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Abstract

Polynomial models are ubiquitous in computer science, arising in the study of automata
and formal languages, optimisation, game theory, control theory, and numerous other ar-
eas. In this thesis, we consider models described by polynomial systems of equations and
difference equations, where the system evolves through a set of discrete time steps with
polynomial updates at every step. We explore three aspects of zero problems for polyno-
mial models: zero testing for algebraic expressions given by polynomials, determining the
existence of zeros for polynomial systems and determining the existence of zeros for se-
quences satisfying recurrences with polynomial coefficients.

In the first part, we study identity testing for algebraic expressions involving radicals.
That is, given a k-variate polynomial represented by an algebraic circuit and k real radicals,
we examine the complexity of determining whether the polynomial vanishes on the radical
input. We improve on the existing PSPACE bound, placing the problem in coNP assuming
the Generalised Riemann Hypothesis (GRH). We further consider a restricted version of the
problem, where the inputs are square roots of odd primes, showing that it can be decided
in randomised polynomial time assuming GRH.

We next consider systems of polynomial equations, and study the complexity of de-
termining whether a system of polynomials with polynomial coefficients has a solution.
We present a number-theoretic approach to the problem, generalising techniques used for
identity testing, showing the problem belongs to the complexity class AM assuming GRH.
We discuss how the problem relates to determining the dimension of a complex variety,
which is also known to belong to AM assuming GRH.

In the final part of this thesis, we turn our attention to sequences satisfying recurrences
with polynomial coefficients. We study the question of whether zero is a member of a
polynomially recursive sequence arising as a sum of two hypergeometric sequences. More
specifically, we consider the problem for sequences where the polynomial coefficients split
over the field of rationals Q. We show its relation to the values of the Gamma function
evaluated at rational points, which allows to establish decidability of the problem under
the assumption of the Rohrlich-Lang conjecture. We propose a different approach to the
problem based on studying the prime divisors of the sequence, allowing us to establish
unconditional decidability of the problem.

Keywords: Algebraic Circuits, Computational Complexity, Decision Procedures, Hyper-
geometric Sequences, Identity Testing in Number Fields, Randomised Algorithms, Reacha-
bility
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Résumé

Les modèles polynomiaux sont omniprésents en informatique, dans l’étude des auto-
mates et des langages formels, de l’optimisation, de la théorie des jeux, de la théorie du
contrôle et de nombreux autres domaines. Dans cette thèse, nous considérons des modèles
décrits par des systèmes d’équations polynomiales et des équations différentielles, où le
système évolue à travers un ensemble discret de pas de temps avec des mises à jour polyno-
miales à chaque pas. Nous explorons trois aspects des problèmes de zéros pour les modèles
polynomiaux : le test d’identité pour les expressions algébriques données par des poly-
nômes, la détermination de l’existence de racines pour les systèmes polynomiaux et la dé-
termination de l’existence de zéros dans les suites satisfaisant des récurrences à coefficients
polynomiaux.

Dans la première partie, nous étudions les tests d’identité pour les expressions algé-
briques impliquant des radicaux. En d’autres termes, étant donné un polynôme à k variables
représenté par un circuit algébrique et k radicaux réels, nous examinons la complexité de
déterminer si le polynôme s’annule sur l’entrée. Nous améliorons la borne PSPACE exis-
tante, en plaçant le problème dans coNP en supposant l’hypothèse de Riemann généralisée
(HRG). Nous considérons ensuite une version restreinte du problème, où les entrées sont
des racines carrées de nombres premiers impairs, montrant qu’il peut être résolu en temps
polynomial randomisé en supposant HRG.

Nous considérons ensuite les systèmes d’équations polynomiales et étudions la com-
plexité de déterminer si un système de polynômes à coefficients polynomials a une solution.
Nous présentons une approche du problème basée sur la théorie des nombres, généralisant
les techniques utilisées pour les tests d’identité, et montrons que le problème appartient à la
classe de complexitéAM en supposant HRG. Nous analysons le lien entre ce problème et le
problème de la détermination de la dimension d’une variété complexe, dont l’appartenance
à AM a déjà été prouvé supposant HRG.

Dans la dernière partie de cette thèse, nous analysons les suites satisfaisant des ré-
currences à coefficients polynomiaux. Nous étudions la question de savoir si zéro appar-
tient d’une suite récursive polynomiale résultant d’une somme de deux suites hypergéomé-
triques. Plus précisément, nous considérons le problème pour les suites dont les coefficients
polynomiaux se décomposent dans le corps des rationnels Q. Nous montrons sa relation
avec les valeurs de la fonction Gamma évaluées en des points rationnels, ce qui permet
d’établir la décidabilité du problème supposant la conjecture de Rohrlich-Lang. Nous pro-
posons une nouvelle approche basée sur l’étude des diviseurs premiers de la suite, ce qui
nous permet d’établir la décidabilité inconditionnelle du problème.
Mots clés : circuits algébriques, complexité de calcul, procédures de décision, suites hy-
pergéométriques, test d’identité dans les corps de nombres, algorithmes randomisés, attei-
gnabilité
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Résumé substantiel en français

Les polynômes sont les éléments constitutifs de nombreux modèles mathématiques en
physique, chimie, biologie, économie, et dans de nombreuses autres disciplines. Calculer
avec des polynômes est fondamental. En effet, nous apprenons tous à résoudre des équa-
tions quadratiques à l’école — mais comment feriez-vous pour trouver les zéros d’un po-
lynôme de degré supérieur? Ou mieux encore, pour résoudre tout un système d’équations
polynomiales ?

Ces questions apparemment simples sont parmi les problèmes les plus classiques des
mathématiques. Au début du XIXe siècle, par exemple, le résultat révolutionnaire de Ga-
lois a été de caractériser les polynômes qui sont résolubles par radicaux. À la fin du même
siècle, Hilbert donne une condition caractérisant quand un système d’équations polyno-
miales n’est pas satisfaisable.

Avec le développement de l’informatique au XXe siècle, un nouveau point de vue sur
les problèmes liés aux polynômes s’est présenté. Dans le contexte du calcul, de nombreuses
nouvelles questions se posent : comment pouvons-nous représenter les polynômes de ma-
nière succincte? Et quelle est la complexité de calcul avec de telles représentations suc-
cinctes? Ici, calculer implique aussi bien déterminer si un polynôme s’annule sur une entrée
donnée que trouver les zéros de polynômes, ou déterminer la satisfaisabilité de systèmes
polynomiaux. Ces problèmes sont centraux dans la théorie de la complexité algébrique.

De nombreux résultatsmathématiques sont constructifs, ce qui signifie que leurs preuves
peuvent être interprétées comme une liste d’instructions permettant de construire la solu-
tion au problème computationnel associé — ou, en d’autres termes, un algorithme. Il existe
cependant aussi un grand nombre de résultatsmathématiques qui caractérisent les solutions
des problèmes sans donner d’indication sur la manière de les construire effectivement. Pour
donner un exemple, nous pouvons simplement revenir à la question par laquelle nous avons
commencé. Il est bien connu que le corps des nombres complexes est algébriquement clos ;
ainsi, étant donné un polynôme à coefficients entiers de degré positif, nous savons qu’il
aura un zéro dans les nombres complexes. En revanche, écrire un algorithme permettant de
trouver un tel zéro n’est pas du tout évident. Et, comme nous le verrons plus tard, le rendre
efficace l’est encore moins.

