Coloring a Mostly Forgotten Graph distributed coloring with your voice low and your brain small

Alexandre Nolin

CISPA Helmholtz Center for Information Security

WAND@DISC 2024 – Madrid, 01.11.2024 Based on joint work with

Maxime Flin

Mohsen Magnús M. Ghaffari Halldórsson

Tigran Tonoyan

Coloring a Mostly Forgotten Graph –

A. Nolin - WAND@DISC 2024 - Madrid, 01.11.2024

It is a public holiday in

1. Spain, where we are,

- 1. Spain, where we are,
- 2. Many parts of Germany, where my affiliation is and the workshop chair is from,

- 1. Spain, where we are,
- 2. Many parts of Germany, where my affiliation is and the workshop chair is from,
- 3. France, where I'm from,

- 1. Spain, where we are,
- 2. Many parts of Germany, where my affiliation is and the workshop chair is from,
- 3. France, where I'm from,
- 4. Italy, where WAND organizers seem to be from, and two out of three are affiliated,

- 1. Spain, where we are,
- 2. Many parts of Germany, where my affiliation is and the workshop chair is from,
- 3. France, where I'm from,
- 4. Italy, where WAND organizers seem to be from, and two out of three are affiliated,
- 5. Austria, where the workshop chair and the last organizer of WAND are affiliated.

It is a public holiday in

- 1. Spain, where we are,
- 2. Many parts of Germany, where my affiliation is and the workshop chair is from,
- 3. France, where I'm from,
- 4. Italy, where WAND organizers seem to be from, and two out of three are affiliated,
- 5. Austria, where the workshop chair and the last organizer of WAND are affiliated.

And we are all gathered here

It is a public holiday in

- 1. Spain, where we are,
- 2. Many parts of Germany, where my affiliation is and the workshop chair is from,
- 3. France, where I'm from,
- 4. Italy, where WAND organizers seem to be from, and two out of three are affiliated,
- 5. Austria, where the workshop chair and the last organizer of WAND are affiliated.

And we are all gathered here

Enjoy your holiday talk 🙂

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

Local and $\operatorname{Congest}$

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

Local and $\operatorname{Congest}$

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

Local and $\operatorname{Congest}$

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

- Both: Synchronous message passing, graph models communication network.
- LOCAL: ∞ -sized messages.
- CONGEST: $O(\log n)$ -sized messages (*n* upper bound on number of nodes).

Coloring problem

Goal: starting from an initially uncolored graph G = (V, E), assign a color to each node s.t. adjacent nodes receive distinct colors.

Formally: compute an assignment φ giving colors to the nodes

 $\varphi: \mathbf{V} \to \mathcal{C}$

such that $\varphi(u) \neq \varphi(v)$ for each edge $uv \in E$.

Coloring problem

Goal: starting from an initially uncolored graph G = (V, E), assign a color to each node s.t. adjacent nodes receive distinct colors.

Formally: compute an assignment φ giving colors to the nodes

 $\varphi: \mathbf{V} \to \mathcal{C}$

such that $\varphi(u) \neq \varphi(v)$ for each edge $uv \in E$.

Palette Sparsification: the general idea

Theorems of the form:

- Let each node v ∈ V independently sample a list of colors L(v) ⊆ C according to some distribution D_v.
- Then with probability at least p, we get a list-coloring instance with a solution, as
 is: G is colorable with the new constraints that φ(v) ∈ L(v) for each v ∈ V.

Palette Sparsification: the general idea

Theorems of the form:

- Let each node v ∈ V independently sample a list of colors L(v) ⊆ C according to some distribution D_v.
- Then with probability at least p, we get a list-coloring instance with a solution, as
 is: G is colorable with the new constraints that φ(v) ∈ L(v) for each v ∈ V.

Trivial versions (amuse-bouches):

- If the distributions are $\Pr[\mathcal{D}_v = \{1, ..., \Delta + 1\}] = 1$, then the graph is colorable with the lists L(v) with probability 1.
- If the distributions are $\Pr[\mathcal{D}_{v} = \{i\}] = 1/(\deg(v) + 1)$ for each $i \in \{1, ..., \deg(v) + 1\}$, then the graph is colorable with the lists L(v) with probability $> \Delta^{-n}$.

Palette Sparsification: the general idea

Theorems of the form:

- Let each node v ∈ V independently sample a list of colors L(v) ⊆ C according to some distribution D_v.
- Then with probability at least p, we get a list-coloring instance with a solution, as
 is: G is colorable with the new constraints that φ(v) ∈ L(v) for each v ∈ V.

