
Coloring a Mostly Forgotten Graph
distributed coloring with your voice low and your brain small

Alexandre Nolin

CISPA Helmholtz Center for Information Security

WAND@DISC 2024 – Madrid, 01.11.2024

Based on joint work with

Maxime Flin Mohsen
Ghaffari

MagnúsM.
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I was looking at the date today and...

It is a public holiday in

1. Spain, where we are,

2. Many parts of Germany, where my affiliation is and the workshop chair is from,

3. France, where I’m from,

4. Italy, where WAND organizers seem to be from, and two out of three are affiliated,

5. Austria, where the workshop chair and the last organizer of WAND are affiliated.

And we are all gathered here

Enjoy your holiday talk
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Local and Congest

Local Congest
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• Both: Synchronous message passing, graph models communication network.

• Local: ∞-sized messages.

• Congest: O(log n)-sized messages (n upper bound on number of nodes).
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Coloring problem

Goal: starting from an initially
uncolored graph G = (V ,E ), assign a
color to each node s.t. adjacent nodes
receive distinct colors.

Formally: compute an assignment φ
giving colors to the nodes

φ : V → C

such that φ(u) ̸= φ(v) for each edge
uv ∈ E .
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Palette Sparsification: the general idea
Theorems of the form:

• Let each node v ∈ V independently sample a list of colors L(v) ⊆ C according to
some distribution Dv .

• Then with probability at least p, we get a list-coloring instance with a solution, as
is: G is colorable with the new constraints that φ(v) ∈ L(v) for each v ∈ V .

Trivial versions (amuse-bouches):

• If the distributions are Pr[Dv = {1, ...,∆+ 1}] = 1, then the graph is colorable
with the lists L(v) with probability 1.

• If the distributions are Pr[Dv = {i}] = 1/(deg(v) + 1) for each
i ∈ {1, ..., deg(v) + 1}, then the graph is colorable with the lists L(v) with
probability > ∆−n.

Interesting zone is between those two extremes.
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Examples of palette sparsification results

• Assadi, Chen, and Khanna [ACK19]:
• Θ(log n) colors from {1, ...,∆+ 1}.

• Alon and Assadi [AA20]:
• Θ(ε−1.5

√
log n) colors from {1, ..., (1 + ε)∆}

• Θ(log n) colors from {1, ..., deg(v) + 1}.
• Θ(ε−1 log n) colors from arbitrary palettes Ψ(v) of size (1 + ε) deg(v).
• Θ(∆γ +

√
log n) colors from {1, ..., 9∆

γ ln ∆ )} (triangle-free graphs)

• Halldórsson, Kuhn, N., and Tonoyan [HKNT22]
• Θ(log2 n) colors from arbitrary palettes Ψ(v) of size deg(v) + 1.

• Dhawan [Dha24]
• Θ(∆γ +

√
log n) colors from {1, ...,Θ( ∆

log(∆γ/
√
k)
))}

(k-locally sparse graphs for k ≪ ∆2γ , i.e., maxv |G [N(v)]| ≤ k ≪ ∆2γ)

Also theorems of similar flavor which I wasn’t aware of in the graph theory literature,
see [Dha24].
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Why sparsify palettes?

Most salient use in memory-bound models (especially streaming, but also MPC).

Basic idea: we can forget about all edges s.t. L(u) ∩ L(v) = ∅.

Definition (Sparsified graph)

The sparsified graph G̃ = (V ,E ′) of G is defined as E ′ = {uv ∈ E : L(u) ∩ L(v) ̸= ∅}.

Lemma

With every node sampling Θ(logd n) colors out of a space of size Θ(∆) with d ≥ 1/2,
the maximum degree is O(log2d n) w.h.p.

Potential to be relevant to many settings at once: [ACK19] and later papers implied
results for streaming, query complexity, and MPC with quasi-linear memory.
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Starter: palette sparsification with 2∆ colors

1. For c log n rounds

1.1 Each uncolored node (φ(v) = ⊥) picks a random color try(v) ∈ {1, ..., 2∆} u.a.r
1.2 If the color try(v) is s.t. try(v) ̸= try(u) and try(v) ̸= φ(u) for all neighbors

u ∈ N(v), set φ(v)← try(v).

In every round, each uncolored node has a probability ≥ 1/2 to get colored. ⇒
everyone gets colored w.h.p. 1− n−c .

Key observation: Sampling is non-adaptive.

