
Distributed Coloring of Hypergraphs

Duncan Adamson1[0000−0003−3343−2435], Magnús M.
Halldórsson2[0000−0002−5774−8437], and Alexandre Nolin3[0000−0002−3952−0586]

1 University of Göttingen duncan.adamson@cs.uni-goettingen.de
2 Reykjavik University mmh@ru.is

3 CISPA Helmholtz Center for Information Security alexandre.nolin@cispa.de

Abstract. For any integer r ≥ 2, a linear r-uniform hypergraph is a
generalization of ordinary graphs, where edges contain r vertices and
two edges intersect in at most one node. We consider the problem of
coloring such hypergraphs in several constrained models of computing,
i.e., computing a partition such that no edge is fully contained in the same
class. In particular, we give a poly(log logn)-round randomized Local
algorithm that computes a O(∆1/(r−1))-coloring w.h.p. This is tight up to
polynomial factors of the time complexity as Ω(log∆ logn) distributed
rounds are necessary for even obtaining a ∆-coloring, where ∆ is the
maximum degree, and tight up to logarithmic factors of the number of
colors, as Θ((∆/ log∆)1/(r−1)) colors are necessary for existence. We
also give simple algorithms that run in O(1)-rounds of the Congested
Clique model and in a single-pass of the semi-streaming model.

Keywords: Hypergraph coloring · Distributed computing · LOCAL model
· Congested Clique

1 Introduction

In a seminal work [33], Linial opened the field of distributed computing with
upper and lower bounds on the problem of finding a coloring of a distributed
network. Since then, a large body of work has been committed to finding col-
orings faster and with fewer colors [5,12,25,26]. The goal is usually to find a
∆+1-coloring where ∆ is the maximum degree of the network, a number which
ensures that the graph can be colored without any monochromatic edge.

One direction that has been left largely unexplored is that of finding colorings
of hypergraphs. Hypergraphs generalize traditional graphs, replacing edges with
hyperedges. Each hyperedge corresponds to a set of nodes without a fixed upper
bound on the size of the set. A hypergraph is said to be r-uniform or of (uniform)
rank r if its hyperedges all have cardinality r. A hypergraph is called linear (or
simple) if no pair of hyperedges shares more than a single node4. As in graphs,
a valid coloring is one without monochromatic edges. Erdős and Lovász showed
that every r-uniform hypergraph of maximum degree ∆ has a chromatic number
4 Note that linear hypergraphs generalize (ordinary) graphs: a graph is a 2-uniform

linear hypergraph.

of no more than O(∆1/(r−1)), and further that this bound is tight [17]. Frieze and
Mubayi [21] obtained an improved (and also tight) bound ofO((∆/ log∆)1/(r−1))
colors for linear hypergraphs of rank r ≥ 3. This research leaves a large gap
between the ∆+1-coloring that can be computed in the traditional graph model,
and what is theoretically possible.

In this paper, we focus on the following question; given an r-uniform linear
hypergraph in the Local model, what is the fewest number of rounds needed to
compute a Θ̃(∆1/(r−1))-coloring5? More generally, what is the round complexity
of k-coloring, for each value of k at least Θ(∆1/(r−1)) and at most ∆?

Main result (informal):
The randomized round complexity of k-coloring r-uniform linear
hypergraphs is logΘ(1) log n, for every k ∈ {Θ(∆1/(r−1)), . . . ,∆}.

One well-known approach to solving this problem would be an application of
the Lovász Local Lemma (LLL). Indeed, LLL was first introduced in a paper
of Erdős and Lovász as a tool for coloring hypergraphs [17]. Starting with the
work of Moser and Tardos [35], a series of successive works provide constructive,
distributed techniques giving an logO(1) n-round algorithm in both the random-
ized [35,14] and deterministic [11,14,38] setting. Our result provides a rare case
where a poly(log log n)-round algorithm is known for a problem with a strict
LLL formulation, even on high-degree graphs.

1.1 Our results

Our main result is a randomized logO(1) log n-round distributed algorithm in
the Local model for finding a O(∆1/(r−1))-coloring, w.h.p. This provides a
significant improvement over the O(log n) round algorithm given using the LLL
based approach. It comes close to the recent lower bound of Ω(logr∆ log n) for
coloring with ∆ colors, due to Balliu et al. [4].

It is worth noting the large gap between the Θ̃(∆1/(r−1))-coloring that is
achieved by our algorithm, and the lower bound of Ω(log∆ log n) on finding a
∆-coloring. This suggests that the complexity of hypergraph coloring “plateaus”
between∆ and Θ̃(∆1/(r−1)), which contrasts with the significant gap in complex-
ity between ∆-coloring and ∆2-coloring in traditional graphs. The lower bound
for ∆-coloring is particularly surprising as, unlike in the graph case, r-uniform
hypergraphs are O(

√
∆)-colorable when r ≥ 3, leading to a significant gap.

We also give simple algorithms for o(∆1/(r−1))-coloring in two models: an
O(1)-round algorithm in the Congested Clique model, and a single-pass
streaming algorithm using Õ(n) space. For completeness, we supplement the dis-
tributed results with two additional results: An O(log∗ n) round deterministic
algorithm for computing an Õ

(
r ·∆r/(r−1)

)
-coloring, and the tightness of that

time bound. These results build on the O(log∗ n)-round algorithm for O(∆2)-
coloring graphs and matching lower bound due to Linial [33].
5 Here and throughout the paper, Õ(x) = x logO(1)(x), Ω̃(x) = x/ logO(1)(x), and
Θ̃(x) = Õ(x) ∩ Ω̃(x).

1.2 Related work

The related problem of ∆+1-coloring graphs has been studied extensively. The
current best randomized Local algorithm is due to Chang et al. [12], and uses
O(log3 log n) rounds when using the recent poly(log n)-round deterministic al-
gorithm of [25] as a subroutine. The best known complexity in terms of ∆ is
O(

√
∆ log∆+ log∗ n) [5,34].

As for distributed symmetry-breaking in hypergraphs, poly(log n) algorithms
are known for Maximal Independent Set (MIS) [31,28,30]. Hypergraph maximal
matching (HMM) has received more attention, in part due to existing reductions
from some graph problems to HMM, notably edge-coloring [20]. Õ(poly(log n, r))-
round deterministic and Õ(poly(log log n, log∆, r))-round randomized algorithms
are known for HMM [20,24,29].

Brandt et al. recently showed that finding w.h.p. a ∆-coloring in graphs
requires Ω(log∆ log n) rounds [8]. This uses the round elimination framework,
which was automatized by Brandt [7] and applied in numerous works. Much of
the work has been on graph problems, but the basic formulation also applies
to hypergraph problems. In fact, Balliu et al. recently proved lower bounds for
hypergraph coloring, strong coloring, MIS and maximal matching [4]. Most rele-
vant to this paper, they showed that randomized hypergraph ∆-coloring requires
Ω(logr∆ log n) rounds in Local. Their proof involves finding a fixed point for the
round elimination technique, a method previously applied by the same authors
to the graph ∆-coloring problem [3].

In the streaming setting, there are recent single-pass randomized algorithms
for ∆ + 1-coloring [1] and ∆-coloring graphs [2] using O(npoly(log n)) bits of
memory. The only related work on hypergraphs is on the 2-coloring problem [37]
(a.k.a., Property B), where the randomized algorithm matches the sequential
results but deterministic algorithms are shown to be too weak. In the Con-
gested Clique model, O(1)-round algorithms are known for ∆ + 1-coloring
graphs, both randomized [9] and deterministic [15], but we are not aware of any
similar hypergraph results.

The Lovász local lemma technique was first introduced in [17] and applied
there specifically to the hypergraph coloring problem studied here. It has had an
outsize importance to numerous combinatorial problems. A general and efficient
algorithm was given by Moser and Tardos [35]. It is highly parallel in nature,
which allows for efficient implementations in distributed computing.