Trivial versions (amuse-bouches):

- If the distributions are Pr[D_ν = {1, ..., Δ + 1}] = 1, then the graph is colorable with the lists L(ν) with probability 1.
- If the distributions are $\Pr[\mathcal{D}_{v} = \{i\}] = 1/(\deg(v) + 1)$ for each $i \in \{1, ..., \deg(v) + 1\}$, then the graph is colorable with the lists L(v) with probability $> \Delta^{-n}$.

Interesting zone is between those two extremes.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

Examples of palette sparsification results

- Assadi, Chen, and Khanna [ACK19]:
 - $\Theta(\log n)$ colors from $\{1, ..., \Delta + 1\}$.
- Alon and Assadi [AA20]:
 - $\Theta(\varepsilon^{-1.5}\sqrt{\log n})$ colors from $\{1, ..., (1+\varepsilon)\Delta\}$
 - $\Theta(\log n)$ colors from $\{1, ..., \deg(\nu) + 1\}$.
 - $\Theta(\varepsilon^{-1} \log n)$ colors from arbitrary palettes $\Psi(v)$ of size $(1 + \varepsilon) \deg(v)$.
 - $\Theta(\Delta^{\gamma} + \sqrt{\log n})$ colors from $\{1, ..., \frac{9\Delta}{\gamma \ln \Delta}\}$ (triangle-free graphs)
- Halldórsson, Kuhn, N., and Tonoyan [HKNT22]
 - $\Theta(\log^2 n)$ colors from arbitrary palettes $\Psi(v)$ of size deg(v) + 1.
- Dhawan [Dha24]
 - $\Theta(\Delta^{\gamma} + \sqrt{\log n})$ colors from $\{1, ..., \Theta(\frac{\Delta}{\log(\Delta^{\gamma}/\sqrt{k})}))\}$ (k-locally sparse graphs for $k \ll \Delta^{2\gamma}$, i.e., $\max_{v} |G[N(v)]| \le k \ll \Delta^{2\gamma}$)

Examples of palette sparsification results

- Assadi, Chen, and Khanna [ACK19]:
 - $\Theta(\log n)$ colors from $\{1, ..., \Delta + 1\}$.
- Alon and Assadi [AA20]:
 - $\Theta(\varepsilon^{-1.5}\sqrt{\log n})$ colors from $\{1, ..., (1+\varepsilon)\Delta\}$
 - $\Theta(\log n)$ colors from $\{1, ..., \deg(v) + 1\}$.
 - $\Theta(\varepsilon^{-1} \log n)$ colors from arbitrary palettes $\Psi(v)$ of size $(1 + \varepsilon) \deg(v)$.
 - $\Theta(\Delta^{\gamma} + \sqrt{\log n})$ colors from $\{1, ..., \frac{9\Delta}{\gamma \ln \Delta}\}$ (triangle-free graphs)
- Halldórsson, Kuhn, N., and Tonoyan [HKNT22]
 - Θ(log² n) colors from arbitrary palettes Ψ(ν) of size deg(ν) + 1.
- Dhawan [Dha24]
 - $\Theta(\Delta^{\gamma} + \sqrt{\log n})$ colors from $\{1, ..., \Theta(\frac{\Delta}{\log(\Delta^{\gamma}/\sqrt{k})}))\}$ (k-locally sparse graphs for $k \ll \Delta^{2\gamma}$, i.e., $\max_{v} |G[N(v)]| \le k \ll \Delta^{2\gamma}$)

Also theorems of similar flavor which I wasn't aware of in the graph theory literature, see [Dha24].

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

Why sparsify palettes?

Most salient use in memory-bound models (especially streaming, but also MPC).

Basic idea: we can forget about all edges s.t. $L(u) \cap L(v) = \emptyset$.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

Why sparsify palettes?

Most salient use in memory-bound models (especially streaming, but also MPC).

Basic idea: we can forget about all edges s.t. $L(u) \cap L(v) = \emptyset$.

Definition (Sparsified graph) The sparsified graph $\widetilde{G} = (V, E')$ of G is defined as $E' = \{uv \in E : L(u) \cap L(v) \neq \emptyset\}.$

Lemma

With every node sampling $\Theta(\log^d n)$ colors out of a space of size $\Theta(\Delta)$ with $d \ge 1/2$, the maximum degree is $O(\log^{2d} n)$ w.h.p.

Why sparsify palettes?

Most salient use in memory-bound models (especially streaming, but also MPC).

Basic idea: we can forget about all edges s.t. $L(u) \cap L(v) = \emptyset$.