In terms of palette sparsification: W.h.p., each node sampling Θ(log n) colors out
of {1, ..., 2∆} results in a list-coloring problem with a solution.
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Starter bonus properties: coloring not just existential

Suppose following scenario:

1. Every node v samples its list L(v) ⊆ {1, . . . , 2∆} of size Θ(log n).

2. We forget about edges uv s.t. L(u) ∩ L(v) = ∅ (getting the sparsified graph G̃ ),

3. We attempt to color the graph communicating only on G̃ .

W.h.p., this is still easy here: we can basically still run the same algorithm.

But in general, can’t expect existence to mean easily computable, especially
across all models
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Topic of this talk: Distributed Palette Sparsification Theorem

Theorem (Flin, Ghaffari, Halldórsson, Kuhn, and N. [FGH+24])

Suppose that each node in a graph G samples Θ(log2 n) colors u.a.r. from [∆ + 1].
There is a distributed message-passing algorithm operating on the sparsified graph,
that computes a valid list-coloring in O(log2∆+ log3 log n) rounds with high
probability, using O(log n)-bit messages. In particular, each node needs to
communicate with only O(log4 n) different neighbors.

We are interested in the high ∆ setting, ≥ poly log n. (No need to sparsify if the
number of colors is already small).

Goal: Designing a coloring algorithm s.t. w.h.p. at the end 1) everyone is colored; 2)
each node sampled O(log2 n) colors, and 3) the samples were non-adaptive.
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that computes a valid list-coloring in O(log2∆+ log3 log n) rounds with high
probability, using O(log n)-bit messages. In particular, each node needs to
communicate with only O(log4 n) different neighbors.

We are interested in the high ∆ setting, ≥ poly log n. (No need to sparsify if the
number of colors is already small).
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Intuition for the log∆ dependency
Suppose our graph G = (V ,E ) is just one of more ∆ + 1-cliques.

• Diameter of the sparsified graph when sampling poly log n colors?

→ D(G̃ ) ∈ Ω(log∆/ log log n)

• How many times can each color be used?

Exactly once per clique.

Coloring such a graph corresponds to finding a perfect matching in the bipartite
graph (V ,C ,E ) with an edge between vc ∈ V × C iff color c is sampled by v .

Theorem (Flin, Ghaffari, Halldórsson, Kuhn, and N. [FGH+24])

Any Local algorithm that operates on the sparsified graph and computes a

(∆ + 1)-coloring with at least a constant probability of success needs Ω
(

log∆
log log n

)
rounds. This holds even if the original graph is a (∆+ 1)-clique, even if the distributed
algorithm running on the sparsified graph uses unbounded messages, and even if each
node samples a large poly log n number of colors in the sparsification.
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Before we dive into the algorithm

Any questions at this point?
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First ingredient: sparse-dense decomposition

Multiple versions of this kind of ideas have appeared now [Ree98, HSS18, ACK19,
CLP20, AA20, AW22, AKM22, HKNT22, FHM23, FHN24].
For this result, one of the simpler versions.

Definition (Sparsity)

The sparsity of a node v is the value ζv = 1
∆

((∆
2

)
− |E (N(v))|

)
. We say a node is

ζ-sparse if ζv ≥ ζ, otherwise it is ζ-dense.

• Sparsity allows to generate slack as repeated colors around a node. [EPS15]

• A dense node cannot really be dense on its own, it is part of an almost-clique.
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First ingredient: sparse-dense decomposition (continued)

Definition (Almost-Clique Decomposition)

For ϵ ∈ (0, 1/3), a ϵ-almost-clique decomposition is a partitioning of the vertices into
sets Vsparse,C1, . . . ,Ck for some k such that:

1. All v ∈ Vsparse are Ω(ϵ2∆)-sparse.

2. For any i ∈ [k], almost-clique Ci has the following properties:

2.1 |Ci | ≤ (1 + ϵ)∆;
2.2 |N(v) ∩ Ci | ≥ (1− ϵ)∆ for all nodes v ∈ Ci .

C

v

• External degree of v ∈ C : ev = |N(v) \ C |
• Anti-degree of v ∈ C : av = |C \ N(v)|
• Average anti-degree in an almost-clique C : āC
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But almost-clique decompositions in the sparsified graph?

Goal is to compute an almost-clique decomposition of the original graph G while
having only access to the sparsified graph G̃ . Is that possible?

No problem!

• If two nodes shared many neighbors pre-sparsification, they still do
post-sparsification, and reciprocally.

• If a node shared many neighbors with most of its neighbors pre-sparsification, it is
still true post-sparsification.

