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Abstract. We study the distributed decision problem related to check-
ing distance-k coloring, defined as color assignments to the nodes such
that every pair of vertices at distance at most k must receive distinct
colors. While checking the validity of a distance-k coloring only requires
dk/2e rounds in the Local model, and a single round in the Congest
model when k ≤ 2, the task is extremely costly for higher k’s in Congest
— there is a lower bound of Ω(∆k/2) rounds in graphs with maximum
degree ∆. We therefore explore the ability of checking distance-k color-
ing via distributed property testing. We consider several farness criteria
for measuring the distance to a valid coloring, and we derive upper and
lower bounds for each of them. In particular, we show that for one natural
farness measure, significantly better algorithms are possible for testing
distance-3 coloring than for testing distance-k coloring for k ≥ 4.

Keywords: distributed property testing, graph coloring, distributed de-
cision.

1 Introduction

We study problems related to checking whether a given distance-k col-
oring is proper, in the distributed Congest model. A valid (or proper)
distance-k coloring of a graph G = (V,E), for k ≥ 1, is a coloring of each
node v with integer cv so that any two nodes u, v of distance at most k
are colored differently, i.e., cu 6= cv. This is equivalent to the usual vertex
coloring of the graph Gk = (V,Ek), where two nodes are adjacent if they
are within distance k in G.

Classical distance-1 colorings have been extensively studied in dis-
tributed computing as a tool of breaking symmetry. Let us denote by n the
number of nodes, by m the number of edges, and by ∆ the maximum de-
gree of G. For the core problem of finding a (∆+1)-coloring, there is a sim-
ple folklore O(log n)-round randomized algorithm, and recent polylog(n)-
round deterministic algorithm by Bamberger, Kuhn and Maus [4] that
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works in Congest (leveraging the recent breakthrough of Rozhoň and
Ghaffari [31]). The corresponding distance-2 coloring questions has re-
cently been addressed in [22], where an O(log∆ log n)-round randomized
algorithm is given that uses ∆2 + 1 colors, as well as a polylog(n)-round
deterministic algorithm that uses (1 + ε)∆2 colors, for any ε > 0. This
opens the question about distance-k coloring problems, for k ≥ 3, which
appear considerably harder.

Why distance-k coloring? Distributed distance-k colorings are interest-
ing for various reasons. They appear naturally when constant-round ran-
domized algorithms are derandomized using the method of conditional
expectation [19]. They also appear in certain models of wireless models,
where senders must be sufficiently separated, to limit interference. More
abstractly, we can view distance-k coloring problems as a way of study-
ing communication capacity constraints on nodes, where communication
must go through intermediate relays. Given that distance-2 colorings can
be efficiently computed, distance-3 colorings appear to lie at the frontier
of what can be solved efficiently by distributed algorithms.

Deciding distance-k coloring. Given the apparently challenging task of
finding an efficient distance-3 coloring, a natural question that arises is
if we can at least check that a given coloring is valid. We can quickly
dispose of that hope, as there is an easy reduction to Set Disjointness
that shows that verifying a distance-k coloring requires Ω(∆b(k−1)/2c)
rounds in Congest. We provide a proof of this fact, for completeness,
in App. A. Observe that the question is trivially answered in k rounds of
the Local model.

Testing distance-k coloring. Distributed property testing is a relaxation
of distributed decision, where we seek a Congest algorithm that can
distinguish whether the given graph satisfies a given property (e.g., having
a distance-k coloring), or being far from having such a property. The most
common notion for this is ε-farness in the sparse model, when the addition
or deletion of up to ε ·m arbitrary edges to/from the graph G = (V,E)
does not result in the property being satisfied. This notion is renamed ε-
edge in this paper, so as to avoid confusion as we use alternative notions
of being far to a valid coloring. Distributed algorithms testing a property
(here distance-k coloring) are compared according to the error rate ε(r)
they can tolerate if restricted to r rounds, or equivalently, the round
complexity r(ε) to distinguish between legal instances and instances ε-far
from being legal.
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1.1 Summary of main results

We consider several measures of distance from a valid coloring to define
various notion of ε-farness, deduce their relationship, and bound the effi-
ciency of testing distance-k colorings in Congest under these measures.
As examples of such measures, we consider ε-edge, where deleting up to
εm edges cannot result in a valid distance-k coloring, and ε-middle, where
there exist more than εm paths of length at most k−2 between two nodes
with distinct neighbors of the same color. We present the following results:

1. An algorithm for any constant k ≥ 3, with round complexity O(1/ε),
for all our measures but ε-middle. We provide a matching lower bound
for any algorithm under two of our considered measures.