Definition (Sparsified graph) The sparsified graph $\widetilde{G} = (V, E')$ of G is defined as $E' = \{uv \in E : L(u) \cap L(v) \neq \emptyset\}.$

Lemma

With every node sampling $\Theta(\log^d n)$ colors out of a space of size $\Theta(\Delta)$ with $d \ge 1/2$, the maximum degree is $O(\log^{2d} n)$ w.h.p.

Potential to be relevant to many settings at once: [ACK19] and later papers implied results for streaming, query complexity, and MPC with quasi-linear memory.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

1. For c log n rounds

1.1 Each uncolored node ($\varphi(v) = \bot$) picks a random color try(v) $\in \{1, ..., 2\Delta\}$ u.a.r 1.2 If the color try(v) is s.t. try(v) \neq try(u) and try(v) $\neq \varphi(u)$ for all neighbors $u \in N(v)$, set $\varphi(v) \leftarrow \operatorname{trv}(v)$.

1. For $c \log n$ rounds

1.1 Each uncolored node $(\varphi(v) = \bot)$ picks a random color try $(v) \in \{1, ..., 2\Delta\}$ u.a.r 1.2 If the color try(v) is s.t. try $(v) \neq$ try(u) and try $(v) \neq \varphi(u)$ for all neighbors $u \in N(v)$, set $\varphi(v) \leftarrow$ try(v).

In every round, each uncolored node has a probability $\geq 1/2$ to get colored. \Rightarrow everyone gets colored w.h.p. $1 - n^{-c}$.

- 1. For $c \log n$ rounds
 - 1.1 Each uncolored node ($\varphi(v) = \bot$) picks a random color try(v) $\in \{1, ..., 2\Delta\}$ u.a.r
 - 1.2 If the color try(v) is s.t. try(v) \neq try(u) and try(v) $\neq \varphi(u)$ for all neighbors $u \in N(v)$, set $\varphi(v) \leftarrow$ try(v).

In every round, each uncolored node has a probability $\geq 1/2$ to get colored. \Rightarrow everyone gets colored w.h.p. $1 - n^{-c}$.

Key observation: Sampling is non-adaptive.

- 1. For $c \log n$ rounds
 - 1.1 Each uncolored node ($\varphi(v) = \bot$) picks a random color try(v) $\in \{1, ..., 2\Delta\}$ u.a.r
 - 1.2 If the color try(v) is s.t. try(v) \neq try(u) and try(v) $\neq \varphi(u)$ for all neighbors $u \in N(v)$, set $\varphi(v) \leftarrow$ try(v).

In every round, each uncolored node has a probability $\geq 1/2$ to get colored. \Rightarrow everyone gets colored w.h.p. $1 - n^{-c}$.

Key observation: Sampling is non-adaptive.

In terms of palette sparsification: W.h.p., each node sampling $\Theta(\log n)$ colors out of $\{1, ..., 2\Delta\}$ results in a list-coloring problem with a solution.

Starter bonus properties: coloring not just existential

Suppose following scenario:

- 1. Every node v samples its list $L(v) \subseteq \{1, \ldots, 2\Delta\}$ of size $\Theta(\log n)$.
- 2. We forget about edges uv s.t. $L(u) \cap L(v) = \emptyset$ (getting the sparsified graph \widetilde{G}),
- 3. We attempt to color the graph communicating only on \widetilde{G} .

Starter bonus properties: coloring not just existential

Suppose following scenario:

- 1. Every node v samples its list $L(v) \subseteq \{1, \ldots, 2\Delta\}$ of size $\Theta(\log n)$.
- 2. We forget about edges uv s.t. $L(u) \cap L(v) = \emptyset$ (getting the sparsified graph \widetilde{G}),
- 3. We attempt to color the graph communicating only on \widetilde{G} .

W.h.p., this is still easy here: we can basically still run the same algorithm.

Starter bonus properties: coloring not just existential

Suppose following scenario:

- 1. Every node v samples its list $L(v) \subseteq \{1, \ldots, 2\Delta\}$ of size $\Theta(\log n)$.
- 2. We forget about edges uv s.t. $L(u) \cap L(v) = \emptyset$ (getting the sparsified graph \widehat{G}),
- 3. We attempt to color the graph communicating only on \widetilde{G} .

W.h.p., this is still easy here: we can basically still run the same algorithm.