Biggest difference is that computing the almost-clique decomposition becomes a
O(log∆)-round algorithm instead of O(1).
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Main course: the algorithm

(All happening in a sparsified graph)

1. Compute the almost-clique decomposition.

2. Generate slack for sparse nodes and dense nodes with high external degree.

3. Color the dense nodes with high external degree ≥ ∆/ log n and almost-cliques
containing many such nodes.
Only leaves uncolored the densest almost-cliques, of low external degree.

4. Compute a colorful matching in each almost-clique.

5. Reduce the number of uncolored nodes to O(∆/ log n) in each almost-clique
through O(log n log log n) (non-adaptive) random color trials.

6. Finish the coloring in each almost-clique using augmenting paths.
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Preprocessing steps

1. Compute the almost-clique decomposition.

2. Generate slack for sparse nodes and dense nodes with high external degree.

3. Color the dense nodes with high external degree ≥ ∆/ log n and almost-cliques
containing many such nodes.
Only leaves uncolored the densest almost-cliques, of low external degree.

Regarding slack: In just one round of each node trying a random color in
{1, . . . ,∆+ 1} with constant probability, nodes of sparsity ζv get Ω(ζv ) repeated
colors in their neighborhood w.p. ≥ 1− exp(−Ω(ζv )). [EPS15]

Regarding high external degree nodes: with ∆/ log n slack, each color tried has a
probability ≥ 1/ log n to be free.

Trying log n colors implies constant probability of success. Doing it for log log n rounds
reduces degree to ∆/ log n, reducing competition, allowing to finish in log∆ extra
attempts.
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Back to the main course: the algorithm

(All happening in a sparsified graph)

1. Compute the almost-clique decomposition.

2. Generate slack for sparse nodes and dense nodes with high external degree.

3. Color the dense nodes with high external degree ≥ ∆/ log n and almost-cliques
containing many such nodes.
Only leaves uncolored the densest almost-cliques, of low external degree.

4. Compute a colorful matching in each almost-clique.

5. Reduce the number of uncolored nodes to O(∆/ log n) in each almost-clique
through O(log n log log n) (non-adaptive) random color trials.

6. Finish the coloring in each almost-clique using augmenting paths.
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Colorful matching
Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Can find such a matching of size
Ω(āC/ε).

Guarantees that outside of this matching, we can afford to use each color only once in
the almost-clique. An almost-clique of size > ∆+ 1 + x gets a colorful matching of
size > x .

Important property for computing it: two nodes in an almost-clique whose lists of
colors intersect are at distance 2 w.h.p. in the sparsified graph.
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Ω(āC/ε).

Guarantees that outside of this matching, we can afford to use each color only once in
the almost-clique. An almost-clique of size > ∆+ 1 + x gets a colorful matching of
size > x .

Important property for computing it: two nodes in an almost-clique whose lists of
colors intersect are at distance 2 w.h.p. in the sparsified graph.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 19/26



Colorful matching
Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Can find such a matching of size
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Limit of trying random colors

While a large part of the almost-clique is uncolored, having nodes sample a random
color in {1, . . . ,∆+ 1} and keep it if free is efficient. But it soon runs into a corner.

Most extreme example: how does the last uncolored node in the almost-clique color
itself? Each random color it samples is only free with probability O(1/∆).
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Augmenting paths

We can’t have a node successfully color itself on its own. So we make it a group effort.

Works, but potentially long: make it faster with more samples!

And careful when doing it with multiple nodes at once.
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Harvesting trees

Let k be the number of uncolored nodes in a clique C .

Suppose some node v has a tree T (v) ⊆ C s.t.:

• v is the root of the tree,

• For each node u in the tree, its parent could recolor itself with the color ϕ(u) of
its child.

• For each node u in the tree, no neighbor of u outside the clique is attempting to
recolor itself with one of the same color.

• The number of leaves of the tree is Θ(∆/k).

Most leaves have a probability of at least Ω(k/∆) to sample a free color when
performing a random sample (k uncolored nodes essentially means k free colors).

The Θ(∆/k) leaves give a constant success probability to the root to have an
augmenting path in the tree.
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recolor itself with one of the same color.

• The number of leaves of the tree is Θ(∆/k).

Most leaves have a probability of at least Ω(k/∆) to sample a free color when
performing a random sample (k uncolored nodes essentially means k free colors).

The Θ(∆/k) leaves give a constant success probability to the root to have an
augmenting path in the tree.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 22/26



Harvesting trees

Let k be the number of uncolored nodes in a clique C .

Suppose some node v has a tree T (v) ⊆ C s.t.:

• v is the root of the tree,

• For each node u in the tree, its parent could recolor itself with the color ϕ(u) of
its child.

• For each node u in the tree, no neighbor of u outside the clique is attempting to
recolor itself with one of the same color.