2. An improved algorithm for distance-3 colorings under the ε-middle
measure. The round complexity is O(ε−3/2m−1/2), for ε ≥ m−1/3.
We prove a matching lower bound, and as well as an Ω̃(ε−1) lower
bound for distance-4. This shows that distance-4 is strictly harder
than distance-3.

3. A communication complexity lower bound of Ω̃(ε−1(εm)−1), for any
k ≥ 3, under the ε-edge measure.

The results suggest that distance-3 colorings are easier to test than
for larger distances. This reinforces the role of distance-3 coloring on the
frontier of what is computable efficiently in Congest.

1.2 Related work

Property testing has an extensive history in the sequential setting [20].
Distributed property testing was recently introduced by Brakerski and
Patt-Shamir [6], and later revisited and formalized more broadly by Censor-
Hillel et al. [8]. As in the centralized setting, different variants of farness
can be considered, but most of the efforts on distributed property test-
ing has been carried out in the sparse model, that is, the model of this
paper, where farness is measured by the fraction of the number of edges
that must be added or removed for satisfying the property under con-
sideration. In this framework, most previous work has been dedicated
to checking the absence of a specific graph pattern (e.g., a cycle Ck, or
a clique Kk, for some k ≥ 3) as a subgraph of the actual network [11,
15, 17]. To our knowledge, this paper is the first to consider distributed
testing proper distance-k coloring.

More generally, distributed property testing falls into the wide class
of distributed decision problems, initially motivated by fault-tolerant dis-
tributed computing [2, 3, 25]. Since these early work, there has been a
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large body of work on distributed decision, with a range of models —
see [12] for a survey. The closest to ours are local decision [13, 14], and
local verification [14, 16, 21, 28]. In both cases, the nodes perform a con-
stant number of rounds of communication before reaching a decision. Dis-
tributed property testing is a relaxed version of randomized distributed
local decision, as nodes are not bounded to detect illegal instances that
are “close to be legal”. In distributed verification, every node is also sup-
plied with a certificate string, and the collection of certificates is supposed
to form a distributed proof that the instance is legal. Distributed prop-
erty testing performs in absence of such certificates. Recently, distributed
verification has been extended to distributed interactive proofs [27, 29],
involving interactions between the nodes and a powerful centralized ora-
cle. Such mechanisms are obviously much more powerful than distributed
property testing.

Overall, distributed property testing offers a tradeoff between sim-
plicity (no need of certificates, nor of any interactions with an external
entity), and efficiency (configurations that are “slightly” illegal may not
be detected). It is thus an appealing lightweight alternative to complex
mechanisms for distributed systems that can tolerate to be slightly faulty.
This is typically the case of wireless systems, which are able to tolerate a
certain level of interference, as long as these interferences do not exceed
a certain threshold.

2 Model and Definitions

The input of our algorithms is a graph G, and a proposed coloring C =
(cv)v∈V . Given an underlying distance metrics between solutions, we say
that a solution is ε-far from being correct (or valid, or legal) if it is of
distance at least ε from any valid solution for G. We seek a Congest
protocol running on G to distinguish valid solutions from ε-far solutions.
The protocol should have 1-sided error:

If C is valid, then, with probability 1, all nodes output ”yes”.

If C is ε-far from being valid, then, with probability at least 2/3,
some node outputs ”no”.

We explore different types of solution distances. In particular, we can
divide them into two types: distance to a graph for which the given solu-
tion is valid, and distance to a valid solution for the given graph. We call
two distinct nodes with the same color at distance at most k a bad pair,
and call a path connecting a bad pair a bad path.
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Definition 1. An n-node m-edge graph G = (V,E) and a coloring of its
vertices (cv)v∈V are said to be

– ε-edge, when deleting up to εm arbitrary edges does not result in a
valid distance-k coloring.

– ε-disjoint, when there exist more than εm distinct pairs of similarly
colored vertices linked by edge-disjoint paths of length at most k.

– ε-middle, when there exist more than εm paths of length at most k−2
between two nodes with distinct neighbors of the same color.

– ε-node, when recoloring up to εn arbitrary vertices does not result in
a valid distance-k coloring.

– ε-conflict, when more than εn vertices have the same color as one of
their distance-k neighbors.

The ε-edge measure is the classical one from property testing literature
[6, 8, 15]. The ε-disjoint measure is a variation that requires there to be
many conflict pairs, not just one vertex that conflicts with many nodes
(that might not conflict between themselves).

The ε-middle measure has the appearance of being contrived, but
actually captures the essence of the problem. In the first round, each
node learns of the colors of all its neighbors. Thus, what we really need is
to somehow connect the second node on a bad k-path to the second-to-last
node, and see if the sets of colors in their neighborhoods intersect.