But in general, can't expect existence to mean easily computable, especially across all models

Topic of this talk: Distributed Palette Sparsification Theorem

Theorem (Flin, Ghaffari, Halldórsson, Kuhn, and N. [FGH+24])

Suppose that each node in a graph G samples $\Theta(\log^2 n)$ colors u.a.r. from $[\Delta + 1]$. There is a distributed message-passing algorithm operating on the sparsified graph, that computes a valid list-coloring in $O(\log^2 \Delta + \log^3 \log n)$ rounds with high probability, using $O(\log n)$ -bit messages. In particular, each node needs to communicate with only $O(\log^4 n)$ different neighbors.

Topic of this talk: Distributed Palette Sparsification Theorem

Theorem (Flin, Ghaffari, Halldórsson, Kuhn, and N. [FGH+24])

Suppose that each node in a graph G samples $\Theta(\log^2 n)$ colors u.a.r. from $[\Delta + 1]$. There is a distributed message-passing algorithm operating on the **sparsified graph**, that computes a valid list-coloring in $O(\log^2 \Delta + \log^3 \log n)$ rounds with high probability, using $O(\log n)$ -bit messages. In particular, each node needs to communicate with only $O(\log^4 n)$ different neighbors.

We are interested in the <u>high</u> Δ setting, \geq poly log *n*. (No need to sparsify if the number of colors is already small).

Topic of this talk: Distributed Palette Sparsification Theorem

Theorem (Flin, Ghaffari, Halldórsson, Kuhn, and N. [FGH+24])

Suppose that each node in a graph G samples $\Theta(\log^2 n)$ colors u.a.r. from $[\Delta + 1]$. There is a distributed message-passing algorithm operating on the **sparsified graph**, that computes a valid list-coloring in $O(\log^2 \Delta + \log^3 \log n)$ rounds with high probability, using $O(\log n)$ -bit messages. In particular, each node needs to communicate with only $O(\log^4 n)$ different neighbors.

We are interested in the high Δ setting, \geq poly log *n*. (No need to sparsify if the number of colors is already small).

Goal: Designing a coloring algorithm s.t. w.h.p. at the end 1) everyone is colored; 2) each node sampled $O(\log^2 n)$ colors, and 3) the samples were non-adaptive.

Suppose our graph G = (V, E) is just one of more $\Delta + 1$ -cliques.

- Diameter of the sparsified graph when sampling poly log *n* colors?
- How many times can each color be used?

Suppose our graph G = (V, E) is just one of more $\Delta + 1$ -cliques.

- Diameter of the sparsified graph when sampling poly log n colors?
 → D(G̃) ∈ Ω(log Δ/ log log n)
- How many times can each color be used?

Suppose our graph G = (V, E) is just one of more $\Delta + 1$ -cliques.

- Diameter of the sparsified graph when sampling poly log n colors?
 → D(G̃) ∈ Ω(log Δ/ log log n)
- How many times can each color be used? Exactly once per clique.

Suppose our graph G = (V, E) is just one of more $\Delta + 1$ -cliques.

- Diameter of the sparsified graph when sampling poly log n colors?
 → D(G̃) ∈ Ω(log Δ/ log log n)
- How many times can each color be used? Exactly once per clique.

Coloring such a graph corresponds to finding a perfect matching in the bipartite graph (V, C, E) with an edge between $vc \in V \times C$ iff color c is sampled by v.

Suppose our graph G = (V, E) is just one of more $\Delta + 1$ -cliques.

- Diameter of the sparsified graph when sampling poly log n colors?
 → D(G̃) ∈ Ω(log Δ/ log log n)
- How many times can each color be used? Exactly once per clique.

Coloring such a graph corresponds to finding a perfect matching in the bipartite graph (V, C, E) with an edge between $vc \in V \times C$ iff color c is sampled by v.

Theorem (Flin, Ghaffari, Halldórsson, Kuhn, and N. [FGH⁺24])

Any LOCAL algorithm that operates on the sparsified graph and computes a $(\Delta + 1)$ -coloring with at least a constant probability of success needs $\Omega\left(\frac{\log \Delta}{\log \log n}\right)$ rounds. This holds even if the original graph is a $(\Delta + 1)$ -clique, even if the distributed algorithm running on the sparsified graph uses unbounded messages, and even if each node samples a large poly log n number of colors in the sparsification.

Before we dive into the algorithm

Any questions at this point?

Multiple versions of this kind of ideas have appeared now [Ree98, HSS18, ACK19, CLP20, AA20, AW22, AKM22, HKNT22, FHM23, FHN24]. For this result, one of the simpler versions.

Multiple versions of this kind of ideas have appeared now [Ree98, HSS18, ACK19, CLP20, AA20, AW22, AKM22, HKNT22, FHM23, FHN24]. For this result, one of the simpler versions.

