
Near-Optimal Distributed Degree+1 Coloring
Magnús M. Halldórsson1, Fabian Kuhn2, Alexandre Nolin1, Tigran Tonoyan3

1Reykjavik University 2University of Freiburg 3Krisp Technologies Inc.
mmh@ru.is; kuhn@cs.uni-freiburg.de; alexandren@ru.is; ttonoyan@gmail.com

1. Coloring problems

∆1LC

D1C

∆1C D1LC THIS WORK

H
A
R
D
E
R

S
I

M
P
L
E
R

nodes have
∆+1 colors

nodes have
degree+1 colors

colors are
integers 1 to x

colors are
arbitrary

We aim to solve the problem with high probability (w.h.p.), which here means with probability 1 −
1/ poly(n), where n = |V| is the number of nodes in the graph. Each node v has a palette (list of
colors) of size at least deg(v) + 1.

2. State of the art and our results

Model ∆1C D1LC before D1LC now
LOCAL log3 log n [CLP20] log n log3 log n this work

CONGEST log5 log n [HKMT21] log n log5 log n [HNT22]
Semi-streaming YES [ACK19] ? YES this work

Query Õ(n1.5) [ACK19] ? Õ(n1.5) this work

Õ(n) space MPC O(1) [ACK19] ? O(1) this work

CONGESTED CLIQUE O(1) [CFG+19] ? ?
(randomized complexities)

We also obtain a palette sparsification result, which is the basis of our results for Semi-streaming, Query,
and MPC, following a framework of []. More precisely, we show that if each node samples O(log2 n) colors
from its palette, w.h.p., the nodes can still solve D1LC even if each of them restricts itself to the colors it
sampled.

3. Slack Generation
The key to ∆1C vs D1LC

Slack of a node v. Difference between how many colors v has vs how many neighbors it has, |Ψv| − dv.
Idea: the higher it is, the less “competition” v has when it tries a random color.
There’s essentially 3 types of slack:

First type is when two nodes in the neighborhood of v pick the same color. Second type is when a
neighbor of v takes a color out of v’s palette. Third type is when neighbors turn off temporarily to reduce
competition for a while.

The left figure in the following example (from [CLP20]) shows that the third kind is absolutely necessary
in D1LC, contrary to ∆1C. This is due to the fact that non-edges between nodes that do not share colors
cannot provide slack. The right figure shows how the contribution to slack of a single color can be very
large in D1LC, also in contrast with ∆1C.

We overcome the difficulty by giving a procedure that generates permanent slack for a subset of the
nodes, and such that nodes that do not receive permanent slack can get significant temporary slack from
the nodes that did by momentarily turning them off.

4. Some important concepts
Almost-clique decomposition (ACD):We partition the nodes into dense (many edges in neigh-

borhood), sparse (few edges in neighborhood), and uneven (neighbors have much higher
degree) nodes, following a version of [AA20]. Dense nodes are furthermore partitioned into
diameter-2 sets called “almost-cliques”.

LOCAL model: The main model we study. Nodes on a graph are computationally unbounded
agents, sending each other messages of arbitrary size over the edges in synchronous rounds.
The complexity is the number of rounds.

Shattering: A frequent technique in distributed computing, in which a randomized algorithm is
used to solve large parts of the graph, only leaving small unsolved parts to be dealt with using
a deterministic algorithm.

Trying a color: The basic step in many coloring algorithms. A node “trying a color” consists of
the node announcing the color to its neighbors and keeping it if none of its neighbors are
already colored with this color or currently broadcasting it. Can be made more complex by
introducing priorities between the nodes.

Multitrial:Given enough slack, nodes can try multiple colors in a single round to color them-
selves faster than if they were trying one color at a time. The secret behind many randomized
O(log∗ n) algorithms for coloring.

5. Dense primitive

LEADER

INLIERS
OUTLIERS

A key idea in our algorithm is to have each almost-clique choose an appropriate leader, color nodes too
distinct or disconnected from it (outliers) using temporary slack given by the other nodes (the inliers), and
color the inliers efficiently by having the leader decide for them which colors they should try. Having
the leader make this decision on their behalf ensures that color conflicts do not occur within the nodes
receiving these colors. The leader simply shuffles its palette to give the inliers colors to try.

6. Sketch of algorithm
Color the

dense nodes

Multitrial
[SW10]

Synchronized
color trial

Color the
sparse nodes

Multitrial
[SW10]

Generate
slack

Compute
the ACD

Deterministic
algorithm

[GK21]

Generate
slack

Color the
outliers

References
[AA20] Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆ + 1) vertex coloring. In APPROX/RANDOM, 2020.
[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1) vertex coloring. In SODA, 2019.
[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed symmetry break-

ing. Journal of the ACM, 2016.
[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The complexity of (∆+1) coloring in

congested clique, massively parallel computation, and centralized local computation. In PODC, 2019.
[CLP20] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via ultrafast graph shattering. SIAM Journal

of Computing, 2020.
[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster, and without network

decomposition. In FOCS, 2021.
[HKMT21] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized distributed coloring

in CONGEST. In STOC, 2021.
[HNT22] Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion in distributed coloring. CoRR,

abs/2205.14478, 2022. to appear at PODC’22.
[Ree98] Bruce A. Reed. ω, ∆, and χ. J. Graph Theory, 1998.
[SW10] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry breaking. In PODC. ACM,

2010.

	Coloring problems
	State of the art and our results
	Slack Generation
	Some important concepts
	Dense primitive
	Sketch of algorithm