ε-disjoint ε-node

ε-conflictε-edge

ε-middle

Θ̃
(
1
ε

)
(k≥3)

Ω̃
(

1
ε·εm

)
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Õ
(

1
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√
εm

)
(k=3)

Õ
(
1
ε
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(

1
ε·
√
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Ω̃
(
1
ε
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Fig. 1. The relationships between our notions of distance from a valid solution as well
as our upper and lower bounds on the costs of testing for them. An arrow from ε-notion1

to ε-notion2 indicates that a solution that is ε-notion1 is also Ω(ε)-notion2 away from
a valid solution. Dashed lines indicate incomparability.
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The last two definitions correspond to natural measures of invalidity of
colorings. The ε-conflict measure counts how many nodes are improperly
colored (i.e., have a same-colored distance-≤ k neighbor), while ε-node
is more conservative, bounding the number of recolorings needed to turn
the coloring into a valid one.

We say that a measure µ is more strict than measure µ′ if µ(G, c) =
O(µ′(G, c)), for all graphs G and colorings c. Thus, if (G, c) is ε-far in
terms of measure µ′, then it is O(ε)-far in terms of measure µ (but could
be much less far).

It is easy to see that ε-disjoint is more strict than ε-edge, and ε-node is
more strict than ε-conflict. It also holds that ε-disjoint is more strict than
ε-conflict on sparse graphs, when |E(G)| = O(|V (G)|). This is illustrated
in Fig. 2, where solid arrows are drawn from a stricter measures to a less
stricter one.

We can also verify that other pairs of measures can be arbitrarily
divergent. The examples in Fig. 2 show that for any pair with a dotted
line, there is a graph where one is constant and the other is O(1/n) (or
O(1/m)), and vice versa. The same holds for the inverse direction of the
solid edges.

1

n/2

1

n/2

1 1 1

1

1

O(1/m)Ω(1) Ω(1)O(1/m) O(1/m) Ω(1) Ω(1)O(1/m) O(1/n)O(1/n) Ω(1) Ω(1) Ω(1)Ω(1)O(1/n)

Fig. 2. Three colored graphs showing the incomparability of some of the measures
of Definition 1. A number indicates a node’s color, unnumbered nodes each receive a
color unique to them. For each graph, the second line indicates values of ε for which
the graph is (in order) ε-disjoint, ε-node, ε-edge, ε-conflict, and ε-middle.

The property of ε-edge and ε-disjoint assignments that we shall use
is that there is a set of at least εm edges, each of which is the first edge
of a bad path. For ε-node or ε-conflict assignment, it follows from the
definition that there is a set of εn nodes that have a same-colored node
within distance at most k.
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3 Preliminaries: Set Disjointness

The set disjointness problem is a two-party communication complexity
decision problem where two players each receive a subset of an universe
[N ] and must decide whether their subsets are disjoint. This problem is
known to require Ω(N) communication – as large as the players’ inputs –
to solve with bounded error by a randomized communication complexity
protocol [26, 30, 5]. Doing a reduction from set disjointness to a task in
the Congest model has been a fruitful source of lower bounds [32, 18,
24, 10, 1, 9].

In this paper, we will use slight variations of the original set disjoint-
ness problem. We consider a subset of the original problem, where the
players have two additional promises: that their sets are of size at most
s, and that their sets’ intersection is either empty or contains at least t
elements, where s and t are two integer parameters.

Definition 2 (Large intersection, bounded size set disjointness).
Let N, s, t be three integers such that N ≥ s ≥ t > 0, X = Y = [N ], and
the players’ set of admissible inputs Is,t ⊆ X × Y be:

Is,t = {(X,Y ) : |X| ≤ s, |Y | ≤ s, |X ∩ Y | ∈ {0} ∪ [t,+∞)}

The large intersection, bounded size set disjointness problem DISJNs,t :
Is,t → {0, 1} is defined as:

DISJNs,t(X,Y ) =

{
1 if X ∩ Y = ∅,
0 otherwise.

The standard set disjointness problem corresponds to the choice of
parameters s = N, t = 1. A commonly studied variant bounds the size of
the player’s sets but promises nothing about the intersection (t = 1).
This problem is known to have randomized communication complex-
ity Θ(s) [23]. Computing the intersection of the two sets also has ran-
domized communication complexity only Θ(s) [7]. In both cases, the lower
bound is a simple consequence of the lower bound for the standard set
disjointness problem.