Trouver les contreparties algorithmiques (efficaces) des résultats non constructifs a été
et reste l’un des grands défis de l’informatique théorique. Dans cette thèse, nous considérons
les aspects algorithmiques de cas spécifiques de problèmes de zéro pour des polynômes et
des systèmes de polynômes. Nous allons un pas plus loin, et considérons également les
problèmes de zéro pour des suites récurrentes à coefficients polynomiaux.
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Contributions et organisation de la thèse
Nous étudions trois problèmes de zéro distincts pour des modèles polynomiaux.

Test d’identité pour les expressions de radicaux. Le test d’identité est une question
algorithmique fondamentale avec de nombreuses applications. Dans le test d’identité al-
gébrique, la tâche est de déterminer l’annulation d’une expression évaluée dans un anneau
donné. Ce problème a de nombreuses versions différentes, selon la syntaxe de l’expression et
l’anneau dans lequel l’évaluation doit être effectuée. Une instance de base du test d’identité
algébrique est le problème de test d’identité de circuits arithmétiques (ACIT), qui consiste
à décider de l’annulation d’un entier représenté par un circuit arithmétique. La difficulté
de ce problème est que l’entier peut avoir une taille de bit exponentielle en fonction de la
taille du circuit. Cependant, le problème admet un algorithme probabiliste en temps poly-
nomial : on évalue le circuit modulo un nombre premier choisi au hasard dans un certain
intervalle [1].

Dans cette thèse, nous étudions la complexité du problème de test d’identité pour les
expressions de radicaux (RIT), c’est-à-dire, tester l’annulation d’une expression en radicaux,
représentée par un circuit algébrique. Cela généralise le problème ACIT : l’évaluation du
circuit se produit dans l’anneau des entiers d’un corps de nombres, plutôt que dans l’anneau
des entiers des nombres rationnels. Formellement, le problème RIT demande, étant donné
un circuit algébrique représentant un polynôme multivarié f(x1, . . . , xk) ∈ Z[x1, . . . , xk],
et des entrées radicales d1

√
a1, . . . ,

dk
√
ak où les radicandes ai, et les exposants di sont des

entiers non négatifs, de déterminer si l’égalité

f(
d1
√
a1, . . . ,

dk
√
ak) = 0

est vérifiée.
Une première borne de complexité pour le problème suit d’une réduction à la théorie

existentielle des réels, qui est connue appartenir à PSPACE [2]. La réduction se fait en
introduisant une nouvelle variable formelle pour chaque porte du circuit, et en ajoutant à
la formule les équations xdii − ai = 0 et xi > 0 pour chaque radical. Pour décider RIT, il
suffit maintenant de vérifier si le système résultant d’égalités et d’inégalités polynomiales
a une solution dans les nombres réels.

Nous présentons une approche symbolique pourRIT, qui place le problème dans coNP
en supposant l’Hypothèse de Riemann généralisée (HRG). L’idée principale derrière notre
algorithme est que si f( d1

√
a1, . . . ,

dk
√
ak) ̸= 0, alors il existe un témoin de longueur po-

lynomiale vérifiable en temps polynomial de ce fait — à savoir un nombre premier p et
α1, . . . , αk ∈ Fp, satisfaisant αdi

i ≡ ai (mod p), tel que f(α1, . . . , αk) est non nul, où f
est la réduction de f modulo p. La transitivité conjointe est cruciale pour notre approche :
c’est l’observation que le groupe de Galois du corps réel sous-jacent agit conjointement de
manière transitive sur les racines des différentes équations xdi − ai = 0. Cela nous per-
met d’utiliser n’importe lequel des di conjugués αi de di

√
ai dans Fp dans notre algorithme

symbolique pour tester si f(α1, . . . , αk) = 0. En utilisant le théorème de densité de Chebo-
tarev, et en choisissant un nombre premier approprié, nous montrons que RIT appartient à
coNP en supposant HRG . Nous observons en outre que la transitivité conjointe seule peut
être utilisée en conjonction avec un résultat de Koiran [3] pour placerRIT dans la classe de
complexitéAM en supposant HRG, ce qui nous permet de conclure queRIT ∈ AM∩coNP
sous HRG.
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Nous considérons ensuite un cas particulier de RIT à savoir 2-RIT où les entrées du
circuit sont des racines carrées de nombres premiers distincts, montrant que 2-RIT est
dans coRP en supposant HRG et dans coNP sans condition. Nos preuves reposent sur la
réciprocité quadratique et le théorème deDirichlet sur la densité des nombres premiers dans
les progressions arithmétiques. Enfin, nous généralisons également un algorithme existant
pour la variante bornée du problème, où l’entrée comprend également une borne supérieure
sur le degré du circuit.

Une variante paramétrique du problème de Nullstellensatz de Hilbert. Dans la
deuxième partie de cette thèse, nous nous intéressons aux systèmes de polynômes. En géo-
métrie algébrique, le théorème des zéros de Hilbert (aussi appelé le Nullstellensatz de Hil-
bert) est un résultat fondamental qui donne une condition caractérisant quand un système
d’équations polynomiales n’est pas satisfaisable. Étant donné un système d’équations po-
lynomiales

f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0 (1)

où fi ∈ K[x1, . . . , xn] pour K un corps algébriquement clos, la version faible du Null-
stellensatz dit que le système n’as pas de solution dans K si et seulement si il existe des
polynômes g1, . . . , gk ∈ K[x1, . . . , xn] tels que

k∑
i=1

figi = 1 . (2)

Un problème de calcul naturellement associé demande de déterminer si une famille don-
née de polynômes f1, . . . , fk a un zéro commun. Une version de ce problème, notée HNC,
demande de déterminer si un système donné d’équations polynomiales avec des coefficients
entiers admet une solution dans C.

La caractérisation donnée dans l’Équation (2) réduit essentiellementHNC à un problème
d’appartenance à un idéal, à savoir si la constante 1 appartient à l’idéal généré par les fi. Par
un résultat de Mayr et Meyer [4], cela place HNC dans la classe de complexité EXPSPACE.
D’un autre côté, il est facile de réduire le problème 3-SAT à HNC, ce qui le rend au moins
NP-difficile. Au fil des ans, divers Nullstellensätze Effectifs [5, 6, 7] ont donné des bornes de
degré à croissance exponentielle sur les gi, ce qui réduit le problème d’appartenance à un
idéal venant du Nullstellensatz à celui de la résolution d’un système d’équations linéaires
de taille exponentielle. Cela donne une borne supérieure en PSPACE pour HNC. Dans un
article influent [3, 8], Koiran a prouvé que HNC se trouve dans la classe de complexité AM
(et donc au deuxième niveau de la hiérarchie polynomiale) si l’on suppose le HRG.

Dans cette thèse, nous inspectons la complexité d’une version paramétrique du pro-
blème de Nullstellensatz de Hilbert (notée HNQ(x)), qui, étant donné un système de poly-
nômes f1, . . . , fk ∈ Z[x][y1, . . . , yn] pour x := (x1, . . . , xm), demande si ces polynômes
ont une solution dans Q(x). Ces systèmes d’équations polynomiales sont des objets cen-
traux d’étude en combinatoire algébrique et en théorie des langages formels, où ils sont
utilisés pour spécifier des fonctions génératrices d’objets combinatoires (voir, par exemple,
les revues dans [9, 10]), et leurs solutions correspondent à des séries formelles dans les
variables x1, . . . , xm.