The LLL is particularly important in distributed computing due to the dis-
covery of a time hierarchy for a large class of problems known as LCLs (Locally
Checkable Labeling problems). An LCL task consists of assigning labels to node
and edges satisfying some locally checkable property (e.g., in coloring, adjacent
nodes must receive distinct labels). On bounded degree graphs, every LCL that
runs in o(log n) distributed (randomized) rounds can be sped up to O(TLLL)
rounds, where TLLL is the round complexity of LLL [13]. The Moser-Tardos al-
gorithm runs in O(log2 n)-rounds of Local, later improved to O(log n · log∆)
[14,22] in general and to O(log n) [14] for weaker forms of LLL. In particular,
it gives an O(log2 n)-round algorithm for O(∆1/(r−1))-coloring (general) hyper-

graphs. It is known that TLLL = Ω(log∆ log n) [8], but there is currently a huge
gap for large ∆. There have been many attempts at obtaining improved al-
gorithms. Fischer and Ghaffari [19] gave an O(∆2 +poly(log log n))-round algo-
rithm, which largely answers the question for low-degree graphs. Their algorithm
(and the ones that follow) only work for LLLs with polynomially-weakened crite-
rion, a weaker form insufficient for hypergraph coloring with an optimal number
of colors. There are recent results on still weaker forms of LLL [16], certain split-
ting problems [27], or restricted classes of graphs [10], but we are not aware of
other distributed results that yield poly(log log n)-round solutions to strict forms
of LLL.
Outline. The next section provides definitions and some key results from the
literature. Section 3 provides a simple partitioning approach, enabling algorithms
for streaming, Congested Clique, and Local. An improved Local algorithm
is given in Section 4. Additional results follow in Section 5.

2 Preliminaries

Let G = (V,E) be a hypergraph. For any node v ∈ V , let dv be the degree of
v, defined as the number of edges in E containing v. Let ∆ be the maximum
degree of G and let n be the number of nodes in G. We assume that every node
in G knows the values of both ∆ and n.

Definition 1 (Underlying Graph). The underlying graph of a hypergraph
G = (V,E) is the graph G′ = (V,E′) formed by replacing each hyperedge of rank
r with the r-clique, i.e., E′ = {(u, v) ∈

(
V
2

)
| ∃e ∈ E, {u, v} ⊆ e}.

Note that the underlying graph has maximum degree r∆.

Definition 2 (Induced Subhypergraph). Let V ′ ⊆ V , the subhypergraph
G[V ′] induced by V ′ is the hypergraph G′ = (V ′, E′) formed by only keeping
edges whose endpoints are all in V ′, i.e., E′ = {e ∈ E | e ⊆ V ′}.

Fig. 1: (Left) a hypergraph and its underlying graph. (Right) a colored hyper-
graph and the subhypergraph induced by the blue vertices.

Importantly, the induced subhypergraph is defined s.t. an edge disappears if at
least one of its vertices is not part of V ′, rather than becoming an edge of rank
r′ < r. Thus, an induced subhypergraph of a rank r hypergraph is also rank r.

Definition 3 (Hypergraph coloring). A coloring of a rank r hypergraph
G = (V,E) is a assignment ψ of colors to the nodes such that every edge e ∈ E,
contains a pair of vertices vi, vj ∈ e, ψ(vi) ̸= ψ(vj).

Fig. 2: (Left) an invalid coloring, containing a monochromatic hyperedge. (Cen-
ter) a valid coloring which is not a strong coloring. (Right) a strong coloring.

We say an edge is monochromatic if ψ(vi) = ψ(vj) for all vi, vj ∈ e. A valid
coloring is a coloring without any monochromatic edge. It may be equivalently
defined as a coloring such that the subhypergraph induced by each color class is
empty, i.e., containing no hyperedges. Note that coloring a hypergraph with edges
of minimum cardinality r is no harder than coloring a r-uniform hypergraph – it
trivially reduces to it. A strong6 coloring of a hypergraph G = (V,E) is a coloring
of the vertices such that no two adjacent vertices share a color. A strong coloring
may be defined as a proper coloring of the underlying graph.

Problem 1. The distributed c-coloring problem for rank r hypergraphs

Input A hypergraph G = {V,E} with minimum rank r and an integer c.
Output A coloring of G using at most c colors.

2.1 Communication model

In this paper we consider two models of communication, Local and Congested
Clique. In both, communication is done over synchronous rounds, and each node
has some globally unique Θ(log n)-bit ID. In Local, in each round, each node
can only send messages to its neighbors in the graph, but the messages can be
arbitrarily large. Congested Clique removes the locality constraint and adds
congestion. In this model, nodes may only send messages of size O(log n) bits,
but their recipients can be all other nodes in the graph. I.e., while in Local the
graph of communication is also the input graph, in Congested Clique nodes
are restricted in bandwidth but not who they can talk to.
6 Prior work sometimes refer to hypergraph coloring as hypergraph weak coloring, by

opposition to strong coloring. We do not use this terminology here, to avoid confusion
with the graph weak coloring problem, which only asks that each node has at least
one non-monochromatic edge.

2.2 An LLL for hypergraph coloring

In this section we provide an overview of the key results underpinning the ap-
plication of the Lovász Local Lemma to the problem of hypergraph coloring.

Lemma 1 (Lovász Local Lemma, [17]). Consider a set E of events such
that for each A ∈ E:

1. Pr[A] ≤ p < 1, and
2. A ∈ E is mutually independent of a set of all but at most d of the other

events.

If 4pd ≤ 1 then with positive probability, none of the events in E occur.

Informally, Lemma 1 states that given a set of events that are sufficiently in-
dependent, with a low enough probability of failure, then there is a positive
probability of global success. As LLL instances are locally checkable, they are a
natural tool for use in distributed algorithms. Hypergraph coloring was the first
problem to be solved using Lemma 1 [17].

Lemma 2 ([17]). Any hypergraph G with maximum degree ∆ and rank r can
be colored with (4r ·∆)1/(r−1) colors.

Proof. Let k = ⌈(4r ·∆)1/(r−1)⌉. Consider the uniform probability distribution
over the set of k colors. Further, as an edge has at least r vertices, the prob-
ability p of an edge being monochromatic is at most p ≤ k

kr ≤ 1
4r·∆ . As each

hyperedge is adjacent to at most d ≤ r ·∆ other edges, the event of an edge being
monochromatic is dependent on at most r ·∆ other events. Hence, by Lemma 1
as 4pd ≤ 4 1

4r∆r∆ ≤ 1, there exists a k-coloring of G.

Lemma 2 provides an immediate method of computing a (4r ·∆)1/(r−1)-coloring
by brute force. The breakthrough work by Moser and Tardos [35] provided a
O(log2 n) randomized Local algorithm for LLL, later improved to O(log n·log d)
rounds [14,22].

Theorem 1. There is a poly(log n)-round deterministic Local algorithm that
computes a (4r ·∆)1/(r−1)-coloring of a hypergraph with n vertices, rank r and
maximum degree ∆. This holds even if the nodes’ IDs are of order exp(poly(n)).

Proof. There is an LLL formulation of hypergraph k-coloring, for k = (4r ·
∆)1/(r−1), by Lemma 2. Thus the distributed LLL algorithm of [35] (and [14])
gives a randomized poly(log n)-round algorithm to find such a coloring. This is a
locally checkable labeling problem, which implies by the network decomposition
result of [38] that there exists a poly(log n)-round deterministic algorithm for
the problem. To handle large IDs, one can either use the improved network de-
composition algorithm of [23] or run Linial’s algorithm to reduce IDs to poly(n)
[33].

2.3 Shattering and concentration bounds

In the shattering technique, a randomized algorithm is first used to solve a
large subset of the graph so that the unsolved parts of the graph induce small
connected components.

Lemma 3 (Lemma 4.1 of [12]). Consider a randomized procedure that gen-
erates a subset Bad ⊆ V of vertices. Suppose that for each v ∈ V , we have
Pr[v ∈ Bad] ≤ ∆−3c, and each event v ∈ Bad is determined by the random
choices within distance c of v. W.p. 1 − n−Ω(c′), each connected component in
G[Bad] has size at most (c′/c)∆2c log∆ n.

Lemma 4 (Chernoff bounds). Let {Xi}i be a family of independent random
variables taking values in [0, 1], and let X =

∑
iXi.

Pr[X ≥ (1 + δ)E[X]] ≤ exp(−min(δ, δ2)E[X]/3) , ∀δ > 0 , (1)

Pr[X ≤ (1− δ)E[X]] ≤ exp(−δ2 E[X]/2) , ∀δ ∈ (0, 1) . (2)

As corollary of Eq. (1) when E[X] > 0, ∀t ≥ 2E[X], Pr[X ≥ t] ≤ exp(−t/6).

3 Simple Splitting Primitive and Its Applications

We first consider a simple zero-round randomized primitive (see Algorithm 1)
for splitting the vertex set and apply it in three different models. The splitting
forms a defective coloring, defined as follows.