Lemma 1. R1/3

(
DISJNs,t

)
∈ Ω

(
s
t

)
Proof. Consider the DISJ

N/t
s/t,1 set disjointness problem. This is known to

require Ω (s/t) communication as the standard set disjointness problem

DISJ
s/t
s/t,1 reduces to it (it is the same problem but on a subset of its input
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space). Now remark that DISJ
N/t
s/t,1 reduces to DISJNs,t, as the players can

construct a valid input to DISJNs,t from a DISJ
N/t
s/t,1 input by making t

copies of each of their set elements, which concludes the proof. ut

Our lower bounds on testing a distance-3 coloring use the DISJNs,t
problem with parameters s ∈ Θ(m) and t ∈ Θ(εm) (Theorem 3), s ∈
Θ(m) and t ∈ Θ(εm) (Theorem 4), and s ∈ Θ(

√
m/ε) and t = 1 (The-

orem 5), while our lower bound on testing a distance-4 coloring (Theo-
rem 6) uses parameters s = m and t = 1. Our lower bound on verifying
a distance-k coloring for an arbitrary k (Theorem 7) uses parameters
s ∈ Θ(∆b(k−1)/2c) and t = 1. Notice that the complexity of the set dis-
jointness problem does not depend on N – the size of the universe – but
only on s and t, the sizes of the input sets and their potential intersection.

4 Testing Distance-k Colorings

For all the measures previously introduced (Definition 1), we give upper
and lower bounds on detecting being ε-far from a solution. Our first result
is a protocol for all measures except ε-middle, and for any constant k
(Theorem 1). This protocol is later shown to be tight for the ε-node and
ε-conflict models, even for k = 3. In the case k = 3, we give a more efficient
algorithm in the ε-middle, ε-edge and ε-disjoint models (Theorem 2). We
prove that the algorithm is optimal for the ε-middle measure (Theorem 5)
and also prove an non-matching lower bound for the ε-far and ε-disjoint
measures (Theorem 3). For k = 4, we prove an Ω̃(ε−1) lower bound in
the ε-middle model. This last lower bound is strictly higher than the
complexity of the same problem when k = 3, demonstrating that the
complexity of the problem can keep increasing as we increase k beyond 3
not just when doing verification, but also property testing.

All the lower bounds use the set disjointness problem (Definition 2).
For a graphical summary of the results of this section, see Figure 2.

4.1 A general algorithm for any k

Theorem 1. There exists a randomized Congest algorithm running in
O
(
1
ε

)
rounds for testing an ε-edge distance-k coloring. By extension this

also applies to ε-disjoint, and a slight modification yields the same result
for ε-node and ε-conflict.

Proof. Consider the following basic algorithm Bfs that runs for k rounds,
which we then repeat to obtain success probability 2/3. The edges are
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independently assigned a random priority (such as a random value from
[|E|3], with higher values receiving precedence). Nodes use the max of the
priorities of their incident edges as their own priority. In the initial round,
the each node transmits its color (along with its ID) to all its neighbors,
along with its priority. In each subsequent round, the algorithm transmits
to each neighbor the color and priority of the two highest priority color
it received in the previous round. Effectively, the color from a highest
priority node gets forwarded along a breadth-first-search tree. If at the
end of round k, the algorithm has received a color (from another node)
that matches its own, it outputs ’invalid’; otherwise, it outputs ’valid’.

In an ε-edge graph, there are at least εm edges that are the first edge
of a bad path. If any of those edges receives the highest priority in a round
of the basic algorithm, a color conflict gets detected. So with probability
at least ε, the basic algorithm detects an ε-edge graph

This basic algorithm is then repeated to increase the success prob-
ability to at least 2/3. It suffices to repeat it t times, where t satisfies
(1 − ε)t ≤ 1/3. The time complexity is then t · k. Since (1 − ε)t ≤ e−εt,
setting t = ln(3)/ε achieves the desired result, yielding an O(k/ε)-round
algorithm.

We can simplify and adapt this algorithm for the ε-conflict model:
Each node picks a random priority. There are now εn improperly colored
nodes, and if any of them gets selected, the coloring will be found to be
invalid. The rest of the argument is the same. ut

4.2 A better running time for k = 3

Theorem 2. There exists a randomized Congest algorithm running in

O
(

1
ε·
√
εm

)
rounds for testing an ε-middle distance-3 coloring. By exten-

sion, this also applies to the ε-edge and ε-disjoint measures.

Proof. Let the nodes follow the following simple algorithm Random: in
the first round, each node informs its neighbors of its color and identifier,
and in k−2 subsequent rounds, for each link a node has, it picks uniformly
at random one of the (color,ID) pair it received from its neighbors in the
previous round and sends it on this link. Any node that receives the same
color twice but with a different ID, and such that it received the pairs in
two (not necessarily distinct) rounds i and j such that i+ j ≤ k, flags the
coloring as invalid. This (k− 1)-rounds protocol is repeated T times. Let
us analyze the probability of success of this protocol when k = 3.