Nous présentons une généralisation de la technique introduite dans [3, 8], permettant
l’utilisation d’arguments algébriques pour établir une réduction en temps polynomial aléa-
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toire deHNQ(x) àHNC. En particulier, étant donné un système de polynômes avec des coef-
ficients dans Z[x], nous calculons une borneD telle que si nous attribuons aux variables xi
des valeurs choisies uniformément au hasard parmi {1, . . . , D} et utilisons l’algorithme de
Koiran pour déterminer si le système spécialisé est satisfaisable dans C, avec une probabi-
lité suffisamment élevée, l’algorithme donnera une réponse correcte au problème surQ(x).
Nous montrons ainsi que HNQ(x) ∈ AM en supposant le HRG.

Nous discutons également de la relation de HNQ(x) avec le problème de déterminer si
une variété dans C a une dimension d’au moins d, que nous notons DIMC. Nous montrons
qu’avec une petite modification, le protocole AM pour DIMC de [11] s’applique également
à HNQ(x), fournissant ainsi une preuve alternative de la même borne de complexité.

Le problème d’appartenance pour les suites hypergéométriques. Dans la dernière
partie de cette thèse, nous nous concentrons sur les suites satisfaisant des récurrences à
coefficients polynomiaux. Nous étudions le problème de trouver un terme zéro dans une
suite donnée comme la somme de deux suites hypergéométriques, qui sont celles satisfai-
sant des récurrences de la forme p(n)un = q(n)un−1 avec des coefficients polynomiaux
p(x) et q(x). Le problème que nous considérons s’inscrit dans le cadre plus général des
tests de zéro pour les suites récursives. Peut-être que l’exemple le plus célèbre de ce type
de problème d’appartenance (ou d’atteignabilité) est le Problème de Skolem, qui demande
de décider de l’existence d’un terme zéro dans une suite définie par récurrence linéaire (à
coefficients constants). Pour la majorité des problèmes de ce type, leur statut de décida-
bilité reste largement ouvert. Par exemple, le Problème de Skolem est considéré comme
ouvert depuis au moins les années 1970, avec une décidabilité connue seulement pour les
récurrences linéaires d’ordre au plus quatre [12, 13].

Nousmontrons d’abord que le problème de trouver un terme zéro dans une suite donnée
comme la somme de deux suites hypergéométriques se réduit au problème d’appartenance
pour les suites hypergéométriques (MP), qui demande, étant donné une suite hypergéomé-
trique ⟨un⟩∞n=0 et une cible t ∈ Q, s’il existe un n tel que un = t. Nous étudions, en particu-
lier, la variante du problème pour les suites où les coefficients polynomiaux de l’équation
définissant la suite se décomposent dans Q, c’est-à-dire pour les suites hypergéométriques
avec des paramètres rationnels.

Nous commençons par rappeler la relation entre le comportement asymptotique d’un
produit de fonctions rationnelles et la fonction Gamma, une fonction étudiée en théorie
des nombres. Nous montrons que l’établissement de la décidabilité du Problème d’Appar-
tenance pour le cas des paramètres rationnels utilisant l’approche asymptotique est condi-
tionné à l’hypothèse de la conjecture de Rohrlich-Lang, qui concerne les expressions algé-
briques dans les valeurs Gamma.

Notre contribution principale est un résultat de décidabilité inconditionnelle pour la va-
riante du problème avec des paramètres rationnels. Nous abordons la décision du problème
d’appartenance sous un autre angle–spécifiquement, en considérant les diviseurs premiers
de un. Notre stratégie est de montrer que (à l’exception de quelques cas dégénérés) pour
tout n suffisamment grand, un a un diviseur premier p qui n’est pas également un diviseur
premier de la cible t. Cela nous permet de calculer une borne N telle que un ̸= t pour tout
n > N . Nous étudions les valuations p-adiques et, étant donné un élément un de notre suite,
déterminons les conditions sur les premiers p pour que p apparaisse dans la factorisation
de un (en termes de valuations, vp(un) ̸= 0), alors qu’il ne divise pas la cible t (c’est-à-dire
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vp(t) = 0). L’une des conditions en question est que p appartienne à une progression arith-
métique bien choisie. En fait, étant donné un premier p provenant de la progression, nous
calculons un ensemble de valeurs n telles que vp(un) ̸= 0. En utilisant des résultats clas-
siques sur la répartition des premiers dans les progressions arithmétiques, nous sommes
alors capables de construire une suite infinie de premiers ⟨pi⟩∞i=0 et de montrer l’existence
d’une borne N telle que l’ensemble des indices n pour lesquels vpi(un) ̸= 0 à mesure que i
tend vers l’infini couvre tous les n > N . Autrement dit, les pi témoignent que un ̸= t pour
tout n > N .

Structure de ce document. Nous commençons par un aperçu de l’état de l’art pour les
problèmes zéro que nous considérons dans le Chapitre 1. Dans le Chapitre 2, nous donnons
des préliminaires techniques relevant à la fois de l’informatique, notamment de la théorie
de la complexité, ainsi que des définitions algébriques et de la théorie des nombres. Tous
les chapitres suivants commencent par un renvoi à la section préliminaire pertinente pour
les résultats en question. Le Chapitre 3 est consacré à nos résultats sur les tests d’identité
pour les polynômes évalués sur des radicaux réels. Dans le Chapitre 4, nous considérons
le problème plus général de déterminer si un système d’équations polynomiales admet une
solution commune, en nous concentrant notamment sur les solutions paramétriques. Enfin,
dans le Chapitre 5, nous nous concentrons sur un problème de zéro sur les suites satisfaisant
des équations polynomiales récurrentes, dont nous montrons qu’il se réduit au problème
d’appartenance pour les suites hypergéométriques.
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Chapter 1

Introduction

Polynomials are the building blocks of many mathematical models in physics, chem-
istry, biology, economics, and numerous other disciplines. Computing with polynomials is
fundamental. Indeed, we all learn how to solve quadratic equations in school — but how
would you go about finding zeroes of a higher degree polynomial? Or better yet, solve a
whole system of polynomial equations?

Such seemingly simple questions are among some of the most classical problems in
mathematics. In the early 19th century, for example, Galois’s groundbreaking result was
characterising polynomials that admit solutions in radicals. At the end of the same cen-
tury, Hilbert’s fundamental result was giving a condition on when a system of polynomial
equations is not satisfiable.

With the development of computer science in the 20th century, a new angle to prob-
lems on polynomials presented itself. In the context of computation many new questions
arise: how can we represent polynomials in a succinct way? And how efficiently can we
compute with such succinct representations? Here, computing involves everything from
determining whether a polynomial vanishes on a given input, finding zeroes of polyno-
mials, or determining satisfiability of polynomial systems. These problems are central to
algebraic computational complexity theory.

Many mathematical results are constructive, meaning that their proofs can be inter-
preted as a list of steps allowing to construct the solution to the associated computational
problem — or, in other words, an algorithm. There are, however, also a large number of
mathematical results that characterise the solutions of problems without giving any indica-
tion on how to actually construct them. For an example, we can just go back to the question
we started with. It is well known that the field of complex numbers is algebraically closed;
thus, given a polynomial with integer coefficients of positive degree, we know that it will
have a zero in the complex numbers. Writing down an algorithm allowing to find such a
zero, on the other hand, is far from obvious. And, as we will see later, making it efficient
even more so.

Finding the (efficient) algorithmic counterparts of non-constructive results has been and
remains one of the big challenges in theoretical computer science. In this thesis we consider
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algorithmic aspects of specific cases of zero problems for polynomials and systems of poly-
nomials. We go one step further, and also consider zero problems for number sequences
defined by recursive equations with polynomial coefficients.

Contributions and organisation of the thesis

We study three distinct zero problems for polynomial models.