Given a coloring of the vertices, the defect def(v) of a node v ∈ V is the
number of monochromatic edges incident to v, i.e., the number of incident edges
whose nodes all have the same color as v. A coloring is d-defective if def(v) ≤ d
for all nodes v. A 0-defective coloring is a normal valid coloring.

Algorithm 1 Split(Vertex set V , maximum degree ∆, integer x)
Input: A hypergraph on V of degree ∆, and a parameter x ≥ 1.
Output: Partition of V into V1, V2, . . . , Vx and VBad.
Assign each v ∈ V a value rv in [x], u.a.r., partitioning V into V1, V2, . . . , Vx.
Move into VBad the nodes with defect at least η = 2∆/xr−1.

Lemma 5. Consider the partition computed by Split(V,∆, x). The probability
that a given node is in VBad is at most exp(−η/6) = exp(−∆/(3xr−1)).

Proof. Observe first that for any edge e incident to v to be monochromatic,
every vertex other than v in e must pick the same color as v. As there are x
colors, the probability of any set of r − 1 nodes choosing the same specified
color is 1/xr−1. The expected defect of v is therefore E[def(v)] = dv/x

r−1. Since
the hypergraph is linear, edges incident on v share no other vertex. Therefore,

once conditioned on v’s choice of random color, whether each edge incident on
v is monochromatic is independent from whether other edges incident on v are
monochromatic. Using that η ≥ 2dv/x

r−1 = 2E[def(v)], and applying Lemma 4
(Chernoff), we get that Pr[def(v) ≥ η] ≤ exp(−η/6).

Lemma 6. Suppose we run Split(V,∆, x) with x ≤ (∆/(24 log(r∆)))1/(r−1).
Then, G[VBad] consists of connected components of size O(∆2 log n) (i.e., the
graph is shattered), w.h.p. If x ≤ (∆/(6 log n))1/(r−1), then VBad is empty, w.h.p.

Proof. The claim that VBad = ∅ when x ≤ (∆/ log n)1/(r−1) follows from Lemma 5.
Otherwise, the set VBad consists of the nodes of defect at least η = 2∆/xr−1 ≥
48 log(r∆). By Lemma 5, the probability that def(v) ≥ 48 log(r∆) is less than
(r∆)−8. Each event v ∈ VBad is fully determined by the random choices of v and
its at most r∆ neighbors. The lemma now follows from Lemma 3.

Lemma 5 immediately implies a single-round randomized algorithm to pro-
duce an O

(
(∆/ log n)1/(r−1)

)
coloring with a defect of O(log n), w.h.p., when

∆ = Ω(log n). It suffices then to solve the coloring problem on hypergraphs of
degree ∆ = O(log n). Further, we observe the following.

Lemma 7. Suppose we run Split(V,∆, x) and that we further color each sub-
graph H = G[X] where X ∈ {Vi}i ∪ VBad with O(∆(H)1/(r−1)) colors. The
coloring of G obtained by concatenating these colorings uses O(∆1/(r−1)) colors.

Proof. Split produces x subgraphs of degree ∆(H) ≤ η = 2∆/xr−1 and one
subgraph of small size. By assumption, the total number of colors is on the order
of

x∑
i=1

∆(H)1/(r−1) +∆1/(r−1) ≤ x · η1/(r−1) +∆1/(r−1) ≤ 3∆1/(r−1) .

3.1 Streaming Algorithm

We first give a simple application of the Split algorithm to the semi-streaming
model. Introduced in [36,18], the semi-streaming model is a model of computa-
tion for solving problems on massive graphs with an O(n poly log n) amount of
storage space. The goal of the semi-streaming model is to provide an algorithm
that can compute a solution to graph problems without needing to store the
complete graph explicitly.

In the semi-streaming model, the input graph G = (V,E) is given as a stream
of edge changes (insertions and deletions). For hypergraphs, the stream is instead
an ordered list of hyperedge changes. After each edge change, a semi-streaming
algorithm is given some amount of time to process the change, with the restric-
tion that no more than O(n poly log n) space is used at any given time. The order
that the edge changes are assigned is assumed to be determined by an oblivi-
ous adversary. Such an adversary has access to the algorithm being used and is

capable of simulating it, but does not have access to any source of randomness
being used.

Theorem 2. There exists a single-pass semi-streaming randomized algorithm
for O((∆/σ)1/(r−1))-coloring linear hypergraphs against an oblivious adversary,
where σ = min{log∆, log log n}.

Proof. When ∆ = O(log n), the full graph is represented using O(rn log2 n) bits:
we store it fully and color it with O((∆/ log∆)1/(r−1)) colors using the method
of [21]. Otherwise, we apply Split(V,∆, x) with x = O

(
(∆/ log n)1/(r−1)

)
.

By Lemma 5, VBad = ∅ and each Vi is O(log n)-defective. Thus, O(rn log2 n)
bits suffice to represent all the subgraphs in the partition. Applying the algo-
rithm of [21] on each of them, we use a total of x ·O((log n/ log log n)1/(r−1)) =
O(∆1/(r−1)/ log log n) colors.

3.2 Congested Clique Algorithm

In the Congested Clique, O(log n)-bit messages can be sent between any
pair of vertices, not just the adjacent ones. It does not matter for our argument
whether the hyperedges are represented by a separate node (as in the client-server
model), or if we are given the underlying graph representation. We propose an
algorithm that partitions the hypergraph into a collection of hypergraphs that
can be represented in small space. Each of these can then be gathered at a single
node and colored separately. Recall that the bound obtained is best possible for
linear hypergraphs [21].

Theorem 3. There is a O(1)-round randomized algorithm in the Congested
Clique model for O((∆/ log∆)1/(r−1))-coloring r-uniform linear hypergraphs.

Proof. Apply Split(V,∆, x) with x = ∆1/r to obtain a partition of V into
V1, V2, . . . , Vx and VBad, where each Vi is at most η-defective, η = 2∆/xr−1 =
2∆1/r. For each i ∈ [x], send all monochromatic edges within Vi to node i,
which then computes an O((η/ log η)1/(r−1))-coloring of Vi. Similarly, send the
edges within VBad to a single node and let it O((∆/ log∆)1/(r−1))-color VBad [21].
Concatenate these colorings to obtain a coloring of G using

x ·O((η/ log η)1/(r−1)) +O((∆/ log∆)1/(r−1)) = O((∆/ log∆)1/(r−1))

colors. It remains to explain how to achieve this communication in O(1) rounds.
By Lemma 4 (Chernoff), each Vi contains at most 2n/x vertices, w.h.p., and

by definition each node has degree at most η (within Vi). Thus, the number of
monochromatic edges in each part is at most 2n/x · η = 2∆n/xr = 2n/r, w.h.p.
They are represented in r · 2n/r = 2n space (of O(log n)-bit words), and can be
forwarded to a single node using Lenzen routing in O(1) rounds [32].

3.3 Simple LOCAL Algorithm

Suppose ∆ = O(log n) for now, leaving the ∆ ∈ Ω(log n) case for later. We
apply Split(V,∆, x), where x = (∆/(24 log(r∆)))1/(r−1) to partition V into
V1, V2, . . . , Vx and VBad. We color VBad with (4r∆)1/(r−1) colors using the deter-
ministic LLL algorithm of Theorem 1. We then color each Vi by replacing each
r-edge e of G[Vi] by an arbitrary 2-edge e′ ⊆ e and applying the ∆+ 1-coloring
algorithm of [12] on each obtained (standard) graph, in parallel. Each of these
steps runs in poly(log log n) rounds. We use η + 1 = O(log(r∆)) colors on each
Vi, for a total of x(η + 1) = O((∆ logr−2(r∆))1/(r−1)).

When ∆ ∈ Ω(log n), we reduce the problem to coloring O(log n)-degree in-
stance by applying Split(V,∆, x) with x = (∆/(6 log n))1/(r−1).

4 Improved LOCAL Algorithm

We give an improved algorithm that uses O(r2∆1/(r−1)) colors, using different
techniques. The main component of our method is an algorithm for triangle-free
(girth 4) hypergraphs, i.e., when there are no vertices x, y, z where each pair
belongs to a distinct edge.

Theorem 4. There is an O(poly(log log n))-round randomized Local algorithm
to color a triangle-free hypergraph of rank r with O(∆1/(r−1)) colors, w.h.p. When
∆ ≥ 4r−1(18 log n)(r−1)2 , the algorithm takes O(log log∆+ log∗ n) rounds.