Let σ = 4
√
m/ε. We say that an edge uv is good if min(d(u), d(v)) ≤

σ, and bad otherwise. In an ε-middle graph, there is a set Π of edges, each
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of which is on a 3-path between same-colored nodes, with |Π| ≥ εm/3.
Observe that if a, u, v, b is a path where a and b have the same color, then
this will be detected if either u forwards the ID of a to v or v forwards the
ID of b to u. The probability p̄Pe of non-detection along a path Pe with
middle edge e = (u, v) ∈ Π is therefore (1 − 1/d(u))T · (1 − 1/d(v))T ≤
e−T/min(d(u),d(v)). We say that a path Pe ∈ Π is good if e is good. Let
Π ′ ⊆ Π be the set of good paths. Let B be the set of nodes with degree
at least σ. There are at most

√
εm/2 nodes in B, as otherwise the total

number incidences on nodes in B would exceed 2m. Thus, there are at
most

(|B|
2

)
≤ εm/8 edges with both endpoints in B. Hence, there are at

least 5εm/24 good paths in Π ′.
The probability that none of those good paths detect a conflict in the

color assignment is:∏
P∈Π′

p̄P ≤ exp

(
−T · |Π ′|

σ

)
≤ exp

(
− 5

96
T · ε3/2m1/2

)

Therefore, running the protocol for T ∈ O(ε−3/2m−1/2) is enough to
solve the problem with probability at least 2/3. ut

In particular, this protocol runs in constant time when ε ∈ Ω(m−1/3).
We give a matching lower bound later in the paper (Theorem 5). This al-
gorithm is also able to detect ε-edge and ε-disjoint graphs with the same
running time because of the relationships that exist between the mea-
sures, however the lower bounds we have for these measures are weaker
(Theorem 3) and do not match our upper bound.

4.3 Lower bounds for k ≥ 3

In this section, we prove lower bounds for the detection of ε-disjoint
colored graphs (Theorem 3), ε-node colored graphs (Theorem 4) and ε-
middle colored graphs (Theorems 5 and 6) in the Congest model. By the
relationships that exist between the separation measures of Definition 1,
the lower bound on detecting an ε-disjoint coloring also holds for ε-edge
colorings. Similarly, the lower bound on the detection of ε-node colorings
also holds for ε-conflict colorings.

All lower bounds use the same following classical proof architecture:
we take a two-party communication complexity problem f of communica-
tion complexity Rcc(f), and show that the players can solve an instance
f(x, y) of this problem by simulating a Congest algorithm for our test-
ing task on a graph Gx,y with color assignment (cx,yv )v∈V . The vertices of
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Gx,y are partitioned into two sets VA and VB, and the edges are such that
the colors and intraconnexions of VA’s vertices only depend on x, and
similarly with VB’s vertices and y, while the interconnexions between a
vertices of VA and VB are fixed and therefore independent of x and y. Let
T be the number of rounds of a Congest algorithm for the Congest
task, and C the number of edges between vertices of VA and VB. Simulat-
ing the Congest algorithm in the two-party communication complexity
model can be done in T ·C · log(n) bits of communication. This last quan-
tity has to exceed Rcc(f), which yields that any Congest algorithm for

our testing task requires at least T ≥ Rcc(f)
C·log(n) rounds.

Theorem 3. For k ≥ 3, testing whether a distance-k coloring is ε-disjoint

requires Ω̃
(

1
ε·(εm)

)
rounds in the Congest model.

Note that this lower bound matches neither our general upper bound
(Theorem 1) nor our upper bound for k = 3 (Theorem 2), leaving open
the possibility of more efficient algorithms or stronger lower bounds.

For this lower bound, we consider graphs of the form presented in
Figure 3. We conjecture that our analysis is not tight, and that detecting
whether such graphs are ε-disjoint actually requires Ω̃(ε−3/2m−1/2).

√
2εm

(
1
2
− ε

)
m

Fig. 3. The graph we use for our lower bound. It consists of 4 layers, with the outer
layers having

(
1
2
− ε
)
m vertices and the inner layers

√
2εm. There only exist edges

between adjacent layers, and vertices in layers 1 and 4 have degree 1, while layers 2
and 3 form a biclique. Layers 1 and 2 are randomly connected together by

(
1
2
− ε
)
m

edges, as are layers 3 and 4.