Definition (Sparsity)

The *sparsity* of a node v is the value $\zeta_v = \frac{1}{\Delta} \left(\binom{\Delta}{2} - |E(N(v))| \right)$. We say a node is ζ -sparse if $\zeta_v \geq \zeta$, otherwise it is ζ -dense.

Definition (Sparsity)

The *sparsity* of a node v is the value $\zeta_v = \frac{1}{\Delta} \left(\binom{\Delta}{2} - |E(N(v))| \right)$. We say a node is ζ -sparse if $\zeta_v \geq \zeta$, otherwise it is ζ -dense.

Definition (Sparsity)

The *sparsity* of a node v is the value $\zeta_v = \frac{1}{\Delta} \left(\binom{\Delta}{2} - |E(N(v))| \right)$. We say a node is ζ -sparse if $\zeta_v \geq \zeta$, otherwise it is ζ -dense.

Definition (Sparsity)

The *sparsity* of a node v is the value $\zeta_v = \frac{1}{\Delta} \left(\binom{\Delta}{2} - |E(N(v))| \right)$. We say a node is ζ -sparse if $\zeta_v \geq \zeta$, otherwise it is ζ -dense.

Definition (Sparsity)

The *sparsity* of a node v is the value $\zeta_v = \frac{1}{\Delta} \left(\binom{\Delta}{2} - |E(N(v))| \right)$. We say a node is ζ -sparse if $\zeta_v \geq \zeta$, otherwise it is ζ -dense.

Sparsity allows to generate slack as repeated colors around a node. [EPS15]

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

Definition (Sparsity)

The *sparsity* of a node v is the value $\zeta_v = \frac{1}{\Delta} \left(\binom{\Delta}{2} - |E(N(v))| \right)$. We say a node is ζ -sparse if $\zeta_v \geq \zeta$, otherwise it is ζ -dense.

- Sparsity allows to generate slack as repeated colors around a node. [EPS15]
- A dense node cannot really be dense on its own, it is part of an *almost-clique*.

First ingredient: sparse-dense decomposition (continued)

Definition (Almost-Clique Decomposition)

For $\epsilon \in (0, 1/3)$, a ϵ -almost-clique decomposition is a partitioning of the vertices into sets V_{sparse} , C_1, \ldots, C_k for some k such that:

1. All $v \in V_{\text{sparse}}$ are $\Omega(\epsilon^2 \Delta)$ -sparse.

2. For any $i \in [k]$, almost-clique C_i has the following properties:

 $\begin{array}{ll} 2.1 & |C_i| \leq (1+\epsilon)\Delta; \\ 2.2 & |N(v) \cap C_i| \geq (1-\epsilon)\Delta \text{ for all nodes } v \in C_i. \end{array}$

First ingredient: sparse-dense decomposition (continued)

Definition (Almost-Clique Decomposition)

For $\epsilon \in (0, 1/3)$, a ϵ -almost-clique decomposition is a partitioning of the vertices into sets V_{sparse} , C_1, \ldots, C_k for some k such that:

1. All $v \in V_{\text{sparse}}$ are $\Omega(\epsilon^2 \Delta)$ -sparse.

2. For any $i \in [k]$, almost-clique C_i has the following properties:

A Nolin

2.1 $|C_i| \le (1 + \epsilon)\Delta$; 2.2 $|N(v) \cap C_i| \ge (1 - \epsilon)\Delta$ for all nodes $v \in C_i$.

WAND@DISC 2024 - Madrid, 01.11.2024

First ingredient: sparse-dense decomposition (continued)

Definition (Almost-Clique Decomposition)

For $\epsilon \in (0, 1/3)$, a ϵ -almost-clique decomposition is a partitioning of the vertices into sets V_{sparse} , C_1, \ldots, C_k for some k such that:

1. All $v \in V_{\text{sparse}}$ are $\Omega(\epsilon^2 \Delta)$ -sparse.

2. For any $i \in [k]$, almost-clique C_i has the following properties:

2.1 $|C_i| \leq (1+\epsilon)\Delta$; 2.2 $|N(v) \cap C_i| \geq (1-\epsilon)\Delta$ for all nodes $v \in C_i$.

- External degree of $v \in C$: $e_v = |N(v) \setminus C|$
- Anti-degree of $v \in C$: $a_v = |C \setminus N(v)|$
- Average anti-degree in an almost-clique $C: \bar{a}_C$

Coloring a Mostly Forgotten Graph - A. Nolin - WAND@DISC 2024 - Madrid, 01.11.2024

But almost-clique decompositions in the sparsified graph?