The algorithm and the proof of the theorem are given in the next subsection.
We then give in Section 4.2 a reduction of the general coloring problem (of linear
hypergraphs) to the triangle-free case.

4.1 Triangle-free hypergraphs

We consider the following simple method GeometricTrials (Algorithm 2),
in which the nodes try random colors from geometrically decreasing palettes.
In this algorithm, all nodes initially participate in trying colors, and across
(ilast + 1) ∈ O(log log∆) successive iterations, they progressively either get col-
ored or quit the process (joining a shattered subinstance), thereby reducing
competition for other nodes. The nodes still active in iteration i induce an hyper-
graph of maximum degree ∆i, where the sequence ∆0 . . . ∆ilast decreases doubly
exponentially in i and ∆ilast+1 < ∆ilast is set to ∆goal = ∆1/(r−1). The quitters in
iteration i are those that both fail to color themselves and whose degree remains
above ∆i+1.

By using geometrically shrinking palettes of initial size K = 4∆1/(r−1) and
shrinking factor α = 1/2, clearly, at most O(K/(1− α)) = O(∆1/(r−1)) distinct
colors are used by GeometricTrials. We show that nodes left uncolored by
GeometricTrials can also be colored using O(∆1/(r−1)) colors.

By definition, the nodes still active after the last iteration of the algorithm
induce a graph of maximum degree ∆goal = ∆1/(r−1), which can be efficiently

O(∆goal)-colored by an algorithm from the distributed graph coloring litera-
ture. What remains to be proved is that quitters can also be efficiently colored
with O(∆1/(r−1)) colors, even though they might induce a hypergraph of degree
ω(∆1/(r−1)). We resolve this by a shattering argument: quitting the process early
occurs with sufficiently low probability, and with sufficient independence between
the nodes, that early quitters form connected components of size poly(log n)
which can be handled by the deterministic LLL algorithm of Theorem 1. The
triangle-free property is crucial to the analysis of this probability: it allows us to
argue that what happens in each edge incident on a node is somewhat indepen-
dent from what happens in other incident edges, and so the degree decreases as
needed with a high (enough) probability.

Algorithm 2 GeometricTrials(Integer C, α ∈ [0, 1)) (on hypergraph G of
maximum degree ∆)

For all i ≥ 0, let Ci = C2i , Ki = αi · C ·∆1/(r−1), and ai =
∑

j<i Kj .
Let ∆goal = ∆1/(r−1). For all i ≥ 0, let ∆i = max{∆goal, (Ki/Ci)

r−1}.
for i← 0 to ilast = max{i | ∆i > ∆goal} do

Each live uncolored node (v ∈ V (i)) picks a color u.a.r. in [ai, ai+1).
Each node part of a monochromatic edge drops its temporary color.
Nodes who kept their temporary color make it permanent (join V

(i)
Good).

Remove every partially colored edge from the graph, update degrees.
Every v ∈ V (i) \ V (i)

Good of current degree dv > ∆i+1 quits the process (joins V
(i)
Quit).

Remove all edges containing a node in V
(i)
Quit.

end for

Notation The algorithm executes a loop for ilast + 1 iterations, where ilast ∈
O(log log∆). For any i ∈ [0, ilast], we denote by V (i) the set of uncolored nodes
trying a color in iteration i in Algorithm 2. We denote by V

(i)
Good the nodes

of V (i) that successfully color themselves in iteration i, and V
(i)
Quit the nodes

that abandon the process in iteration i. The remaining nodes form V (i+1), i.e.,
V (i+1) = V (i) \ (V (i)

Good ⊔ V
(i)
Quit).

We also consider the sets VGood =
⊔ilast

i=0 V
(i)
Good, VQuit =

⊔ilast
i=0 V

(i)
Quit, and VLow =

V \(VGood∪VQuit). VGood are all the nodes that got colored by the process, VQuit are
all the quitters, and VLow are the nodes that remained active through the whole
process and thus have had their degree reduced. We have as initial condition
V (0) = V .

Degree reduction First, we analyze how the degree of a node behaves when
all nodes in a hypergraph of maximum degree ∆ try a color u.a.r. from a set
of size K ≫ ∆1/(r−1), as in GeometricTrials. There are two ways for an
edge e incident on v to survive: either e itself was monochromatic, or each node

of e was part of a monochromatic edge other than e. Note that these are not
mutually exclusive. The first type of event is analyzed when considering splitting
(Section 3). The following lemma analyzes the second type of event.

Lemma 8. Let C ≥ 21/(r−2) be a constant, and G = (V,E) be a triangle-free
graph of rank r and maximum degree ∆. Let each node v try a random color in
[K] = [C ·∆1/(r−1)] and uncolor itself if it is part of a monochromatic edge. Let
s ∈ [2∆1/(r−1)/Cr−2,K] and t ≥ 2(s/C)r−1. Then w.p. at least 1−2 exp(−t/6)−
(r−1)∆ exp(−s/6), v’s degree (number of fully uncolored incident edges) becomes
at most 2t.

Proof (Proof sketch). We consider an edge e incident on v and bound the prob-
ability that each node in e other than v is part of a monochromatic edge. The
survivals of edges incident on v are not necessarily independent due to 4-cycles:
for two edges e, e′ incident on v, there might be a vertex u at distance 2 from v
that is connected to both a vertex in w ∈ e and a vertex w′ ∈ e′. We handle this
non-independence by arguing independence once the colors at distance 2 from
v have been fixed. When fixing those colors, some edges incident on a neighbor
of v might be monochromatic on the already selected (r − 1) colors. We bound
the probability that this occurs on too many edges, so as to argue that nodes in
an edge incident on v are unlikely to all pick a color that makes an edge they’re
part of monochromatic. We defer the full proof to Appendix A.1

Lemma 9. Let ∆i be the maximum degree of active nodes in the i-th round of
GeometricTrials, Ki the number of colors to choose from in that round, and
Ci = ∆

1/(r−1)
i /Ki. Then, for each live node v in the i-th round of Geometric-

Trials:

– v gets colored w.p. at least 1−∆i/K
r−1
i .

– Let d′v be the degree of v after this round. For any t ≥ 4∆i/C
(r−1)2

i ,

Pr[d′v ≤ t] ≥ 1− 3(r − 1)∆i exp(−(t/4)1/(r−1)Ci/6) .

Proof. For the first item, we use that each edge incident on v is monochromatic
w.p. 1/Kr−1

i . By union bound, v is part of no monochromatic edge w.p. at
least 1−∆i/K

r−1
i , in which case it gets colored. For the second item, we apply

Lemma 8 with K = Ki, C = Ci, ∆ = ∆i, and s = C · (t/4)1/(r−1). Note that
though the lemma may not be applied with this s when t ≥ 4∆, the result still
holds since v’s degree is always less than ∆.

We now analyze the probability that a node quits during GeometricTrials.

Lemma 10. For each node v, the probability that v is in VQuit is at most

3(r − 1)∆(log log∆) · exp(−(∆goal/4)
1/(r−1)/6) .

Proof (Proof sketch). Armed with previous technical lemmas, this proof only
consists of a union bound over all iterations, summing the probabilities that v’s
degree does not decrease sufficiently when it fails to get colored. The full proof
is deferred to Appendix A.2.

The full algorithm Our algorithm and its analysis follow naturally once Ge-
ometricTrials has been introduced and analyzed. We first run Geometric-
Trials. Uncolored nodes now fall into two categories: quitters and non-quitters.
The non-quitters induce a graph of maximum degree ∆goal = ∆1/(r−1). When
∆ is a large enough poly(log n), w.h.p., there are no quitters. For smaller ∆,
w.h.p., the graph induced by quitters is shattered ; more precisely, it consists
of connected components of size logO(log log logn) n. All that remains is to apply
results from the literature to color those connected components, and to color the
remaining other uncolored nodes of degree O(∆1/(r−1)).

Algorithm 3 Color(Triangle-free hypergraph G, maximum degree ∆, rank r)
GeometricTrials(4, 1/2).
Color VQuit by the deterministic LLL algorithm of Theorem 1 (if VQuit ̸= ∅).
Color VLow by an algorithm for graph coloring using O(∆goal) colors.