Proof. Let m be an integer and ε ∈
[
1
m ,

1
2

)
. Set N = m, s =

(
1
2 − ε

)
m,

t = 2εm + 3, and consider an instance of DISJNs,t: a pair of sets (X,Y ),
X,Y ⊆ [m]. Let us consider the graph Gx,y = (V,E) of Figure 3. Its
vertices V are partitioned into four layers (Vi)i∈[4]. Let Alice possess the
two leftmost layers (VA = V1 ∪ V2) and Bob possess the two rightmost
layers (VB = V3 ∪ V4). The inner layers are of size |V2| = |V3| =

√
2εm
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and form a biclique (complete bipartite graph) of 2εm edges, while the
outer layers are of size |V1| = |V4| =

(
1
2 − ε

)
m. Let us first describe how

the players color their vertices, before describing how they connect the
outer layers to the inner layers.

Let all of Alice’s and Bob’s vertices be initially uncolored. For each
element x ∈ X ⊆ [m], Alice picks an arbitrary uncolored vertex of V1
and colors it with x. Bob does the same with his input set Y and the
layer V4. Alice then colors her remaining uncolored vertices with distinct
even numbers from [m+1, 2m], while Bob colors his remaining uncolored
vertices with distinct odd numbers from [m+ 1, 2m].

Then, for each vertex u ∈ V1, Alice connects it to a single vertex of
V2 picked uniformly at random. Bob similarly connects vertices of V4 to
vertices of V3.

Let us now analyze the graph we constructed with respect to the
Disjointness instance we started with. If X ∩ Y = ∅, the way the players
assigned colors ensures that the graph received a valid distance-3 coloring.
If |X∩Y | ≥ t, however, there are t pairs (u, v) ∈ V1×V4 of distinct vertices
that are at distance 3 and received the same color. For each pair, there
is a single length-3 path connecting them, and the only way those paths
can share an edge is by sharing an edge in V2 × V3. Let us prove that
with high probability, more than εm of those paths are edge-disjoint, and
therefore the graph is ε-disjoint (see Definition 1).

Let S be an εm-sized subset of the 2εm edges between V2 and V3. The
probability that none of those edges are directly connected to two vertices

in layers V1 and V4 that received the same color is at most
(

1− |S|
2εm

)t
=

2−t. As there are
(
2εm
εm

)
≤ 22εm such subsets S, the probability that less

than εm edges of V2 × V3 are part of a length-3 path between similarly
colored vertices of the outer layers is at most 22εm−t ≤ 1

8 for our choice
of t.

Since the graph the players constructed is well-colored when they
received disjoint sets, and ε-disjoint with probability ≥ 7/8 when they
received intersecting sets, the players can solve the Set Disjointness prob-
lem with error at most 1/4 by simulating a Congest algorithm to detect
an ε-disjoint distance-3 coloring that makes an error at most 1/8. Since
there are 2εm edges between Alice’s and Bob’s vertices, the number of
rounds T of a Congest algorithm detecting an ε-disjoint coloring with
probability ≥ 7/8 satisfies:

T ≥
Rcc1/4(DISJmm/2,2εm)

2εm log(m)
∈ Ω̃

(
1

ε · (εm)

)
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ut

Note that since a graph that is ε-disjoint from a valid solution is also ε-
edge, the lower bound also applies to testing being ε-edge. As corollary, we
have that no constant-round algorithm can detect an ε-disjoint coloring
when ε ∈ o(m−1/2).

Theorem 4. For k ≥ 3, testing whether a distance-k coloring is ε-node
requires Ω̃

(
1
ε

)
rounds in the Congest model.

n
2
− 1

Fig. 4. The graph we use for our lower bound for the ε-node measure. It consists of
two stars of degree

(
n
2
− 1
)
, linked by their roots.

The proof of this theorem and a later theorem are deferred to Ap-
pendix B. Note that contrary to our previous theorem for detecting ε-
disjoint colored graphs (Theorem 3), this lower bound is tight with respect
to our first algorithm (Theorem 1).

Theorem 5. For k = 3, testing whether a distance-k coloring is ε-middle

requires Ω̃
(

1
ε·
√
εm

)
rounds in the Congest model.

Note that this lower bound matches our upper bound for k = 3 (The-
orem 2). For this lower bound, we consider graphs of the form presented
in Figure 5.

Proof. Let m be an integer and ε ∈
[
1
m ,

1
2

)
. Set N = s = 1−ε

2

√
m/ε, t = 1,

and consider an instance of DISJNs,t: a pair of sets (X,Y ), X,Y ⊆ [m].
Consider the four layer graph Gx,y = (V,E) of Figure 5. The vertices
V2 and V3 of layers 2 and 3 form a biclique. Every vertex of layer 2 is
connected to s degree-1 vertices in layer 1, and layers 3 and 4 are similarly
connected.