Identity Testing for Radical expressions. We study the complexity of the Radical Iden-
tity Testing (RIT) problem, which given an algebraic circuit representing a multivariate
polynomial f(x1, . . . , xk) ∈ Z[x1, . . . , xk], and radical inputs d1

√
a1, . . . ,

dk
√
ak where the

radicands ai, and exponents di are nonnegative integers, asks to determine whether the
equality

f(
d1
√
a1, . . . ,

dk
√
ak) = 0

holds.

We present a symbolic approach to the problem, placing it in coNP, assuming the gen-
eralised Riemann hypothesis (GRH), improving on the existing PSPACE upper bound. We
also consider a special case ofRIT namely 2-RITwhere the inputs to the circuit are square
roots of distinct primes, showing that 2-RIT is in coRP assuming GRH and in coNP un-
conditionally. Finally, we also generalise an existing algorithm for the bounded variant of
the problem, where the input also includes an upper bound on the degree of the circuit that
is given in unary.

A parametric variant of the Hilbert Nullstellensatz problem. We inspect the com-
plexity of a parametric version of the Hilbert Nullstellensatz (HN) problem, which given a
system of polynomials f1, . . . , fk ∈ Z[x][y1, . . . , yn] for x := (x1, . . . , xm), asks whether
they have a solution over Q(x).

We give a number-theoretic proof showing that the problem is in AM assuming GRH
via a reduction to HN over C. We further recall that the problem is closely related to the
problem of determining whether a variety over C has dimension least d, and show how the
AM algorithm for the dimension problem applies to parametric HN.

The Membership Problem for hypergeometric sequences. We study the problem
of finding a zero term in a sequence given as a sum of two hypergeometric sequences,
which are those satisfying recurrences of the form p(n)un = q(n)un−1 with polynomial
coefficients p(x) and q(x). We observe that the problem at hand reduces to the Membership
Problem for hypergeometric sequences (MP), which asks, given a hypergeometric sequence
⟨un⟩∞n=0 and a target t ∈ Q, whether there exists n with un = t.

We begin by recalling the relation between the asymptotic behaviour of a product of
rational functions to the Gamma function, a function studied in number theory. We show
that establishing decidability of the problem for the case of rational parameters using the
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asymptotic approach is conditioned to the assumption of the Rohrlich-Lang conjecture,
which concerns algebraic expressions in the Gamma values. Our main contribution is an
unconditional decidability result for the variant of the problem with rational coefficients,
which we obtain by analysing the prime divisors of the sequence. We show that (except
in some degenerate cases) for all sufficiently large n, un has a prime divisor p that is not
also a prime divisor of the target t. This allows us to compute a bound N such that un ̸= t
for all n > N , reducing the membership test for t to that of searching within the finite set
{u0, . . . , uN}.

Organisation of the thesis. In the present chapter we give an overview of the state of
the art for the zero problems that we consider. In Chapter 2, we give technical preliminaries
relevant both from computer science, notably complexity theory, as well as algebraic and
number-theoretic definitions. All following chapters begin with a pointer to the relevant
preliminary section for the results at hand. Chapter 3 is dedicated to our results on iden-
tity testing for polynomials evaluated on real radicals. In Chapter 4, we consider the more
general problem of determining whether a system of polynomial equations admits a com-
mon solution, focusing notably on parametric solutions. Finally, in Chapter 5, we shift our
focus to a zero problem on sequences satisfying polynomially recursive equations, which
we show reduces to the Membership Problem for hypergeometric sequences.

1.1 Zero testing for algebraic expressions

Identity testing is a fundamental problem in algorithmic algebra which asks to deter-
mine the zeroness of an expression evaluated in a given ring. The problem has many dif-
ferent variants, depending on the syntactic representation of the expression and the ring in
which evaluation is to be carried out. Arguably the simplest instance of algebraic identity
testing is the Arithmetic Circuit Identity Testing (ACIT) problem, which asks to decide the
zeroness of an integer represented by an arithmetic circuit. An example input to ACIT is
illustrated in Figure 1.1; recall that an algebraic circuit is a directed acyclic graph where
the leaves are labelled by constants (or variables when representing a polynomial), and the
inner vertices have labels in {+,−,×}. We define the size of the circuit to be the number
of addition, multiplication and subtraction gates.

While the problemmay seem simple, it is still open whether it can be decided in polyno-
mial time. A natural way to approach it could be to try to compute the integer in question
explicitly, or approximate it to sufficient precision in order to separate the value from zero.
The difficulty here is that the bitsize of an integer represented by a circuit can be exponen-
tial in the size of the circuit, precluding computing the integer and the intermediate values
appearing in the circuit (explicitly or just approximately) in polynomial time. However,
the problem has been shown to belong to the complexity class coRP in the late 70s [1].
The randomised polynomial time algorithm for the problem works by randomly choosing
a prime p, and performing the evaluation in the finite field Z/pZ ∼= Fp. If the computed
value is non-zero, then the integer represented by the circuit must be non-zero as well. On
the other hand, if the computed value in the finite field is zero, then either the integer really
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1

−
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s−1 + . . .+ 2 + 1

...
...

×28 + 27 + 26 + . . .+ 2 + 1
×

×24 + 23 + 22 + 2 + 1
×

×22 + 2 + 1

2 1

s times

Figure 1.1 – An algebraic circuit of size O(s) computing the integer 1 with intermediate
values of bit size exponential in the size of the circuit.

is zero, or p is one of its prime divisors. Since the integer is of bitsize at most exponential in
the circuit size, if we choose the prime p in a large enough range, the probability that p di-
vides the computed value is polynomially small in the size of the instance. By repeating the
randomised procedure polynomially many times, we can thus ensure the error probability
of a false positive is bounded below 1

2
, which places the problem in coRP.

TheACIT problem has been shown to be polynomial-time interreducible with the Poly-
nomial Identity Testing (PIT) problem which asks to determine zeroness of an arithmetic
circuit evaluated in the ring of multivariate polynomials [14, Proposition 2.1]. The lat-
ter problem had also been shown to belong to coRP before the equivalence was known,
notably in [15] using the Schwartz-Zippel Lemma [16, 17, 18]. Whether PIT admits a de-
terministic polynomial-time algorithm is one of the central open questions in complexity
theory. Besides the interest that it has raised from this purely theoretical point of view,
over the years, PIT has also found many applications in algorithm design. Such examples
include program testing [19], detecting perfect matchings [20], factoring polynomials [21],
pattern matching in compressed texts [22, 23], primality testing [24, 25], equivalence and
minimisation of weighted automata [26, 27] and linear recurrence sequences [28, 29].

Algebraic identity testing has also been shown to relate to word problems on finitely
generated groups and semigroups. Studied for over 100 years [30], these problems are
arguably some of the first identity testing questions considered. In recent years, a growing
body of work has been dedicated to the Compressed Word problem [31], where the words
are represented succinctly by straight line programs, which, intuitively speaking, can be
thought of as circuits with leaves labelled by the letters ‘0’ and ‘1’. The relation of the
computational complexity of problems on compressed words to algebraic identity testing
has been explored in, e.g., [22, 32].

We will now focus on identity testing problems for cyclotomic and radical fields, which
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are some of the most studied instances of algebraic identity testing problems. Before we do
so, let us just mention another related, more difficult problem, which lies at the intersection
of transcendental number theory and model theory. The Elementary Constant problem [33]
asks, given a complex number built from rationals using addition, multiplication and expo-
nentiation, to determine whether it is zero. Such numbers are called Elementary numbers,
and they form an algebraically closed subfield of the complex numbers. While there is a
decision procedure for the problem assuming Schanuel’s conjecture [34], it is not known
to be decidable unconditionally, and no significant complexity lower or upper bounds are
known.

