Robust Bell inequalities from communication complete Sophie Laplante^{*}, Mathieu Laurière^{*†}, Alexandre Nolin^{*}, Jérémie Roland[‡], Gabriel Senno[§] * IRIF - Université Paris Diderot, † NYU Shanghai, ‡ QuIC - Université Libre de Bruxelles, § CONICET - FCEN - Universidad de Buenos Aires arXiv 1606.09514 - TQC2016 proceedings Normalized and inefficiency-Prior work resistant Bell inequalities Examples of normalized Bell inequality violations We consider two kinds of Bell inequalities, differently constrained The Bell inequa Inefficiency-resistant Normalized \mathcal{Q}^{\perp} [1] BRSdW11 [2] JP11 [3] BCG+16 $\begin{vmatrix} B(\ell) \le 1, \ \forall \ell \in \mathcal{L}^{\perp} \\ a = \perp \lor b = \perp \Rightarrow B_{ab,xy} = 0 \end{vmatrix}$ $|B(\ell)| \leq 1, \ \forall \ell \in \mathcal{L}$ With N inputs, With K outputs, With dimension d, violation $\leq 2^{CC} \leq N$ violation $\leq O(K)$ violation $\leq O(d)$ [JP11] [LS09, DKLR11, [JPPG+10]Distributions in \mathcal{L}^{\perp} have an additional special abort outcome \perp JPPG10] per player which corresponds to the detectors not clicking. \mathcal{L} (local set) : distributions achievable with shared randomness. \mathcal{Q} (quantum set) : distributions achievable with shared entanglement. Bell functional : linear form over families of probability distributions Yes! Even if allowed Yes, provided all $B(\mathbf{p}) = \sum_{abxy} B_{ab,xy} p(ab|xy)$ to abort, no local coefficients are strategy can win with Bell inequality : Bell functional bounded on the local set divided by 2. probability ≥ 0.75 . $B, B(\ell) \leq c, \forall \ell \in \mathcal{L}$ Communication complexity Our violations in practice Our results compared to the general construction in [1], assuming η detector efficiency. hello is this real life 2 no it's a poster f(x,y)Given a 2-argument function f, how many classical/quantum If a distribution can be simulated quantumly with less communication than bits do two players with inputs x and y need to exchange to classically, then there is a violation of an inefficiency-resistant Bell inequality. know f(x, y)? If a distribution **p** is such that $CC(\mathbf{p}) \geq \log(B(\mathbf{p})) = C$ and $QCC(\mathbf{p}) \leq Q$. Then there CC : Classical communication complexity exists $\mathbf{q} \in \mathcal{Q}$ with one additional output per player compared to the distribution \mathbf{p} such that Q : Quantum communication complexity In particular, for most functions f for which there is a known gap between their classical and their quantum communication complexities, one can define a pair (B_f, \mathbf{p}_f) such that $\log(B_f(\mathbf{p}_f)) = \Theta(CC(f))$

For any normalized Bell inequality, there is a similar Bell inequality that is also inefficiencyresistant.

Theorem 1

For B such that $|B(\ell)| \leq 1$ over \mathcal{L} , there exists B^* such that for any nonsignaling \mathbf{p} such that $B(\mathbf{p}) \geq 1$, $B^*(\mathbf{p}) \geq \frac{1}{3}B(\mathbf{p}) - \frac{2}{3}$ and $|B(\ell)| \leq 1$ over \mathcal{L}^{\perp}

Theorem 2

 $B(\mathbf{q}) \ge 2^{C-2Q}$

Go to the bottom right quadrant of this poster for a few examples.

ality	setup
-------	-------

Construction	#inputs	#outputs	dimension	violation
Hidden-Matching [1]	n^n	n	n	$\sqrt{n}/\log n$
Khot-Vishnoi [1]	$2^n/n$	n	n	$n/\log^2 n$
Low-entanglement [2]	n	n	n	$\sqrt{n}/\log n$
General construction [3]	2^n	2^Q	2^{2^Q}	\sqrt{CC}/Q

Observed violations of inefficiency-resistant Bell inequalities obtained with Theorem 2

Problem	Normalized Bell violations [1]	Inefficiency-resistant Bell violations (this work)
VSP [2,3]	$\Omega\left(\sqrt[6]{n}/\sqrt{\log n}\right)\cdot\eta^2$	$2^{\Omega(\sqrt[3]{n}) - O(\log n)} \cdot \eta^2 \qquad \qquad d = n^{O(1)}$
DISJ [4,5,6]	N/A	$2^{\Omega(n) - O(\sqrt{n})} \cdot \eta^2 \qquad \qquad d = 2^{O(\sqrt{n})}$
TRIBES [7,8]	N/A	$2^{\Omega(n) - O(\sqrt{n}\log^2 n)} \cdot \eta^2$ $d = 2^{O(\sqrt{n}\log^2 n)}$
ORT [9,8]	N/A	$2^{\Omega(n) - O(\sqrt{n}\log n)} \cdot \eta^2 \qquad d = 2^{O(\sqrt{n}\log n)}$
 BCG+16 KR11 Razb03 JKS03 She12 	[2] Raz99 [4] Razb92 [6] AA05 [8] BCW98 Bell value	/VSP perfect detectors $\eta = 1$ VSP