Let Alice possess as VA the vertices of layers 1 and 2 and Bob possess
the rest. For any vertex v ∈ V2, let N1(v) ⊆ V1 be the vertices of layer 1
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(
1−ε
2

)
m

1−ε
2

√
m
ε

√
εm

Fig. 5. The graph we use for our lower bound on testing for ε-middle colorings (The-
orem 5), showing that the algorithm Random is tight for this measure and k = 3. It
consists of a central biclique between two layers of size

√
εm, and each vertex of these

layers is connected to
√
m/ε leaves in the outer layers.

connected to v, and similarly for any vertex v ∈ V3, consider N4(v) the
vertices of layer 4 connected to v.

For each v ∈ V2, Alice colors the nodes of N1(v) with the elements
of X as colors (without repetition, leaving uncolored nodes if necessary).
Bob does the same with nodes of N4(v) for each v ∈ V3. Alice then colors
her remaining uncolored colors with even numbers (avoiding distance-3
conflicts between her nodes); Bob does the same with even numbers on
his side.

If the players received disjoint sets, the resulting graph GX,Y is well-
colored. If the sets’ intersect, however, the coloring is ε-middle, because
for each pair of vertices (u, v) ∈ V2 × V3, there exists a pair of vertices
(u′, v′) ∈ N1(u)×N4(v) that have the same color. Therefore, the players
can solve their set disjointness instance by simulating a Congest algo-
rithm for detection of ε-middle colored graphs. Since there are εm edges
between Alice’s and Bob’s parts of the graph, the number of rounds T
of a Congest algorithm detecting an ε-middle coloring with probability
≥ 1/3 satisfies:

T ≥
Rcc1/3(DISJN1−ε

2

√
m/ε,1

)

εm · log(m)
∈ Ω̃

(
1

ε
√
εm

)
ut

Finally, we prove a lower bound on testing a distance-4 coloring in the
ε-middle model. The lower bound we obtain is strictly higher than our
upper bound on the same task with distance-3, which shows that there is
a clear gap between distance-3 and distance-4 colorings.

Theorem 6. Testing whether a distance-4 coloring is ε-middle requires
Ω̃
(
1
ε

)
rounds in the Congest model.
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5 Conclusion

In this work, we studied the testing and verification of distance-k color-
ings in the Congest model for k ≥ 3 and several notions of distance from
a valid solution. We showed that the testing of distance-3 colorings ad-
mits a significantly more efficient algorithm than distance-4 for one of our
measures (ε-middle), and gave indications that it might also be the case
for the other edge- and path-based measures. The node-based measures
show no such gap. Our work does not give a full picture how the com-
plexity of the problem evolves as k increases in the edge- and path-based
models. A first open question is finding the exact complexity of testing
in the ε-disjoint and ε-edge model: we conjecture that this complexity
matches that of our algorithm for these models, rather than that of our
lower bound or something intermediate.

Another open question is what algorithm we can design in the ε-
middle model for arbitrary k, as the Bfs algorithm does not function in
it. Even tackling the case k = 4 is of interest, potentially to match our
lower bound. Finally, the several measures we introduced to study this
problem might be of independent interest. Are there other problems for
which the same measures would make sense? A natural candidate here is
testing edge-colorings.

References

1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower bounds for distributed
distance computations, even in sparse networks. In: DISC, pp. 29–42 (2016)

2. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci. 186(1-2), 199–229 (1997)

3. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction (extended abstract). In: FOCS, pp. 268–277 (1991)

4. Bamberger, P., Kuhn, F., Maus, Y.: Efficient deterministic distributed coloring
with small bandwidth. CoRR abs/1912.02814 (2019)

5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. System Sci.
68(4), 702–732 (2004)

6. Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Dis-
tributed Computing 24(2), 79–89 (2011)

7. Brody, J., Chakrabarti, A., Kondapally, R., Woodruff, D.P., Yaroslavtsev, G.: Be-
yond set disjointness: the communication complexity of finding the intersection.
In: PODC, pp. 106–113 (2014)

8. Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed al-
gorithms for testing graph properties. Distributed Computing 32(1), 41–57 (2019)

9. Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds
for the CONGEST model. In: DISC, pp. 10:1–10:16 (2017)
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A Verifying Distance-k Colorings in Bounded-Degree
Graphs

A.1 A matching lower bound for the natural algorithm

In a graph of maximum degree ∆, the nodes can learn their distance-
dk2e neighborhood in O

(
∆dk/2e−1

)
rounds in Congest. In particular, an

invalid distance-k coloring can be detected with this number of rounds
in Congest, since two nodes of distance at most k are both within a
distance dk2e of some node. This protocol is actually close to optimal, as
our next theorem shows.

Theorem 7. For k ≥ 3, checking a distance-k coloring requires Ω̃
(
∆dk/2e−1

)
rounds in the Congest model.

∆−1

b(k−1)/2c

(∆−1)b(k−1)/2c

Fig. 6. The graph we use for our lower bound. It consists of 2 complete (∆ − 1)-ary
trees of depth dk/2e − 1 linked at their roots.