The cyclotomic world. Algebraic identity testing has been extensively studied for rings
of integers of cyclotomic number fields, that is, finite extensions of the field of rationals Q
generated by adjoining a primitive nth root of unity ζn. Recall that an nth root of unity is a
complex number ζn such that ζnn = 1. If for each k < n, ζkn ̸= 1, then we call it a primitive
nth root of unity. Here, the problem, in simple words, is to determine whether an algebraic
integer in the field Q(ζn) in a given representation is zero.

The Sparse Cyclotomic Identity Testing problem (sparse-CIT) asks, given a polynomial
f ∈ Z[x], and an integer n ∈ N written in binary, whether f vanishes at a primitive nth
root of unity ζn = e2πi/n. In this setting, the polynomial is assumed to be given in a sparse
representation, that is, as a list of monomials with non-zero coefficients (whose degree can
be exponential in the representation size). The problem was first considered by Plaisted,
who showed that sparse-CIT ∈ coNP [35, Theorem 4.3] and conjectured that the problem
should be solvable in polynomial time. Cheng et al. [36, 37] proved his conjecture, showing
that sparse-CIT ∈ P by exhibiting two deterministic polynomial time algorithms. Their
method presented in [37] was revisited in [32], and the complexity bound refined to NC,
which can be thought of as the subclass of problems in P that are efficiently parallelisable.

A generalised version of the problem, which we call Sparse Generalised Cyclotomic Iden-
tity Testing (sparse-GCIT), asks, given a sparse polynomial f ∈ Z[x], whether there exists
n ∈ N such that f(ζn) = 0, where ζn is again an nth primitive root of unity. In his 1984
paper, Plaisted showed that this problem isNP-hard [35, Theorem 5.1]. Later sparse-GCIT
was considered by Filaseta and Schinzel in [38], where they gave a subexponential time
algorithm for the problem. Cheng et al. [37] showed that if an instance of the problem is
positive, the certificate is at most polynomial in the size of the input. Namely, it consists of
an integer n ∈ N such that f(ζn) = 0. Since the roots of f are algebraic numbers of degree
at most deg f over Q, n must be bounded in magnitude by the degree of f . Their result
that sparse-CIT ∈ P furthermore ensures that the verification of a certificate can be done
in polynomial time, allowing them to place the sparse-GCIT problem in NP, making the
problem NP-complete.

An orthogonal generalisation of sparse-CIT is the Torsion Point (TP) problem which
asks, given a system of multivariate polynomials f1, . . . , fs ∈ Z[x1, . . . , xk] in sparse rep-
resentation and a list of integers d1, . . . , dk ∈ N, whether

f1(ζd1 , . . . , ζdk) = 0, . . . , fs(ζd1 , . . . , ζdk) = 0

is satisfiable.
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Let us note in paranthesis that both the sparse-GCIT problem and the Torsion Point
problem can be seen as special cases of the Hilbert’s Nullstellensatz (HN) problem, which,
given a system of polynomial equations

f1(x1, . . . , xk) = 0, . . . , fs(x1, . . . , xk) = 0 ,

asks whether they have a common zero over a given ring or field. We defer a more detailed
discussion onHN to Section 1.2, let us just recall the most influential result on the problem,
which we will reference in this section. Over C, the HN problem is known to be in the
complexity class AM assuming the Generalised Riemann Hypothesis [3, 8].

Notice, however, that the Torsion Point problem does not ask about satisfiability over a
fixed cyclotomic field, or even the ring of integers of a given cyclotomic fields, but rather
asks whether the variety defined by the polynomials contains a point whose coordinates
are all roots of unity. The first hardness result for the problem was again given by Plaisted
[35, Theorem 3.3], who showed that the problemTP1 where the input polynomials are uni-
variate, i.e., when f1, . . . , fs ∈ Z[x], isNP-hard. The result is stated in terms of polynomial
divisibility, in particular, the author shows that the 3-SAT problem reduces to the problem
of checking, given a finite set of sparse polynomials {p1(x), . . . , ps(x)}, whether xn − 1 is
not a factor of

∏s
i=1 pi(x).

Later on, in [39] the TP problem was placed in the complexity class AM under the
assumption of certain number theoretic hypotheses via a reduction to Koiran’s result on
HN [3]. In particular, the result is based on a preprint of the same author [40], where he
shows that the assumption of GRH in Koiran’s original paper on HN can be weakened to
two “more plausible” hypotheses from analytic number theory. Furthermore, the univariate
version of the problem, TP1, was shown to be in NPNP unconditionally. The general
version of the TP problem was shown to be in P for fixed n and d1, . . . , dn. Here, the
unconditional results are obtained by taking the evaluation to a finite field Fp where the
prime p is chosen in a suitable arithmetic progression, and its existence ensured by Linnik’s
Theorem. Cheng et al. finally closed the complexity gap in [37] through their result on
sparse-CIT, placing TP in NP, and hence showing that it is NP-complete.

A natural question that arises when considering the zero testing problems reviewed
above is how efficiently one can decide zeroness when the polynomials are given in a dif-
ferent representation, namely using an algebraic circuit. The Cyclotomic Identity Testing
(CIT) problem asks, given an algebraic circuit C representing a polynomial f ∈ Z[x] and
an integer n ∈ N given in binary, whether f(ζn) is zero. In their seminal paper, Chen et al.
raised the question of the complexity of CIT, which was then extensively studied in [32].
The algebraic circuits considered in [32] follow the standard definition of algebraic circuits
via directed acyclic graphs with the additional condition of allowing leaves to be labelled
with monomials {xe : e ∈ N}. Thus the syntactic degree of the circuit in this case is not
an upper bound on the degree of the computed polynomials. Using this model, the authors
show that CIT can be placed in BPP under the assumption of GRH, and in coNP uncondi-
tionally. Their approach to the problem follows the technique introduced for solvingACIT.
In particular, they choose a prime p ∈ Z such that the finite field Fp corresponds to the quo-
tient of the ring of cyclotomic integers Z[ζn] by a prime ideal, and perform the evaluation
in Fp. In the non-deterministic algorithm, they guess a representative for ζn in Fp, and
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false positives appear essentially for the same reason as in the coRP algorithm for ACIT,
namely, if the prime p divides the norm of the computed cyclotomic integer f(ζn). By con-
trast, in the probabilistic algorithm, non-deterministic guessing of the representative for ζn
in Fp is replaced by a random guess, which makes the error two-sided.

The authors further consider a restricted variant of the problem, namely bounded-CIT.
The input of the problem in this case, alongside a circuitC and integer n ∈ N, also includes
an upper bound on the syntactic degree of the circuit given in unary. That is, in this variant
the degree of the circuit is at most the length of the input — note, however, that as the
circuit is allowed to have monomials as inputs, the degree of the computed polynomial may
again be a binary value. Balaji et al. exhibit a randomised NC procedure with two-sided
error for deciding bounded-CIT. Their technique follows the approach introduced by Chen
and Kao [41], who aimed at improving the number of random bits used for deciding PIT.
In particular, they approached PIT by approximating the value of the input polynomial
when evaluated at certain randomly chosen irrational inputs, namely linear combinations
of real square roots. In their method, by construction, the radical expressions are such that
the result of the evaluation is zero if and only if the polynomial is identically zero. The
challenge then becomes to determine the zeroness of the resulting expression, for which
they use numerical approximation. The idea, reused in [32], is to pick a Galois conjugate of
the value that is being tested for zeroness uniformly at random, and determine the zeroness
of the conjugate via numerical approximation. The correctness of the procedure is asserted
by a probabilistic bound on the absolute value of conjugates of algebraic integers subsumed
in Chen and Kao’s [41, Lemma 2.2], which was also used for testing zeroness of bounded
expressions involving radicals ([42, Lemma 3]) as discussed below, and finally restated as
Proposition 12 in [32].