Theorem 4. There is an O(poly(log log n))-round randomized Local algorithm
to color a triangle-free hypergraph of rank r with O(∆1/(r−1)) colors, w.h.p. When
∆ ≥ 4r−1(18 log n)(r−1)2 , the algorithm takes O(log log∆+ log∗ n) rounds.

Proof. Recall that ∆goal = ∆1/(r−1). After GeometricTrials, each uncolored
node is either in VQuit or VLow, and only O(∆1/(r−1)) colors were used. We color
VQuit and VLow each with their own set of O(∆1/(r−1)) colors, for a total number
of colors of the same order of magnitude. Note that we can color them in parallel
since they use distinct colors. We split the analysis depending on the value of
∆, starting with ∆ large (at least some poly(log n)).

When ∆ ≥ 4r−1(18 log n)(r−1)2 , by Lemma 10, w.h.p., there are no nodes
in VQuit. This means that the only nodes that remain to be colored are in VLow,
so we can skip the costly application of Theorem 1 that we otherwise use to
color VQuit. The hypergraph induced by VLow has maximum degree O(∆1/(r−1)).
We project each hyperedge e of G[VLow] to an arbitrary 2-edge uv, {u, v} ⊆
e. The resulting graph also has maximum degree O(∆1/(r−1)), and we color
it in O(log∗ n) rounds with Θ(∆1/(r−1)) = Ω(logr−1 n) colors by the algo-
rithm for O(∆ + log1+1/ log∗ n n)-coloring from [39]. This gives the complexity
of O(log log∆+ log∗ n) rounds for large ∆.

For smaller ∆, we color VLow with the poly(log log n) algorithm of [6] for (∆+
1)-coloring. To color the nodes of VQuit efficiently, we argue that the hypergraph
they induce is shattered, w.h.p. More precisely, we show that G[VQuit] consists
of connected components of size O(log1+2 log log∆ n) = logO(log log logn) n, w.h.p.

Let c = log log∆ > ilast. Whether a node quits GeometricTrials is deter-
mined by the random choices within distance c from v during the process, and it
occurs with probability at most 3(r−1)∆(log log∆) exp(−(∆goal/4)

1/(r−1)/6) =

exp(−Θ(∆1/(r−1)2)) ≤ (r∆)−3c by Lemma 10, for∆ larger than some sufficiently
big constant (constant degree hypergraphs can be colored with O(∆2) = O(1) =

O(∆1/(r−1)) colors in O(log∗ n) by [33]). By Lemma 3, the graph induced by
VQuit has connected components of size O((r∆)2c log n) = log(r

O(1) log log logn) n.
Theorem 1 therefore colors VQuit in poly(log log n) rounds, for a total complexity
of poly(log log n) Local rounds, and using at most O(∆1/(r−1)) colors in total.

4.2 Reduction to the triangle-free case

We now reduce the problem of coloring general linear hypergraphs to that of
coloring triangle-free ones. We partition the hypergraph into hypergraphs that
are either triangle-free or of polylogarithmic size. The former are solved by the
algorithm of the preceding section, while the latter are solved by Theorem 1.
This reduction is adapted from the work of Frieze and Mubayi [21], and modified
only slightly for a distributed context, in particular avoiding a degeneracy-based
coloring (that is known to require Ω(

√
log n)-rounds [33]).

The following two lemmas are stated existentially in [21], but the statements
below follow immediately from the proofs of their lemmas in [21]. When splitting
nodes into subsets V1, . . . , Vm, inducing subhypergraphs H1, . . . ,Hm, where v
ends in Hiv , a pair of nodes x, y ∈ NH(v) is said to be covered if

– the edges S, S′ ∈ E s.t. {v, x} ⊆ S and {v, y} ⊆ S′ are both in Hiv ;
– there exists an edge S′′ ∈ E that contains both x and y but not v ({x, y} ⊆ S

and v ̸∈ S′′), and S′′ ∈ Hiv .

Intuitively, x, y is a covered pair of v if v, x, and y form a triangle that survived
splitting.

Lemma 11 (Lemma 5 [21]). Let H be a linear rank r hypergraph of maximum
degree ∆. Let m = ⌈∆2/(3r−4) − ε⌉. Suppose we partition the nodes u.a.r. into
subsets V1, V2, . . . , Vm, inducing subhypergraphs H1, H2, . . . ,Hm. Then, for each
i = 1, . . . ,m and each v ∈ Vi,

1. v has degree more than 2∆/mr−1 in Vi w.p. at most ∆−5.
2. The Hi neighborhood of v NHi

(v) contains more than r2∆2/m3r−4 covered
pairs w.p. at most ∆−5.

Lemma 12 (Lemma 6 [21]). Let δ be a sufficiently small positive constant
depending on r. Let L be a linear rank r hypergraph of maximum degree at
most d. Suppose that each vertex neighborhood NL(v) contains at most dδ cov-
ered pairs. Let ℓ = d1/(r−1)−δ. Suppose we partition the nodes u.a.r. into sub-
sets W1,W2, . . . ,Wℓ, inducing subhypergraphs L1, L2, . . . , Lℓ. Then, for each j =
1, . . . , ℓ and each v ∈Wj,

1. v has more than 2d/ℓr−1 neighbors in Wj is w.p. at most d−5.
2. v belongs to more than 400r2 triangles within Lj is w.p. at most d−5.

Theorem 5. There is a randomized algorithm for O(r2∆1/(r−1))-coloring r-
uniform linear hypergraphs in poly(log log n) Local rounds, w.h.p.

Proof. We reduce the problem to the case where the maximum degree isO(log n).
When ∆ > log n, we apply Split(V,∆, x) with x = (∆/(6 log n))1/(r−1). By
Lemma 6, each of the obtained vertex sets induces a subhypergraph of max-
imum degree ∆′ ∈ O(log n), w.h.p. Applying a coloring algorithm that uses
only O(r2(∆′)1/(r−1)) on each of them results in an overall coloring that uses
O(r2∆1/(r−1)) colors in total, by Lemma 7. The ∆ ∈ Ω(log n) degree case thus
reduces to the O(log n) degree case.

By combining Lemma 11 and Lemma 12, we reduce the problem to the
coloring of a collection of triangle-free hypergraphs. Nodes that fail the first
(second) condition of Lemma 11 are moved to the set V 1

Bad (V 2
Bad), and those

that fail the first (second) condition of Lemma 12 are moved to V 3
Bad (V 4

Bad),
respectively. By Lemma 3, each V i

Bad is shattered, inducing components of size
at most N = poly(log n). Thus, we can color each V i

Bad with (4r∆)1/(r−1) colors
in poly(logN) = poly(log log n) rounds, by the LLL algorithm of [14], for a total
of O(∆1/(r−1)) colors.

The rest of the nodes are partitioned into sets V1, . . . , Vm, each of which is
d = 2∆′/mr−1-defective. Each such Vi is partitioned into W i

1, . . . ,W
i
ℓ , which are

q = 2d/ℓr−1-defective, where ℓ = d1/(r−1)−δ. Crucially, each node in the subhy-
pergraph Li

j induced by each W i
j is part of at most 400r2 triangles. Consider the

underlying graph of Li
j , and focus on the subgraph M i

j consisting of the edges
(v, x), (v, y) involved in a covered pair x, y (with some node v). This M i

j has
maximum degree O(r2), by the bound on triangle participation in Li

j . We color
this graph with O(r2) colors using a poly(log log n)-round randomized algorithm
for ∆+1-coloring graphs [6,38]. Let W i,1

j , . . . ,W i,c
j be the vertices of each of the

c color classes, where c ∈ O(r2). Each node that is not in any class joins one at
random. For each k ∈ [c] let Li,k

j be subhypergraph induced by W i,k
j .

Note that each Li,k
j is triangle-free (girth 4), and like Li

j has maximum degree
at most q = 2d/ℓr−1. We apply the algorithm of Theorem 4 to each Li,k

j in
parallel, which uses O(q1/(r−1)) = O(d1/(r−1)/ℓ) colors. So, the total number of
colors used on each Vi is ℓ · c ·O(d1/(r−1)/ℓ) = O(r2d1/(r−1)). By the same token,
the total number of colors used on all the classes V1, . . . , Vm ism·O(r2d1/(r−1)) =
m ·O(r2∆1/(r−1)/m) = O(r2∆1/(r−1)), as desired.

5 Additional Results

We also provide two results lifting the classic O(∆2)-coloring algorithm and
Ω(log∗ n) lower bound due to Linial to the hypergraph setting. Contrary to
our main results, these apply to general hypergraphs. We defer their proofs to
Appendix B.