Proof. Set N = 2∆dk/2e, s = (∆− 1)dk/2e−1, t = 1, and let us consider an
instance (X,Y ) of the Set Disjointness problem DISJNs,t and show that
Alice and Bob can simulate a Congest protocol for verifying a distance-k
coloring to solve their Disjointness instance.

Let us consider the graph of Figure A.1 and let Alice own the vertices
of the left tree while Bob owns the vertices of the right tree. Let Alice
color her vertices with the elements of her set X as distinct colors, and
with even numbers greater than N if she runs out of colors. Bob does the
same on his side with his set Y and odd numbers greater than N . The
resulting coloring of the graph is a valid distance-k coloring if and only if
the sets X and Y do not intersect, so the players may simulate a Congest
protocol on this graph to solve their set disjointness instance. Since there
is only one edge between Alice’s and Bob’s vertices, simulating a round of
the Congest protocol here only requires log(n) bits of communication,
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therefore the number of rounds T that a Congest protocol needs for
verifying a distance-k coloring in a graph of maximum degree ∆ satisfies:

T ≥
Rcc1/3(DISJNs,t)

log(n)
∈ Ω

(
∆dk/2e−1

k · log(∆)

)
ut

B Missing Proofs

Theorem 4. For k ≥ 3, testing whether a distance-k coloring is ε-node
requires Ω̃

(
1
ε

)
rounds in the Congest model.

Proof. Let n be an integer and ε ∈
[
1
n ,

1
2

)
. Set N = n, s = n/2, t = εn,

and consider an instance of DISJNs,t: a pair of sets (X,Y ), X,Y ⊆ [n].
Consider the graph Gx,y = (V,E) of Figure 4, constructed by taking two
stars of degree n

2 −1 and connecting their roots. Let Alice possess the n/2
vertices VA of one of the stars and Bob possess the vertices of the other
star.

Let all of Alice’s and Bob’s vertices be initially uncolored. For each
element x ∈ X ⊆ [n], Alice picks an arbitrary uncolored vertex of VA and
colors it with x. Bob does the same with his input set Y and VB. Alice
then colors her remaining uncolored vertices with distinct even numbers
from [n + 1, 2n], while Bob colors his remaining uncolored vertices with
distinct odd numbers from [n+ 1, 2n].

If the players received disjoint sets, the resulting graph GX,Y is well-
colored. If the sets’ intersection is of size at least εn, however, the coloring
is ε-node. Therefore, the players can solve their set disjointness instance by
simulating a Congest algorithm for detection of ε-node colored graphs.
Since there is only a single edge between Alice’s and Bob’s parts of the
graph, the number of rounds T of a Congest algorithm detecting an
ε-node coloring with probability ≥ 1/3 satisfies:

T ≥
Rcc1/3(DISJnn/2,εn)

log(n)
∈ Ω̃

(
1

ε

)
ut

Theorem 6. Testing whether a distance-4 coloring is ε-middle requires
Ω̃
(
1
ε

)
rounds in the Congest model.

For this lower bound, we consider graphs of the form presented in
Figure 7.
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(
1−ε
2

)
mεm

Fig. 7. The graph we use for our lower bound on testing for ε-middle distance-4 color-
ings (Theorem 6).

Proof. Let m be an integer and ε ∈
[
1
m ,

1
2

)
. Set N = s = 1−ε

2 m, t = 1,

and consider an instance of DISJNs,t: a pair of sets (X,Y ), X,Y ⊆ [m].
Consider the five layer graph Gx,y = (V,E) of Figure 7. Layers 2 and 4
each contain a single vertex (v2 and v4). Layer 3 contains εm vertices, all
connected to v2 and v4. Layer 1 contains s = 1−ε

2 m vertices, all of them
connected to v2. Layer 5 is of the same size and connected to v4.

Let Alice possess the vertices of layer 1 and 2, while Bob possesses
layers 3, 4 and 5. As in our previous lower bounds, they use their inputs
of the set disjointness problem to color vertices in layers 1 and 5. Vertices
left uncolored after mapping the players’ inputs on the graph are colored
so as to never generate a conflict. The resulting colored graph is ε-middle
if and only if X and Y intersect, and thus the players can solve their
disjointness instance by simulating a Congest protocol for the ε-middle
measure. Since there are εm edges between Alice’s and Bob’s parts of the
graph, the number of rounds T of a Congest algorithm detecting an
ε-middle coloring with probability ≥ 1/3 satisfies:

T ≥
Rcc1/3

(
DISJN1−ε

2
m,1

)
εm · log(m)

∈ Ω̃
(

1

ε

)
ut