The parallel radical world. In this thesis, we study identity testing problems for al-
gebraic expressions in the rings of integers of number fields generated by adjoining real
radicals to Q. Generally speaking, radical extensions of Q are more difficult to handle
algorithmically than cyclotomic fields, and enjoy fewer “nice” properties. Cyclotomic ex-
tensions, for example, are known to be abelian extensions of Q. In particular, the Galois
group Gal(Q(ζn)/Q) of a cyclotomic extension Q(ζn) is isomorphic to (Z/nZ)×. In fact,
algorithmic approaches to solving problems over cyclotomic fields may be enough to cover
all abelian extensions: the Kronecker–Weber theorem states that every finite abelian exten-
sion of Q is contained within some cyclotomic field. In simple words, the theorem states
that every algebraic integer whose Galois group is abelian can be expressed as a sum of
roots of unity with rational coefficients.

Now could we use this to handle radical extensions as well? As it turns out, radical
extensions need not be abelian. Take for example the Galois extension of the field generated
by adding the radical 4

√
2 to Q. The extension Q( 4

√
2) is not Galois, but is contained in the

Galois extension Q( 4
√
2, i) with Galois group D4 — the 4th dihedral group, which is the

group of symmetries of a regular polygon with 4 vertices, which is known not to be abelian.
The Galois groups of radical extensions are, however, known to be solvable. Let us recall
that a group G is said to be solvable if there exists a chain of normal subgroups {id} =
G0 ◁ G1 ◁ . . . ◁ Gn = G such that each quotient Gj/Gj−1 is abelian. Intuitively speaking, a
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sparse representation

cyclotomic radical

IT sparse-CIT NC sparse-RIT subclass in P

[32] [43, 44]

generalised sparse-GCIT NP-complete sparse-GRIT subclass in NP

IT [37]

special TP NP-complete RadP subclass in P

points [37]

circuit representation

cyclotomic radical

IT CIT coNP, BPP❋ RIT coNP❋

[32]

2-RIT coNP, coRP❋

bounded bounded-CIT randNC bounded-RIT coRP

IT [32]

Figure 1.2 – An overview of the complexity results for identity testing problems over cyclo-
tomic and radical number fields. The results marked with ❋ hold under the assumption of
the Generalised Riemann Hypothesis (GRH), the results proved in these thesis are written
in teal, whereas existing results are marked with corresponding references.
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solvable group can be thought of a as group which can be constructed from abelian groups
using extensions. In the case of our example, the group D4 can be decomposed as {id} ◁
C2 ◁ C4 ◁ D4, where C2 and C4 denote the cyclic groups of orders 2 and 4 respectively.

The knowledge of the Galois group of the extension where the numbers live in is central
to solving identity questions. In our overview of cyclotomic identity testing, we have seen
that the technique of randomly guessing a Galois conjugate of a given value is an important
step in many algebraic identity testing algorithms, such as the works [32] or [41] we cited
above. This essentially boils down to randomly sampling an element of the Galois group,
which as it turns out, algorithmically appears to be a difficult task.

Some of the first results on computational aspects of solvable Galois groups were pub-
lished by Landau and Miller, who, given a polynomial f , exhibit a polynomial time al-
gorithm to determine whether its group is solvable, and compute the intermediate field
extensions between Q and the splitting field of f over Q [45]. Landau further provided
polynomial time algorithms to determine whether the Galois group of a given polynomial
is isomorphic to An or Sn, or, if the group is solvable, to compute the list of prime divisors
of its order in [46]. The complexity of computational problems for solvable groups using
a quantum computer were considered in [47], showing that the order of a solvable group
can be computed in quantum polynomial time when given a list of generators of the group
as input. The question of computing the Galois group of a polynomial was extensively
considered by Arvind and Kurur in [48]. They show that, given a polynomial f , the order
of its Galois group can be computed in the counting hierarchy. If the Galois group of f is
solvable, then the computation of its order can be done inRPNP. Finally, for polynomials
with abelian Galois groups, the authors provide a randomised polynomial time algorithm
computing the generators of the Galois group.

In contrast to the case of abelian Galois groups, finding an efficient algorithm computing
the generators of a Galois group of a solvable extension has remained open since the work
of Arvind and Kurur, and no algorithm to randomly sample from such groups is known. Let
us also remark that in these works, the polynomial f whose Galois group is investigated is
given in a dense representation. That is, the values of all coefficients, including those that
are zero are part of the input, and the size of the input is thus a bound both on the degree
and the bitsize of the coefficients. In the application at hand, one of the difficulties we face
is the fact that the number fields we work with have degree exponential in the size of the
input.

Another algorithmically convenient property of cyclotomic fields is that their rings of
integers are generated by a single element. In particular, the ring of integers of a cyclotomic
extension Q(ζn) is equal to Z[ζn]. Such fields are said to be monogenic. From a computa-
tional point of view, this means that the algebraic integers of such fields admit very simple
representations, and can be easily handled algorithmically. Alongside cyclotomic fields,
all quadratic fields (i.e., extensions of the form Q(

√
a) for a ∈ Z) are also monogenic,

however, this need not be the case for higher degree radical extensions. Examples of such
non-monogenic fields are the cubic field Q( 3

√
198), or the biquadratic field Q(

√
7,
√
10).

Because of the phenomena we just described, there are fewer established results in the
radical setting compared to the results on cyclotomic identity testing. However, we are still
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able to draw some parallels between the problems in the two contexts. We will now recall
the state of the art in the radical world, defining the missing analogous problems for which
we are not aware of any existing results in the literature along the way. For an illustration
of the landscape, see Figure 1.2.

Radical identity testing for sparse expressions was first considered by Blömer in [43],
where he studied the complexity of determining whether a linear combination of real rad-
icals is equal to zero, that is, whether S =

∑n
i=0 ci

di
√
ai is zero, where ci, di and ai are

integers given in binary. He gives a deterministic polynomial time algorithm for the prob-
lem, which relies on the fact that if S = 0, then there must exist two distinct radicals di

√
ai

and dj
√
aj such that di

√
ai/

dj
√
aj ∈ Q. In other words, the radicals R := { d1

√
a1, . . . ,

dk
√
ak}

are linearly independent over Q if all possible pairs from R are linearly independent. The
algorithm first partitions the radicals R into subsets R1, . . . , Rh such that two radicals
are in the same subset if and only if their ratio is rational. Suppose for simplicity that
di
√
ai ∈ Ri. In the second step the rational numbers rij ∈ Q such that if di

√
ai/

dj
√
aj ∈ Q

then di
√
ai/

dj
√
aj = rij are computed. Then S can be rewritten as

S =
h∑

i=0

(
∑

dj√aj∈Ri

cjrij)
di
√
ai =

h∑
i=0

c′i
di
√
ai .

Since for every pair of different radicals in the setR′ = { d1
√
a1, . . . ,

dh
√
ah} their ratio is not

a rational number, S = 0 if and only if c′i = (
∑

dj√aj∈Ri
cjrij) = 0 for all i ∈ {1, . . . , h}.

This can be verified in polynomial time, which completes the algorithm.

