3

)
.

�
We can now find an upper bound u of n in each node of the network as follows.

3.1 Finding u such that n2 ≤ u ≤ n3

Each node s generates one local random variable Ys distributed as (4). Then,
all nodes start finding an upper bound of the maximum of all generated r.v. as
follows. At the beginning, all nodes having Ys ∈ [0, 2] beeps. The other nodes
have to listen to the network during D time slots and to beep immediately after
hearing a beep. Thus, after D time slots, all nodes know if at least one of them
have Ys ∈ [0, 2]. We do the same computation for [0, 4], [0, 8]... until reaching the
interval in which no node has Ys. Then the nodes do a dichotomy on this last
interval to find max1≤s≤n Ys. In what follows, TestBeep(a, b) (see Appendix
A) is a local operation called at some time slot tk. It works during D time slots
tk, tk+1,tk+D−1. During such time slots, a node s beeps at the beginning (at
tk) if its random variable Ys verifies a ≤ Ys ≤ b, otherwise s listens during

12 Ny Aina Andriambolamalala and Vlady Ravelomanana

D time slots. Each node hearing beep at any round immediately beeps after.
After any D time slots, TestBeep(a, b) outputs Beep if and only if at least
one node of the network beeps during these rounds (that is at least one node v
has a ≤ Yv ≤ b). Observe that during such a rounds, all beeping nodes know
they just beeped.

Lemma 5. Algorithm 5(see Appendix A) terminates in O(D log log n) w.h.p.

Proof. By Lemma 4, the maximum of all generated r.v. by all the nodes is in
[12 log n,

3
4 log n] w.h.p. As a consequence, finding its upper bound as in lines 2 to

4 of Algorithm 5 ends after O(log log n) loops. In the same way, finding the exact
value of such a maximum by mean of a dichotomy ends after O(log log n) loops
(lines 7 13 of Algorithm 5). As in each loop, all nodes call the TestBeep(a, b)
algorithm, having O(D) time complexity, Algorithm 5 terminates w.h.p. after
O(D log log n) rounds. Thus, by Lemma 4, the last line of Algorithm 5 provides
n2 ≤ u ≤ n3 w.h.p.. �

3.2 Naming and counting algorithms

Theorem 3. In multi-hop beeping networks of size n where all nodes are initially
indistinguishable, there is a randomized naming algorithm, assigning unique label
` ∈ {1, 2, ...n} to all nodes in O(n+∆ log N+D log log n) time slots w.h.p.

Proof. After calling the previous protocols, all nodes can generate unique ID s
w.h.p. and can know N, the maximal range of all ID s. Thus, all the nodes can
execute the Naming(N) algorithm. As a consequence, the time complexity of
sych a randomized naming algorithm is O(n+∆ log N+D log log n) �

Theorem 4. In multi-hop beeping networks of size n where all nodes nodes are
initially indistinguishable, there is a randomized counting algorithm, assigning
to all nodes the exact number of participants in O(n+∆ log N+D log log n) time
slots w.h.p..

Proof. As the deterministic version, our randomized naming algorithm can be
adapted to have a randomized counting algorithm withO(n+∆ log N+D log log n)
time complexity.

4 Conclusion

In this paper, we presented deterministic naming algorithm on multi-hop beep-
ing networks. When no node knows the size n of the network, and all nodes
have unique ID ∈ [1,N], our protocol terminates in optimal O(n + ∆ log N)
rounds assigning unique label ` ∈ {1, 2, ...n} to each node. Our algorithm can
be adapted for the counting problem, returning the exact number of nodes in
O(n +∆ log N) rounds. All these algorithms are optimal in time complexity in
view of the Ω(∆ log N) lower bound and the Ω(n) lower bound given in ([5, 3]).
In the case when the nodes are indistinguishable, we design randomized naming
and counting algorithms terminating in O(n + ∆ log N+D log log n) time slots
w.h.p..

Optimal Naming in Multi-hop Beeping Networks 13

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. Distributed computing 26(4), 195–208 (2013)

2. Bordim, J.L., Cui, J., Hayashi, T., Nakano, K., Olariu, S.: Energy-efficient ini-
tialization protocols for ad-hoc radio networks. In: International Symposium on
Algorithms and Computation. pp. 215–224. Springer (1999)

3. Casteigts, A., Métivier, Y., Robson, J.M., Zemmari, A.: Counting in one-hop beep-
ing networks. to appear Theoretical Computer Science (2016)

4. Chang, Y.J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential sepa-
rations in the energy complexity of leader election. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing. pp. 771–783. ACM
(2017)

5. Chlebus, B.S., De Marco, G., Talo, M.: Naming a channel with beeps. Fundamenta
Informaticae 153(3), 199–219 (2017)

6. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: International
Symposium on Distributed Computing. pp. 148–162 (2010)

7. Czumaj, A., Davies, P.: Communicating with beeps. Journal of Parallel and Dis-
tributed Computing (2019)

8. Dufoulon, F., Burman, J., Beauquier, J.: Beeping a deterministic time-optimal
leader election. In: 32nd International Symposium on Distributed Computing
(DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

9. Förster, K.T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-
hop beeping networks. In: International Symposium on Distributed Computing.
pp. 212–226. Springer (2014)

10. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio net-
works. In: Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms. pp. 748–766 (2013)

11. Ghaffari, M., Lynch, N., Sastry, S.: Leader election using loneliness detection. Dis-
tributed Computing 25(6), 427–450 (2012)

12. Hayashi, T., Nakano, K., Olariu, S.: Randomized initialization protocols for packet
radio networks. In: ipps. p. 544. IEEE (1999)

13. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Efficient algorithms for leader
election in radio networks. In: Proceedings of the twenty-first annual symposium
on Principles of distributed computing. pp. 51–57. ACM (2002)

14. Kardas, M., Klonowski, M., Pajak, D.: Energy-efficient leader election protocols for
single-hop radio networks. In: Parallel Processing (ICPP), 2013 42nd International
Conference on. pp. 399–408. IEEE (2013)

15. Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: Sublinear
bounds for randomized leader election. In: International Conference on Distributed
Computing and Networking. pp. 348–362. Springer (2013)

16. Lavault, C., Marckert, J.F., Ravelomanana, V.: Quasi-optimal energy-efficient
leader election algorithms in radio networks. Journal of Information and Com-
putation 205(5), pages–679 (2007)

17. Nakano, K.: Optimal initializing algorithms for a reconfigurable mesh. Journal of
Parallel and Distributed Computing 24(2), 218–223 (1995)

18. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for radio networks
with no collision detection. In: International Conference on Parallel Processing,
2000. pp. 263–270 (2000)

14 Ny Aina Andriambolamalala and Vlady Ravelomanana

19. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop ra-
dio networks with no collision detection. IEEE Transactions on Parallel and Dis-
tributed Systems 11(8), 851–863 (2000)

20. Nakano, K., Olariu, S.: Randomized leader election protocols in radio networks
with no collision detection. In: International Symposium on Algorithms and Com-
putation. pp. 362–373 (2000)

21. Nakano, K., Olariu, S.: A survey on leader election protocols for radio networks.
In: International Symposium on Parallel Architectures, Algorithms and Networks.
I-SPAN’02. pp. 71–76. IEEE (2002)

22. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE
Trans. on Parallel Distrib. Syst. 13(5), 516 – 526 (2002)

23. Ramanathan, M.K., Ferreira, R.A., Jagannathan, S., Grama, A., Szpankowski, W.:
Randomized leader election. Distributed Computing 19(5-6), 403–418 (2007)

24. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed al-
gorithm for maximal independent set selection. In: Proceedings of the 2013 ACM
symposium on Principles of distributed computing. pp. 147–156. ACM (2013)

Optimal Naming in Multi-hop Beeping Networks 15

Appendix

A Randomized algorithms implementations

Algorithm 4. TestBeep(a, b).

Input : Each node s with a local random variable Ys, 2 values a and b
Output: Beep or Null

1 if Ys ∈ [a, b] then
2 Beep at t0
3 return Beep
4 else
5 for j from 1 to D do
6 if heard Beepat tj−1 then
7 Beepat tj
8 return Beep
9 else

10 end
11 end
12 end
13 return Null

Algorithm 5. Finding u.

Input : A common constants α = 2
7 , the diameter D of the network

Output: Each node s knowing a common value u ∈ [n2, n3].

1 Each node s generates one r.v. Ys as defined by (4) and sets
status← Active.

2 All nodes set k ← 0 and do
3 s sets k ← k + 1,Sup← 2k

4 while Test(0, Sup) 6= Null
5 Each node s stores the last value of k
6 All nodes set Inf← 0 and Sup← 2k.
7 while Inf 6= Sup do
8 if Test(d(Inf + Sup)/2e, Sup) = Null then
9 Sup← d Inf+Sup

2 e − 1
10 else
11 Inf← d Inf+Sup

2 e
12 end
13 end
14 All nodes set u← 24×Sup

16 Ny Aina Andriambolamalala and Vlady Ravelomanana

B Figures

B.1 Example of execution of Ordering(N) algorithm

t00 : Nodes in L(0),L(3)
(black nodes) beep

t01 : Unordered nodes in
in L(1),L(4) beep

t02 : Unordered nodes
inL(1),L(4) with
CID[0] = 1 beep

t03 : Nodes in L(0),L(3) hearing beep
at t02 beep and nodes in L(1),L(4)
with CID[0] = 0 (striped nodes) are

eliminated

At the end of Algorithm.1, all nodes
have an order

Optimal Naming in Multi-hop Beeping Networks 17

B.2 Example of execution of the 5th round of Naming() algorithm.
We only show steps t56 , t57 , t58 for Test() algorithm because
the current Active node is in layer L(2). In the notation A/B,
A corresponds to label assigned by the While loop and B
represents the label ` ∈ {1, 2...n}.

(a) The network after Ordering(N) algorithm (b) After round t4 of Nam-
ing(N) algorithm

(c) Step t56 of Test() (d) Step t57 of Test()

(e) Step t58 of Test() (f) Step t59 just after Test()

(g) Step t510 (h) Step t511

(h) Step t511

18 Ny Aina Andriambolamalala and Vlady Ravelomanana

(i) Step t512 (j) Step t513

(k) Network after Nam-
ing(N)