Goal is to compute an almost-clique decomposition of the *original graph* G while having only access to the *sparsified graph* \tilde{G} . Is that possible?

But almost-clique decompositions in the sparsified graph?

Goal is to compute an almost-clique decomposition of the *original graph* G while having only access to the *sparsified graph* \widetilde{G} . Is that possible?

No problem!

- If two nodes shared many neighbors pre-sparsification, they still do post-sparsification, and reciprocally.
- If a node shared many neighbors with most of its neighbors pre-sparsification, it is still true post-sparsification.

But almost-clique decompositions in the sparsified graph?

Goal is to compute an almost-clique decomposition of the *original graph* G while having only access to the *sparsified graph* \tilde{G} . Is that possible?

No problem!

- If two nodes shared many neighbors pre-sparsification, they still do post-sparsification, and reciprocally.
- If a node shared many neighbors with most of its neighbors pre-sparsification, it is still true post-sparsification.

Biggest difference is that computing the almost-clique decomposition becomes a $O(\log \Delta)$ -round algorithm instead of O(1).

Main course: the algorithm

(All happening in a sparsified graph)

- 1. Compute the almost-clique decomposition.
- 2. Generate slack for sparse nodes and dense nodes with high external degree.
- 3. Color the dense nodes with high external degree $\geq \Delta/\log n$ and almost-cliques containing many such nodes.

Only leaves uncolored the densest almost-cliques, of low external degree.

- 4. Compute a colorful matching in each almost-clique.
- 5. Reduce the number of uncolored nodes to $O(\Delta / \log n)$ in each almost-clique through $O(\log n \log \log n)$ (non-adaptive) random color trials.
- 6. Finish the coloring in each almost-clique using augmenting paths.

Preprocessing steps

- 1. Compute the almost-clique decomposition.
- 2. Generate slack for sparse nodes and dense nodes with high external degree.
- 3. Color the dense nodes with high external degree $\geq \Delta / \log n$ and almost-cliques containing many such nodes.

Only leaves uncolored the densest almost-cliques, of low external degree.

Regarding slack: In just one round of each node trying a random color in $\{1, \ldots, \Delta + 1\}$ with constant probability, nodes of sparsity ζ_{ν} get $\Omega(\zeta_{\nu})$ repeated colors in their neighborhood w.p. $\geq 1 - \exp(-\Omega(\zeta_{\nu}))$. [EPS15]

Preprocessing steps

- 1. Compute the almost-clique decomposition.
- 2. Generate slack for sparse nodes and dense nodes with high external degree.
- 3. Color the dense nodes with high external degree $\geq \Delta / \log n$ and almost-cliques containing many such nodes.

Only leaves uncolored the densest almost-cliques, of low external degree.

Regarding slack: In just one round of each node trying a random color in $\{1, \ldots, \Delta + 1\}$ with constant probability, nodes of sparsity ζ_{ν} get $\Omega(\zeta_{\nu})$ repeated colors in their neighborhood w.p. $\geq 1 - \exp(-\Omega(\zeta_{\nu}))$. [EPS15]

Regarding high external degree nodes: with $\Delta / \log n$ slack, each color tried has a probability $\geq 1 / \log n$ to be free.

Trying log *n* colors implies constant probability of success. Doing it for log log *n* rounds reduces degree to $\Delta/\log n$, reducing competition, allowing to finish in log Δ extra attempts.

Back to the main course: the algorithm

(All happening in a sparsified graph)

- 1. Compute the almost-clique decomposition.
- 2. Generate slack for sparse nodes and dense nodes with high external degree.
- Color the dense nodes with high external degree ≥ Δ/ log n and almost-cliques containing many such nodes.

Only leaves uncolored the densest almost-cliques, of low external degree.

- 4. Compute a colorful matching in each almost-clique.
- 5. Reduce the number of uncolored nodes to $O(\Delta / \log n)$ in each almost-clique through $O(\log n \log \log n)$ (non-adaptive) random color trials.
- 6. Finish the coloring in each almost-clique using augmenting paths.

Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Coloring a Mostly Forgotten Graph -A. Nolin - WAND@DISC 2024 - Madrid, 01.11.2024

Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Coloring a Mostly Forgotten Graph – WAND@DISC 2024 – Madrid, 01.11.2024 A. Nolin

Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Coloring a Mostly Forgotten Graph – WAND@DISC 2024 – Madrid, 01.11.2024 A. Nolin

Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Can find such a matching of size $\Omega(\bar{a}_C/\varepsilon).$

Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Can find such a matching of size $\Omega(\bar{a}_C/\varepsilon).$

Guarantees that outside of this matching, we can afford to use each color only once in the almost-clique. An almost-clique of size $> \Delta + 1 + x$ gets a colorful matching of size > x.