Blömer’s approach was later extended in [44] to identity testing for sparse expressions
of the form

∑n
i=0 ci

di
√
ai

ei , where ci and ai are integers given in binary and ei
di

∈ [0, 1] for
all i ∈ {1, . . . , n}. By adapting certain subroutines of Blömer’s algorithm, the complexity
bound was improved to TC0, which is considered to be one of the lowest classes of circuit
complexity, and is included in P. Note, however, that this result does not fully answer the
radical analogue to sparse-CIT. To this aim, let us first formally define the Sparse Radical
Identity Testing (sparse-RIT) problem as the problem of determining, given a sparse poly-
nomial f ∈ Z[x1, . . . , xk], and radical inputs d1

√
a1, . . . ,

dk
√
ak where the radicands ai, and

exponents di are nonnegative integers written in binary, whether f( d1
√
a1, . . . ,

dk
√
ak) = 0.

That is, the question is to determine whether a sparse expression of the form
∑n

i=0 ci
di
√
ai

ei

where the integers ci, ai, di and ei are given in binary, is equal to zero. Given such an in-
stance, one may try to reduce the problem to an instance of the problem considered in [44],
simply by writing

n∑
i=0

ci
di
√
ai

ei
=

n∑
i=0

cia
ti
i

di
√
ai

e′i

where ei
di

= ti +
e′i
di
with ti ∈ Z and e′i

di
∈ [0, 1]. However, since ai, di and ei are assumed to

be given in binary, the magnitude of ti may be exponential in the size of the input, and the
magnitude of atii doubly exponential in the size of the input. This means that the expression
may not admit a sparse representation of size polynomial in the problem description, which
would be required for the algorithm of [44] to run in polynomial time.

As in the cyclotomic case, we may again add an existential quantifier to the question,
and pose the problem of Sparse Generalised Radical Identity Testing (sparse-GRIT): given a
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sparse polynomial f ∈ Z[x1, . . . , xk], determinewhether there exist radicals d1
√
a1, . . .

dk
√
ak

such that f( d1
√
a1, . . .

dk
√
ak) = 0. As discussed, the cyclotomic analogue of this problem is

inNP, as the certificate for a positive instance of the problem is just the degree of the prim-
itive root of unity that is the zero of the polynomial (which is polynomial in the size of the
input), and the verification can be done in polynomial time by appealing to the algorithm
of sparse-CIT. Since the problem is also known to be NP, this upper bound is tight. In
the radical case, the description of a certificate for a positive instance is again polynomial
in the size of the instance, namely the integers d1, . . . , dk and a1, . . . , ak written in binary,
such that f( d1

√
a1, . . .

dk
√
ak) = 0. However, as noted above, only restricted versions of the

sparse-RIT problem are known to be in P, which implies that we can decide sparse-GRIT
in NP under those same restrictions on the polynomial f .

Let us also see whether defining an analogue to the Torsion Point problem makes sense
in this setting. We may try to define the Radical Point (RadP) problem as the problem of
asking, given a system of multivariate polynomials f1, . . . , fs ∈ Z[x1, . . . , xk] in sparse
representation and a list of real radicals d1

√
a1, . . .

dk
√
ak, whether

f1(
d1
√
a1, . . .

dk
√
ak) = 0, . . . , fs(

d1
√
a1, . . .

dk
√
ak) = 0

is satisfiable. However, notice that since the sparse-GRIT problem is already stated for
multivariate polynomials, a (deterministic polynomial time) algorithm for sparse-GRIT
can also be applied apply to the polynomials appearing as input of RadP individually and
the complexities of the two problems are the same.

To the best of our knowledge, in contrast to the cyclotomic setting, neither the RadP
problem nor the sparse-GRIT problem are known to be NP-hard. As the hardness proof
for their cyclotomic equivalents in [35], they do not just carry over to the radical case. Let
us note, however, that if we modify the Radical Point problem to ask whether a system of
equations is satisfiable in radicals and their conjugates, as opposed to just real radicals, the
variant can easily be seen to beNP-hard. To this end, we reduce the modified problem from
the NP-complete problem BOOLSYS. Given a system of equations of the form xi = true,
xi = xj and xi = xj ∨xk over n logical variables x1, . . . , xn, the problem asks, whether the
system admits a satisfying assignment. We take an instance of BOOLSYS and construct a
sparse polynomial f in n+ 1 variables such that f vanishes on radicals {

√
2,−

√
2} if and

only if the system of Boolean equations is satisfiable. To this aim, we first construct a system
of polynomials that is satisfiable over radicals if and only if the instance of BOOLSYS is
positive. For every literal x1, . . . , xn, we introduce an equation x2i = x2n+1, and add the
equation x2n+1 = 2. Then, for every formula xi = xj ∨ xk, we introduce an equation
4xixn+1 = (xj + xk)

2 + 2xn+1(xj + xk)− 4x2n+1. The constructed system is satisfiable for
the values xi taking values

√
2 and −

√
2 if and only if the Boolean system is satisfiable.

Let us now look at identity testing for expressions involving radicals represented via
algebraic circuits. Here, the most general version of the problem, as defined before, is the
Radical Identity Testing (RIT) problem. Given an algebraic circuit representing a multivari-
ate polynomial f(x1, . . . , xk) ∈ Z[x1, . . . , xk], and radical inputs d1

√
a1, . . . ,

dk
√
ak where

the radicands ai, and exponents di are nonnegative integers written in binary, RIT asks
whether f( d1

√
a1, . . . ,

dk
√
ak) = 0. A first complexity bound for the problem can be inferred

by a reduction to the existential theory of reals [2], which is known to be in PSPACE.
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The reduction goes by introducing a new formal variable for every gate of the circuit, and
adding the equations xdii − ai = 0 and xi > 0 for every radical to the formula. To decide
RIT, it now suffices to check whether the resulting system of polynomial equalities and
inequalities has a solution over the real numbers.

One may wonder whether it would be possible to avoid the order relation in the reduc-
tion and decide RIT by reducing the problem to determining the satisfiability of a system
of polynomial equations. In this thesis we observe a fact that allows to do just that. In
particular, we note that the Galois group of the underlying real field acts jointly transitively
on the roots of the various equations xdi − ai = 0. Intuitively speaking, this means that if
f(

d1
√
a1, . . . ,

dk
√
ak) = 0, then the expression will be equal to zero if we replace each one of

the input radicals di
√
ai by any of its di conjugates (which need not be real). We can thus

again construct a system of polynomial equations by introducing a new formal variable for
every gate of the circuit, add the equations xdii − ai = 0 for every radical di

√
ai, and verify

whether it is satisfiable overC. As mentioned above, the latter can be done inAM assuming
GRH [3, 8], which placesRIT in the polynomial hierarchy. We further use joint transitivity
in order to generalise the technique introduced for ACIT and take the computation to a
finite field Fp corresponding to a quotient of the radical number field of the expression by a
suitable prime ideal. Here the transitivity condition allows to use any of the di conjugates
αi of

di
√
ai over Fp in our symbolic algorithm to test whether f(α1, . . . , αk) = 0 in Fp.

Using this approach, we place RIT in coNP assuming GRH.

We further study the special case of RIT, where the radicals are square roots of prime
numbers, written in binary, which we call 2-RIT. Using the same general technique, we
place 2-RIT in coRP assuming GRH and in coNP unconditionally.