• The number of leaves of the tree is Θ(∆/k).

Most leaves have a probability of at least Ω(k/∆) to sample a free color when
performing a random sample (k uncolored nodes essentially means k free colors).

The Θ(∆/k) leaves give a constant success probability to the root to have an
augmenting path in the tree.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 22/26



How can this work?

We increase the degree of trees as k goes down, always s.t. the trees have a total of
Θ(∆/k) leaves in total.

Not all leaves are useful to reach, but many are, and leaves are randomly distributed.

k large (≥ Ω(log n)): Leaves try one color.

Get concentration from the large number of trees being grown.

k small (≤ O(log n)): Leaves try Θ(log n) colors.

We gather in the almost-clique the knowledge of augmenting paths, and
compute a matching.

Get concentration in each tree: each node should have Ω(k) augmenting
paths to choose from.
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All is well that ends well

Irrespective of the number of nodes that remain uncolored, we manage to color a
constant fraction of them by growing trees and selecting a set of augmenting paths in
them.

Θ(log∆) iterations, each consisting of growing augmenting paths of length O(log∆),
colors everything.
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Consequences

Algorithms for the following models:

• LocalStream model: nodes first receive their incident edges as a stream together
with randomness from the other endpoint, can only store a few of them, then
standard Congest on the remembered graph.

• Coloring cluster graphs in poly log n rounds (now superseded by [FHN24])

• Node capacitated clique: congested clique where nodes can only send and receive
poly log n messages in a round. We get the first poly log n algorithm for this
model.
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Ending remarks

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of
subsampling a more constrained smaller instance.

What should be done next?

1. What other problems have results of this flavor? (palette sparsification / random
partial commitment)
Defective coloring (≈ splitting)? Some LLLs?

2. Can we leverage this for high-congestion problems?
Typically, coloring power graphs, e.g. G 3.
Issue: How to find the 3-hop surviving edges?

Enjoy the rest of your holiday!

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



Ending remarks

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of
subsampling a more constrained smaller instance.

What should be done next?

1. What other problems have results of this flavor? (palette sparsification / random
partial commitment)
Defective coloring (≈ splitting)? Some LLLs?

2. Can we leverage this for high-congestion problems?
Typically, coloring power graphs, e.g. G 3.
Issue: How to find the 3-hop surviving edges?

Enjoy the rest of your holiday!

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



Ending remarks

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of
subsampling a more constrained smaller instance.

What should be done next?

1. What other problems have results of this flavor? (palette sparsification / random
partial commitment)
Defective coloring (≈ splitting)? Some LLLs?

2. Can we leverage this for high-congestion problems?
Typically, coloring power graphs, e.g. G 3.
Issue: How to find the 3-hop surviving edges?

Enjoy the rest of your holiday!

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



Ending remarks

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of
subsampling a more constrained smaller instance.

What should be done next?

1. What other problems have results of this flavor? (palette sparsification / random
partial commitment)
Defective coloring (≈ splitting)? Some LLLs?

2. Can we leverage this for high-congestion problems?
Typically, coloring power graphs, e.g. G 3.
Issue: How to find the 3-hop surviving edges?

Enjoy the rest of your holiday!

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



Noga Alon and Sepehr Assadi.
Palette sparsification beyond (∆ + 1) vertex coloring.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM), volume 176 of LIPIcs, pages 6:1–6:22.
LZI, 2020.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna.
Sublinear algorithms for (∆ + 1) vertex coloring.
In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 767–786, 2019.
Full version at arXiv:1807.08886.

Sepehr Assadi, Pankaj Kumar, and Parth Mittal.
Brooks’ theorem in graph streams: a single-pass semi-streaming algorithm for
∆-coloring.
In STOC, pages 234–247. ACM, 2022.

Sepehr Assadi and Chen Wang.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



Sublinear time and space algorithms for correlation clustering via sparse-dense
decompositions.
In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

Yi-Jun Chang, Wenzheng Li, and Seth Pettie.
Distributed (∆ + 1)-coloring via ultrafast graph shattering.
SIAM Journal of Computing, 49(3):497–539, 2020.

Abhishek Dhawan.
Palette sparsification for graphs with sparse neighborhoods.
CoRR, abs/2408.08256, 2024.

Michael Elkin, Seth Pettie, and Hsin-Hao Su.
(2∆− 1)-edge-coloring is much easier than maximal matching in the distributed
setting.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 355–370,
2015.

Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and
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Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin.
Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024 26/26



In the Proceedings of the International Symposium on Distributed Computing
(DISC), volume 319, pages 24:1–24:22, 2024.
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