Exploiting the missing edges in an almost-clique to the fullest. Obtained by sampling.

Can find such a matching of size $\Omega(\bar{a}_C/\varepsilon).$

Guarantees that outside of this matching, we can afford to use each color only once in the almost-clique. An almost-clique of size $> \Delta + 1 + x$ gets a colorful matching of size > x.

Important property for computing it: two nodes in an almost-clique whose lists of colors intersect are at distance 2 w.h.p. in the sparsified graph.

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

Limit of trying random colors

While a large part of the almost-clique is uncolored, having nodes sample a random color in $\{1, \ldots, \Delta + 1\}$ and keep it if free is efficient. But it soon runs into a corner.

Limit of trying random colors

While a large part of the almost-clique is uncolored, having nodes sample a random color in $\{1, \ldots, \Delta + 1\}$ and keep it if free is efficient. But it soon runs into a corner.

Most extreme example: how does the last uncolored node in the almost-clique color itself? Each random color it samples is only free with probability $O(1/\Delta)$.

Augmenting paths

We can't have a node successfully color itself on its own. So we make it a group effort.

Coloring a Mostly Forgotten Graph – WAND@DISC 2024 – Madrid, 01.11.2024 A. Nolin
We can't have a node successfully color itself on its own. So we make it a group effort.

We can't have a node successfully color itself on its own. So we make it a group effort.

We can't have a node successfully color itself on its own. So we make it a group effort.

We can't have a node successfully color itself on its own. So we make it a group effort.

We can't have a node successfully color itself on its own. So we make it a group effort.

Works, but potentially long: make it faster with more samples!

We can't have a node successfully color itself on its own. So we make it a group effort.

Works, but potentially long: make it faster with more samples! And careful when doing it with multiple nodes at once.

We can't have a node successfully color itself on its own. So we make it a group effort.

Works, but potentially long: make it faster with more samples! And careful when doing it with multiple nodes at once.

Harvesting trees

Let k be the number of uncolored nodes in a clique C.

Suppose some node v has a tree $T(v) \subseteq C$ s.t.:

- *v* is the root of the tree,
- For each node u in the tree, its parent could recolor itself with the color $\phi(u)$ of its child.
- For each node *u* in the tree, no neighbor of *u* outside the clique is attempting to recolor itself with one of the same color.
- The number of leaves of the tree is $\Theta(\Delta/k)$.

Harvesting trees

Let k be the number of uncolored nodes in a clique C.

Suppose some node v has a tree $T(v) \subseteq C$ s.t.:

- *v* is the root of the tree,
- For each node u in the tree, its parent could recolor itself with the color $\phi(u)$ of its child.
- For each node *u* in the tree, no neighbor of *u* outside the clique is attempting to recolor itself with one of the same color.
- The number of leaves of the tree is $\Theta(\Delta/k)$.

Most leaves have a probability of at least $\Omega(k/\Delta)$ to sample a free color when performing a random sample (k uncolored nodes essentially means k free colors).

Harvesting trees

Let k be the number of uncolored nodes in a clique C.

Suppose some node v has a tree $T(v) \subseteq C$ s.t.:

- *v* is the root of the tree,
- For each node u in the tree, its parent could recolor itself with the color φ(u) of its child.
- For each node *u* in the tree, no neighbor of *u* outside the clique is attempting to recolor itself with one of the same color.
- The number of leaves of the tree is $\Theta(\Delta/k)$.

Most leaves have a probability of at least $\Omega(k/\Delta)$ to sample a free color when performing a random sample (k uncolored nodes essentially means k free colors).

The $\Theta(\Delta/k)$ leaves give a constant success probability to the root to have an augmenting path in the tree.

How can this work?

We increase the degree of trees as k goes down, always s.t. the trees have a total of $\Theta(\Delta/k)$ leaves in total.

Not all leaves are useful to reach, but many are, and leaves are randomly distributed.

How can this work?

We increase the degree of trees as k goes down, always s.t. the trees have a total of $\Theta(\Delta/k)$ leaves in total.

Not all leaves are useful to reach, but many are, and leaves are randomly distributed. k large ($\geq \Omega(\log n)$): Leaves try one color.

Get concentration from the large number of trees being grown.

How can this work?

We increase the degree of trees as k goes down, always s.t. the trees have a total of $\Theta(\Delta/k)$ leaves in total.