Theorem 6. There is a deterministic O(log∗ n)-round Congest algorithm to
O(r ·∆r/(r−1) log(r∆))-color hypergraphs of maximum degree ∆ and rank r.

Theorem 7. For any pair of constants r and c, no Local algorithm can find
a O(∆c/r) coloring of a rank r hypergraph in fewer than Ω((log∗ n)/r) rounds.

Acknowledgements This project was supported by Icelandic Research Fund
grant no. 217965. Part of the work was done while D. Adamson and A. Nolin
were with the CS Department of Reykjavik University.

References

1. Assadi, S., Chen, Y., Khanna, S.: Sublinear algorithms for (∆+1) vertex coloring.
In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA). pp. 767–786 (2019).
https://doi.org/10.1137/1.9781611975482.48, full version at arXiv:1807.08886

2. Assadi, S., Kumar, P., Mittal, P.: Brooks’ theorem in graph streams: A single-
pass semi-streaming algorithm for ∆-coloring. In: Proc. ACM Symp. on Theory
of Computing (STOC). pp. 234–247. ACM (2022). https://doi.org/10.1145/
3519935.3520005

3. Balliu, A., Brandt, S., Kuhn, F., Olivetti, D.: Distributed ∆-coloring plays hide-
and-seek. In: Proc. ACM Symp. on Theory of Computing (STOC). pp. 464–477.
ACM (2022). https://doi.org/10.1145/3519935.3520027

4. Balliu, A., Brandt, S., Kuhn, F., Olivetti, D.: Distributed maximal matching and
maximal independent set on hypergraphs. In: Proc. ACM-SIAM Symp. on Dis-
crete Algorithms (SODA). pp. 2632–2676 (2023). https://doi.org/10.1137/1.
9781611977554.ch100

5. Barenboim, L.: Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static,
dynamic, and faulty networks. J. ACM 63(5), 47:1–47:22 (2016). https://doi.
org/10.1145/2979675

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 20:1–20:45 (2016). https://doi.org/10.1145/
2903137

7. Brandt, S.: An automatic speedup theorem for distributed problems. In: Proc.
ACM Symp. on Principles of Distributed Computing (PODC). pp. 379–388. ACM
(2019). https://doi.org/10.1145/3293611.3331611

8. Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J.,
Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In:
Proc. ACM Symp. on Theory of Computing (STOC). pp. 479–488. ACM (2016).
https://doi.org/10.1145/2897518.2897570

9. Chang, Y., Fischer, M., Ghaffari, M., Uitto, J., Zheng, Y.: The complexity of
(∆+1) coloring in congested clique, massively parallel computation, and centralized
local computation. In: Proc. ACM Symp. on Principles of Distributed Computing
(PODC). pp. 471–480. ACM (2019). https://doi.org/10.1145/3293611.3331607

10. Chang, Y.J., He, Q., Li, W., Pettie, S., Uitto, J.: Distributed edge coloring and a
special case of the constructive Lovász local lemma. ACM Transactions on Algo-
rithms (TALG) 16(1), 1–51 (2019). https://doi.org/10.1145/3365004

11. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between ran-
domized and deterministic complexity in the LOCAL model. SIAM Journal on
Computing 48(1), 122–143 (2019). https://doi.org/10.1137/17M1117537

12. Chang, Y.J., Li, W., Pettie, S.: Distributed ∆ + 1-coloring via ultrafast graph
shattering. SIAM Journal on Computing 49(3), 497–539 (2020). https://doi.
org/10.1137/19M1249527

13. Chang, Y.J., Pettie, S.: A time hierarchy theorem for the LOCAL model.
SIAM Journal on Computing 48(1), 33–69 (2019). https://doi.org/10.1137/
17M1157957

https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1145/3519935.3520005
https://doi.org/10.1145/3519935.3520005
https://doi.org/10.1145/3519935.3520005
https://doi.org/10.1145/3519935.3520005
https://doi.org/10.1145/3519935.3520027
https://doi.org/10.1145/3519935.3520027
https://doi.org/10.1137/1.9781611977554.ch100
https://doi.org/10.1137/1.9781611977554.ch100
https://doi.org/10.1137/1.9781611977554.ch100
https://doi.org/10.1137/1.9781611977554.ch100
https://doi.org/10.1145/2979675
https://doi.org/10.1145/2979675
https://doi.org/10.1145/2979675
https://doi.org/10.1145/2979675
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.1145/2903137
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3365004
https://doi.org/10.1145/3365004
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/19M1249527
https://doi.org/10.1137/19M1249527
https://doi.org/10.1137/19M1249527
https://doi.org/10.1137/19M1249527
https://doi.org/10.1137/17M1157957
https://doi.org/10.1137/17M1157957
https://doi.org/10.1137/17M1157957
https://doi.org/10.1137/17M1157957

14. Chung, K.M., Pettie, S., Su, H.H.: Distributed algorithms for the Lovász local
lemma and graph coloring. Distributed Computing 30(4), 261–280 (2017). https:
//doi.org/10.1007/s00446-016-0287-6

15. Czumaj, A., Davies, P., Parter, M.: Simple, deterministic, constant-round coloring
in congested clique and MPC. SIAM Journal on Computing 50(5), 1603–1626
(2021), https://doi.org/10.1137/20M1366502

16. Davies, P.: Improved distributed algorithms for the Lovász local lemma and edge
coloring. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA). pp. 4273–
4295 (2023). https://doi.org/10.1137/1.9781611977554.ch163

17. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Colloquia Mathematica Societatis Janos Bolyai 10. Infinite
and Finite Sets, Keszthely (Hungary) (1973)

18. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph prob-
lems in a semi-streaming model. Theoretical Computer Science 348(2-3), 207–216
(2005). https://doi.org/10.1016/j.tcs.2005.09.013

19. Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local
lemma, and the complexity hierarchy. In: Proc. Int. Symp. on Distributed Com-
puting (DISC) (2017). https://doi.org/10.4230/LIPIcs.DISC.2017.18

20. Fischer, M., Ghaffari, M., Kuhn, F.: Deterministic distributed edge-coloring via hy-
pergraph maximal matching. In: Proc. Symp. on Foundations of Computer Science
(FOCS). pp. 180–191 (2017). https://doi.org/10.1109/FOCS.2017.25

21. Frieze, A., Mubayi, D.: Coloring simple hypergraphs. Journal of Combinatorial
Theory, Series B 103(6), 767–794 (2013)

22. Ghaffari, M.: An improved distributed algorithm for maximal independent set.
In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA). pp. 270–277. SIAM
(2016). https://doi.org/10.1137/1.9781611974331.ch20

23. Ghaffari, M., Grunau, C., Rozhoň, V.: Improved deterministic network decomposi-
tion. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA). pp. 2904–2923.
SIAM (2021). https://doi.org/10.1137/1.9781611976465.173

24. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algo-
rithms. In: Proc. Symp. on Foundations of Computer Science (FOCS). pp. 662–673.
IEEE Computer Society (2018). https://doi.org/10.1109/FOCS.2018.00069

25. Ghaffari, M., Kuhn, F.: Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In: Proc. Symp. on Foundations of Com-
puter Science (FOCS). pp. 1009–1020. IEEE (2021). https://doi.org/10.1109/
FOCS52979.2021.00101

26. Halldórsson, M.M., Kuhn, F., Nolin, A., Tonoyan, T.: Near-optimal distributed
degree+1 coloring. In: Proc. ACM Symp. on Theory of Computing (STOC). pp.
450–463. ACM (2022). https://doi.org/10.1145/3519935.3520023

27. Halldórsson, M.M., Maus, Y., Nolin, A.: Fast distributed vertex splitting with ap-
plications. In: Proc. Int. Symp. on Distributed Computing (DISC). LIPIcs, vol. 246,
pp. 26:1–26:24 (2022). https://doi.org/10.4230/LIPIcs.DISC.2022.26

28. Harris, D.G.: Derandomized concentration bounds for polynomials, and hyper-
graph maximal independent set. ACM Transactions on Algorithms (TALG) 15(3),
1–29 (2019). https://doi.org/10.1145/3326171

29. Harris, D.G.: Distributed local approximation algorithms for maximum matching
in graphs and hypergraphs. SIAM Journal on Computing 49(4), 711–746 (2020).
https://doi.org/10.1137/19M1279241