Not all leaves are useful to reach, but many are, and leaves are randomly distributed. k large ($\geq \Omega(\log n)$): Leaves try one color.

Get concentration from the large number of trees being grown.

k small ($\leq O(\log n)$): Leaves try $\Theta(\log n)$ colors.

We gather in the almost-clique the knowledge of augmenting paths, and compute a matching.

Get concentration in each tree: each node should have $\Omega(k)$ augmenting paths to choose from.

All is well that ends well

Irrespective of the number of nodes that remain uncolored, we manage to color a constant fraction of them by growing trees and selecting a set of augmenting paths in them.

All is well that ends well

Irrespective of the number of nodes that remain uncolored, we manage to color a constant fraction of them by growing trees and selecting a set of augmenting paths in them.

 $\Theta(\log \Delta)$ iterations, each consisting of growing augmenting paths of length $O(\log \Delta)$, colors everything.

Consequences

Algorithms for the following models:

- LocalStream model: nodes first receive their incident edges as a stream together with randomness from the other endpoint, can only store a few of them, then standard CONGEST on the remembered graph.
- Coloring cluster graphs in poly log *n* rounds (now superseded by [FHN24])
- Node capacitated clique: congested clique where nodes can only send and receive poly log *n* messages in a round. We get the first poly log *n* algorithm for this model.

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of subsampling a more constrained smaller instance.

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of subsampling a more constrained smaller instance.

What should be done next?

What other problems have results of this flavor? (palette sparsification / random partial commitment)
 Defective coloring (≈ splitting)? Some LLLs?

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of subsampling a more constrained smaller instance.

What should be done next?

- What other problems have results of this flavor? (palette sparsification / random partial commitment) Defective coloring (≈ splitting)? Some LLLs?
- Can we leverage this for high-congestion problems? Typically, coloring power graphs, e.g. G³. Issue: How to find the 3-hop surviving edges?

What have we learned?

1. Standard coloring can be a remarkably flexible problem, with this possibility of subsampling a more constrained smaller instance.

What should be done next?

- What other problems have results of this flavor? (palette sparsification / random partial commitment) Defective coloring (≈ splitting)? Some LLLs?
- Can we leverage this for high-congestion problems? Typically, coloring power graphs, e.g. G³. Issue: How to find the 3-hop surviving edges?

Enjoy the rest of your holiday!

Noga Alon and Sepehr Assadi.

Palette sparsification beyond ($\Delta + 1$) vertex coloring.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 176 of LIPIcs, pages 6:1–6:22. LZI, 2020.

- Sepehr Assadi, Yu Chen, and Sanjeev Khanna.
 Sublinear algorithms for (Δ + 1) vertex coloring.
 In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 767–786, 2019.
 Full version at arXiv:1807.08886.
- Sepehr Assadi, Pankaj Kumar, and Parth Mittal. Brooks' theorem in graph streams: a single-pass semi-streaming algorithm for Δ-coloring.
 - In STOC, pages 234-247. ACM, 2022.

Sublinear time and space algorithms for correlation clustering via sparse-dense decompositions.

In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (Δ + 1)-coloring via ultrafast graph shattering. SIAM Journal of Computing, 49(3):497–539, 2020.

Abhishek Dhawan.

Palette sparsification for graphs with sparse neighborhoods. *CoRR*, abs/2408.08256, 2024.

Michael Elkin, Seth Pettie, and Hsin-Hao Su. $(2\Delta - 1)$ -edge-coloring is much easier than maximal matching in the distributed setting. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 355–370, 2015.

Maxime Flin, Mohsen Ghaffari, Magnús M. Halldórsson, Fabian Kuhn, and Alexandre Nolin.

A distributed palette sparsification theorem.

In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024.

Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus. Fast distributed Brooks' theorem.

In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2567–2588. SIAM, 2023.

Maxime Flin, Magnús M. Halldórsson, and Alexandre Nolin.
Decentralized Distributed Graph Coloring II: Degree+1-Coloring Virtual Graphs.

In the Proceedings of the International Symposium on Distributed Computing (DISC), volume 319, pages 24:1–24:22, 2024.

- Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal distributed degree+1 coloring.
 In STOC, pages 450–463. ACM, 2022.
- David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed ($\Delta + 1$)-coloring in sublogarithmic rounds. *Journal of the ACM*, 65:19:1–19:21, 2018.

Bruce A. Reed.

ω, Δ, and χ . J. Graph Theory, 27(4):177–212, 1998.

边

Coloring a Mostly Forgotten Graph – A. Nolin – WAND@DISC 2024 – Madrid, 01.11.2024