30. Kuhn, F., Zheng, C.: Efficient distributed computation of MIS and generalized MIS
in linear hypergraphs. arXiv preprint arXiv:1805.03357 (2018)

https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.1137/20M1366502
https://doi.org/10.1137/1.9781611977554.ch163
https://doi.org/10.1137/1.9781611977554.ch163
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.1145/3519935.3520023
https://doi.org/10.4230/LIPIcs.DISC.2022.26
https://doi.org/10.4230/LIPIcs.DISC.2022.26
https://doi.org/10.1145/3326171
https://doi.org/10.1145/3326171
https://doi.org/10.1137/19M1279241
https://doi.org/10.1137/19M1279241

31. Kutten, S., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed symmetry
breaking in hypergraphs. In: Proc. Int. Symp. on Distributed Computing (DISC).
pp. 469–483. Springer (2014). https://doi.org/10.1007/978-3-662-45174-8_32

32. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Proc. ACM Symp. on Principles of Distributed Computing (PODC). pp. 42–50.
ACM (2013). https://doi.org/10.1145/2484239.2501983

33. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing
21(1), 193–201 (1992). https://doi.org/10.1137/0221015

34. Maus, Y., Tonoyan, T.: Local conflict coloring revisited: Linial for lists. In: Proc.
Int. Symp. on Distributed Computing (DISC). LIPIcs, vol. 179, pp. 16:1–16:18.
LZI (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.16

35. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local
lemma. Journal of the ACM 57(2), 11:1–11:15 (2010). https://doi.org/10.1145/
1667053.1667060

36. Muthukrishnan, S., et al.: Data streams: Algorithms and applications. Foundations
and Trends® in Theoretical Computer Science 1(2), 117–236 (2005). https://
doi.org/10.1561/0400000002

37. Radhakrishnan, J., Shannigrahi, S., Venkat, R.: Hypergraph two-coloring in the
streaming model. arXiv preprint arXiv:1512.04188 (2015). https://doi.org/
https://doi.org/10.48550/arXiv.1512.04188

38. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In: Proc. ACM Symp. on Theory of Com-
puting (STOC). pp. 350–363. ACM (2020). https://doi.org/10.1145/3357713.
3384298

39. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry break-
ing. In: Proc. ACM Symp. on Principles of Distributed Computing (PODC). pp.
257–266. ACM (2010). https://doi.org/10.1145/1835698.1835760

A Missing proofs of main algorithm

A.1 Proof of Lemma 8 (degrees decrease in GeometricTrials)

Lemma 8. Let C ≥ 21/(r−2) be a constant, and G = (V,E) be a triangle-free
graph of rank r and maximum degree ∆. Let each node v try a random color in
[K] = [C ·∆1/(r−1)] and uncolor itself if it is part of a monochromatic edge. Let
s ∈ [2∆1/(r−1)/Cr−2,K] and t ≥ 2(s/C)r−1. Then w.p. at least 1−2 exp(−t/6)−
(r−1)∆ exp(−s/6), v’s degree (number of fully uncolored incident edges) becomes
at most 2t.

Proof. As explained in the main text, an edge e incident on a node v has two
ways of surviving this process: by being monochromatic itself, or by having each
of its nodes be part of a monochromatic edge distinct from e.

The number of monochromatic edges incident on v corresponds to its defect in
the tentative coloring, which we previously analyzed. As in the proof of Lemma 5,
at most t edges survive that way, w.p. 1− exp(−t/6).

We turn to the second type of surviving edges. Let us say an edge e incident
on v is forbidding to v if the nodes in e other than v all have the same color.
We say that a color c is forbidden to a node v if v has an incident forbidding

https://doi.org/10.1007/978-3-662-45174-8_32
https://doi.org/10.1007/978-3-662-45174-8_32
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1145/2484239.2501983
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0221015
https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.4230/LIPIcs.DISC.2020.16
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1561/0400000002
https://doi.org/10.1561/0400000002
https://doi.org/10.1561/0400000002
https://doi.org/10.1561/0400000002
https://doi.org/https://doi.org/10.48550/arXiv.1512.04188
https://doi.org/https://doi.org/10.48550/arXiv.1512.04188
https://doi.org/https://doi.org/10.48550/arXiv.1512.04188
https://doi.org/https://doi.org/10.48550/arXiv.1512.04188
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/1835698.1835760
https://doi.org/10.1145/1835698.1835760

edge whose nodes other than v are all colored c. Let F (v) be the set of edges
forbidding to v. The second type of surviving edge occurs when each of its nodes
selects a forbidden colors. We show that |F (v)| is concentrated.

Claim. For a node v and integers x > 0, t ≥ 2dv/x
r−2, Pr[|F (v)| ≥ t] ≤

exp(−t/6).

Proof (Proof of Appendix A.1). An edge e is forbidding to v ∈ e with proba-
bility 1/xr−2. Therefore, E[|F (v)|] = dv/x

r−2, and t ≥ 2E[|F (v)|]. Because v’s
neighborhood is triangle-free, edges incident on v share no other vertex. There-
fore, whether each edge is forbidding to v is independent of whether other edges
are, and by Lemma 4 (Chernoff bound), the probability ensues.

We now bound the probability that many edges survive due to all of its nodes
picking a forbidden color.

Recall s ≥ 2∆1/(r−1)/Cr−2. By Appendix A.1, a node u has less than s
forbidden colors w.p. 1− exp(−s/6). Therefore, all the neighbors of v have less
than s forbidden colors w.p. 1− (r−1)∆ exp(−s/6). In the rest of the argument,
we condition on the event that nodes at distance 2 from v forbade at most
s colors to each direct neighbor of v, and fix the random choices of nodes at
distance 2 from v to a specific assignment satisfying this conditioning.

Consider an edge e incident on v with vertices v, u1, . . . , ur−1. The probability
that ui picks a color forbidden by the distance 2 neighbors of v it is adjacent to
is at most s/K. The probability that the r − 1 ui’s do so is at most (s/K)r−1

by the independence of their choices. Therefore, the expected number of edges
that remain uncolored due to this second argument is at most ∆(s/K)r−1.

Finally, for each e incident on v let Xe be the indicator random variable of
the event that all its nodes other than v picked a color forbidden by the nodes
at distance 2 from v. Let X be the sum

∑
e∋vXe. The Xe’s are all independent

once the random choices of nodes at distance 2 are fixed. Therefore, by Lemma 4
(Chernoff bound), for t ≥ 2∆(s/K)r−1 = 2(s/C)r−1, Pr[X ≥ t] ≤ 1−exp(−t/6).

Putting everything together, w.p. at least 1−2 exp(−t/6)−(r−1)∆ exp(−s/6),
each of the two sources of surviving edges contributes at most t edges, for a total
of at most 2t.

A.2 Proof of Lemma 10

Lemma 10. For each node v, the probability that v is in VQuit is at most

3(r − 1)∆(log log∆) · exp(−(∆goal/4)
1/(r−1)/6) .

Proof. Recall the values of variables which dictate how nodes behave in Geo-
metricTrials,

– C = 4, α = 1/2, ∆goal = ∆1/(r−1),
– Ci = C2i = 42

i

,Ki = αi∆1/(r−1),
– ∆i = max{(Ki/Ci)

r−1, ∆goal}, ilast = max{i | ∆i > ∆goal}.

Let us analyze the probability that a live node v in the i-th iteration of
GeometricTrials decreases its degree to less than ∆i+1 (or gets colored). By
Lemma 9, if ∆i+1 ≥ 4∆i/C

(r−1)2

i , then v’s degree decreases to less than ∆i+1

with probability

1− 3(r − 1)∆i exp(−(∆i+1/4)
1/(r−1)Ci/6) .

We verify that ∆i+1 ≥ 4∆i/C
(r−1)2

i indeed holds. Note that, by definition,

∆i+1 ≥ (Ki+1/Ci+1)
r−1 = α(i+1)(r−1)KC−(r−1)2i+1

= ∆i · (αr−1C−(r−1)2i)

= ∆i · 4−(r−1)/2−(r−1)2i ≥ 4∆i/C
(r−1)2

i .

For each node active in iteration i ≤ ilast (which has therefore degree at most
∆i), by Lemma 9, the probability that its degree fails to decrease to ∆i+1 or less
after each live node tries a color is at most

3(r − 1)∆ie
−(∆i+1/4)

1/(r−1)/6 .

Summing over all the rounds, the probability that a node joins VQuit during
the ilast + 1 ≤ log log∆ loop iterations of GeometricTrials is at most

3(r − 1)

ilast∑
i=0

∆ie
−(∆i+1/4)

1/(r−1)/6 ≤ 3(r − 1)∆(log log∆)e−(∆goal/4)
1/(r−1)/6 .

B Missing proofs for the Θ(log∗ n) algorithm and lower
bound

We give two results on deterministic algorithms. Firstly, we give an O(log∗ n)
rounds algorithm for Õ

(
∆r/(r−1)

)
-coloring any r-uniform hypergraph. Secondly,

we complement this algorithm with a lower bound of Ω
(

log∗ n
r

)
on finding such

a coloring.

B.1 Finding a Õ
(
∆r/(r−1)

)
-coloring

In this section, we give a one round algorithm for transforming a strong Õ(r2∆2)-
coloring into a weak Õ

(
r ·∆r/(r−1)

)
-coloring for an r-regular hypergraph. This

result can be viewed as an addendum to Linial’s algorithm for finding a O(∆2)-
coloring in O(log∗ n) rounds. This reduction is performed via a combinatorial
argument extending the notion of a∆-cover free family to an r-weak ∆-cover free
family. Note that a Õ(r2∆2) strong coloring can be found in O(log∗ n) rounds
by using Linial’s algorithm on the underlying graph. In order to obtain such
a coloring, it is useful to introduce r-weak ∆-cover free families of sets. This
generalization of ∆-cover free families serves to relax coloring constraint to the
problem of finding a weak coloring.

Definition 4 (r-weak ∆-cover free families). Let F be a family of sets.
The family F is a r-weak ∆-cover free family if, for every set S0 ∈ F , and ∆
subfamilies Sj = {Sj,1, . . . , Sj,r−1} ⊆ F \ {S0}, each of size r − 1, the following
holds:

S0 ̸⊆
∆⋃

j=1

r−1⋂
k=1

Sj,k

Note that a 2-weak ∆-cover free family is equivalent to the classical definition
of an ∆-cover free family.

Lemma 13 (Lower bound on the size of r-weak ∆-cover free families).
For three integers n,∆, r ∈ N such that n ≥ r ≥ 2 and ∆ ≥ 1, there exists an
r-weak ∆-cover free family F of size n, where each S ∈ F is a subset of a ground
set [m], m = 5⌈r∆r/(r−1) ln(n)⌉.

Proof. In the proof that follows, we use that e−s ≥
(
1− s

r

)r for all 1 ≤ s ≤ r.
For some m, consider a random collection F = {S1, . . . , Sn} of subsets of [m]
constructed the following way: for every element x ∈ [m] and index i ∈ [n], x
belongs to Si with some fixed probability p, independently of every other pair
(x′, i′) ̸= (x, i). For any given element x, index i0 ∈ [n], and ∆ sets of r − 1
indices {ij,1, . . . , ij,r−1} ⊆ [n]\{i0}, the probability of x being in the set Si0 but
out of

⋃∆
j=1

(⋂r−1
k=1 Sij,k

)
is:

Pr

x ∈ Si0 \
∆⋃

j=1

(
r−1⋂
k=1

Sij,k

) ≥ Pr[x ∈ Si0]

1−
∆∑

j=1

Pr

[
x ∈

r−1⋂
k=1

Sij,k

]
= p(1−∆pr−1)

Setting p = (2∆)−1/(r−1), this probability is at least 1
4∆1/(r−1) . Therefore the

probability that for every x ∈ [m], x /∈ Si0 \
⋃∆

j=1

(⋂r−1
k=1 Sij,k

)
is no more

than
(
1− 1

4∆1/(r−1)

)m ≤ e−m/(4∆1/(r−1)) ≤ n−5r∆/4. The probability that valid

multiset of indices i0, i1,1, . . . , i∆,(r−1) exists such that Si0 ⊆
⋃∆

j=1

(⋂r−1
k=1 Sij,k

)
is no more than n(r−1)∆+1n−5r∆/4 < 1. Therefore, an r-weak ∆-cover free family
of n sets with no such indices exists.

Theorem 6. There is a deterministic O(log∗ n)-round Congest algorithm to
O(r ·∆r/(r−1) log(r∆))-color hypergraphs of maximum degree ∆ and rank r.

Proof. Let ϕ be a strong O(r2∆2)-coloring of the graph, computed using Linial’s
algorithm on the underlying graph. We show that ϕ can be converted in to a
weak Õ

(
r ·∆r/(r−1)

)
-coloring in a single round. From Lemma 13, there must

be an r-weak ∆-cover free family F of O(r2∆2) sets from a universe of O(r ·
∆r/(r−1) log(r∆)) elements. By indexing these sets in some universal order, each
vertex v can choose the set Sv at index ϕ(v). As the set is a member of F ,

following Definition 4 there must exist at least one element cv ∈ Sv, such that
for every edge e incident to v, cv /∈

⋂
u∈e\{v}

Su. Therefore, coloring v with cv,

v can not be incident to any monochromatic edge. As computing the value of
cv only requires the color of each neighbor in the O(r2∆2)-coloring, this can be
done in a single round from the O(r2∆2)-strong coloring. Hence the total round
complexity of this process is O(log∗ n), dominated by the process of finding
the initial strong coloring. Further, as cv is selected from a universe of size
O(r · ∆r/(r−1) log(r∆)), the coloring of G from this process corresponds to a
weak O(r ·∆r/(r−1) log(r∆)) = Õ(r ·∆r/(r−1))-coloring of G.

B.2 Lower bounds on finding polynomial colorings

We show that there exists a lower bound of Ω
(

log∗ n
r

)
for finding on finding

a poly(∆)-coloring, by generalizing the classic lower bound due to Linial [33].
Rather than using a simple n-cycle, we construct a strongly connected n-hyper-
cycle. A strongly connected n-hyper-cycle with minimum rank r can be derived
from an n-cycle C by constructing an edge for each connected component of
size r in C. Note that the degree of a vertex in such a graph is 2(r − 1). We
provide a lower bound using this construction be reduction from the problem of
O(∆c)-coloring an n-cycle.

Theorem 7. For any pair of constants r and c, no Local algorithm can find
a O(∆c/r) coloring of a rank r hypergraph in fewer than Ω((log∗ n)/r) rounds.

Proof. For the sake of contradiction, let A be an algorithm that can weakly color
a strongly connected n-hyper-cycle with O(∆c) colors for some pair of constants
r and c. Let TA be its complexity. Let G = (V,E) be a cycle graph with n
vertices. It is known that no algorithm can find a O(∆2)-coloring on G in fewer
than Ω(log∗ n) rounds. We show that an algorithm for coloring G in O(TA)
rounds exists, implying the lower bound on TA.

Let G′ = (V,H) be an r-uniform hypergraph constructed from G, with edge
set H = {(v1, . . . , vr) ∈ V r | (vi, vi+1) ∈ E,∀i ∈ 1, 2, . . . , r − 1}. Note that G′

corresponds to a strongly connected n-cycle. Observe that any algorithm on G′

can be simulated on G in at most a factor of r additional rounds. Let ϕ be the
coloring on V after running A. Given any vertex v ∈ V , let h1, h2 ∈ H be the
pair of hyperedges incident to v such that N(v) = h1 ∪ h2. In other words, h1
and h2 are the hyperedges that include v and the two vertices at a distance of
r − 1 from v in G. As ϕ is a weak coloring of G′, there must exists two vertices
u1, u2 ∈ h1 × h2 such that ϕ(v) ̸∈ {ϕ(u1), ϕ(u2)}.

Let C = (V ′, E′) be a connected component in G such that ∀v, u ∈ V ′, ϕ(v) =
ϕ(u). Following the above observation, the maximum length of such a component
is 2r − 3. As the number of colors assigned by ϕ is at most O(rc) for some pair
of constants r and c, ϕ can be turned into a proper coloring of G by going
through each color class and coloring the nodes in each component in order of
decreasing ID. Therefore ϕ can be transformed into a proper coloring of G in at

most O(rc+1) rounds, and hence r · (TA+O(rc+1)) ∈ Ω(log∗ n), i.e. A must take
at least Ω(log∗ n) rounds, since r and c are constants.

Note that the hypergraph used for the lower bound is not linear, i.e., the theorem
does not rule out the existence of an o(log∗ n) round algorithm whose scope is
limited to linear hypergraphs.

	Distributed Coloring of Hypergraphs