The case of Radical Identity Testing for expressions given by circuits that has been
given most attention prior to our work is the problem of Bounded Radical Identity Testing
(bounded-RIT). Here, the input to the problem again includes a bound on the degree of
the polynomial represented by the circuit. Blömer showed in [42] that the problem can
be decided in randomised polynomial time when the exponents di are given in unary. His
algorithm relies on separation bounds for algebraic numbers, as discussed in connection to
the bounded-CIT problem above. In particular, it relies on the fact that whenever an alge-
braic numberα is non-zero, a randomGalois conjugateα′ ofα has large absolute value with
probability at least 2

3
. In the first step of the algorithm, pairwise coprime factorsm1, . . . ,mℓ

of the input radicands a1, . . . , ak such that di
√
ai =

∏ℓ
j=0

di
√
mj

eij are computed. Then, us-
ing a clever trick, the algorithm randomly samples conjugates of the new radicals di

√
mj ,

thus computing a conjugate of the original expression. If the expression is not identically
zero, the computed conjugate will have large absolute value with high probability, and nu-
merically approximating it to sufficient precision gives the answer to the problem. Now if
the input radicals di

√
ai are given with both the radicands ai and the exponents di given in

binary, Blömer’s algorithm no longer runs in polynomial time. The steps of the algorithm
that increase in complexity are those prior to the random guessing of conjugates. In this
thesis, we show that a slight modification of the initial steps of his algorithm allows us to
place the general version of bounded-RIT in coRP.

Let us note that the work of Chen and Kao on PIT [41] also inherently solves the
bounded-2-RIT problem (i.e. the variant of bounded-RIT where the radical inputs are
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just square roots) in randomised polynomial time. As discussed above, they also rely on
the same large conjugate result as Blömer.

The Sum of Square Roots problem. Expressions in radicals naturally arise in optimi-
sation problems on graphs embedded in Euclidean space, such as the Euclidean Traveling
Salesperson problem, which asks, given a list of cities and the distances between each pair
of cities, what is the shortest possible route that visits each city exactly once and returns
to the origin city. The problem is not known to belong to NP, but is easily seen to be in
NP relative to the Sum of Square Roots problem. In the latter, the question is, given a list of
positive integers a1, . . . , ak and signs δ1, . . . , δk ∈ {+,−}, to infer the sign of

∑k
i=1 δi

√
ai.

The problem has been conjectured to belong to P, but the best known complexity bound
to date was given in [14, Corollary 1.6], showing it to be decidable in the counting hierarchy.
The question of determining its precise computational complexity remains open since it
was explicitly posed by Garey, Graham and Johnson [49] in 1976, and has been revisited in
various works, such as [50, 51].

Besides its relation to the Euclidean Traveling Salesperson problem, the Sum of Square
Roots problem has also been used as a tool for proving hardness and obtaining upper bounds
in quantitative verification [52, 53, 54, 55], algorithmic game theory [56, 57, 58], formal
language theory and logic [59, 60]. Improving its complexity would thus have great impact
on a large number of problems all across theoretical computer science.

Let us note that a more general version of the problem is known as thePosSLP problem,
which asks, given an integer represented by an algebraic circuit to determine whether it is
positive. The is easily seen to belong to PSPACE by a reduction to the existential theory of
the reals [2], and the current best complexity bound known for the problem is the counting
hierarchy [14, Theorem 1.5].

On nested radicals and denesting. In this thesis, we focus on identity testing for the
simplest kind of algebraic expressions involving radicals — those only containing unnested
radicals; we do not consider expressions such as

√
5 + 4

√
2. The same holds for works

we cited above, such as, e.g. [42]. There is, however, also a line of work dedicated to
studying nested radicals. There, the identity problemmost often considered is to determine
whether a nested radical can be simplified to a radical expression involving only radicals
of lower depth. Denesting radicals of bounded degree is considered in, e.g, [61] (for radical
expressions of degree at most d for fixed d and depth 2) or in [62] (for expressions of degree
at most d for fixed d and possibly greater depth). The denesting algorithms referenced here
run in time polynomial in the description of the number field of the radicals. Note that
denesting algorithms implicitly provide zero tests for nested radical expressions. However,
denesting is a more general problem than zero testing, and those algorithms may thus be
less efficient for the application in hand than zero testing algorithms based on, say, root
separation bounds.
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Polynomial factorisation as a technique to solving over number fields. Identity
testing or searching for torsion points is closely related to a more general problem of in-
specting whether a polynomial factors into any linear factors over Z,Q, a cyclotomic field,
or more generally a number field. As opposed to the Torsion Point and the Radical Point
problems we discussed above, where the aim is to determine the existence of points whose
coordinates are all roots of unity or real radicals respectively, factoring over a (cyclotomic
or radical) number field is as general as the HN problem over these fields.

When the polynomial is given in a dense representation, we can factor it using the well-
known LLL algorithm, which was introduced in the early 80s [63]. For the case of sparsely
represented polynomials, the first breakthrough result on the problemwas given by Cucker,
Koiran and Smale in 1997 [64]. They designed a deterministic polynomial time algorithm,
which given a sparse univariate polynomial f ∈ Z[x] as input, computes all of its integer
roots.

The authors first show that given a sparse polynomial f ∈ Z[x] and an integer a ∈ Z,
the sign of f(a) can be computed deterministically in time polynomial in size(f) and the
bitsize of a. Next they prove that given M ∈ Z, one can compute a list of subintervals
of [−M,M ] with integer end points each containing at most one root of f . The algorithm
then follows by noting that it suffices to compute the list of subintervals, and then verify the
sign of f evaluated at the end points of the subintervals to find the roots. Furthermore, the
authors conclude with an observation, which has later become known as the Gap Theorem:
if f =

∑n
i=0 cix

di , and there exists dk such that the gap between dk and dk+1 is large enough
(with the respect to the magnitude of the ci’s), then a ∈ Z with |a| ≥ 2 is a root of f if
and only if a is a root of both g =

∑k
i=0 cix

di and h =
∑d

i=k+1 cix
di . In the case where the

polynomials have a small number of terms compared to their degree, this simple fact can
improve the complexity of their algorithm by first computing the roots of say g (or h) and
then simply verifying whether h (or g in the opposite case) also vanishes on them.

The authors left open the problem of adapting the algorithm of finding all rational roots
of a univariate polynomial in a sparse representation. The problemwas answered positively
by Lenstra in 1999 [65]. In fact, the author proves a result that is more general – given an
algebraic number fieldK of degree at mostm overQ, a polynomial f ∈ K[x], and a positive
integer d, he exhibits a polynomial time algorithm that computes all irreducible factors of
f in K[x] of degree at most d. At the same time, this work is also a generalisation of [66],
where the same author showed that the number of irreducible factors of f inK[x] of degree
at most d, counted with multiplicities, is bounded by a constant depending only on m, d
and the number of non-zero terms of f . (Note that [66] essentially generalises Descartes’
rule of signs which gives a bound on the number of real zeroes of univariate polynomial).
The number field K is assumed to be represented by the means of an irreducible monic
polynomial h ∈ Z[x] in dense representation, such that K = Q(α) for a zero α of h.
The algorithm works by first finding the cyclotomic factors (of degree polynomial in the
problem description) of the polynomial, then computing a bound at which the polynomial
should be split according to the Gap theorem, and splitting the polynomial. The resulting
polynomials have few factors, and thus admit small dense representations. Computing their
factorisation, which is the final step of the algorithm, can be done in polynomial time using
the Euclidean algorithm.
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In [67], Kaltofen and Koiran extended Lenstra’s technique presenting algorithms to
compute linear and quadratic irreducible factors of bivariate polynomials over the rationals.
Both algorithms run in time polynomial in the size of the input; the algorithm computing
linear factors is deterministic, and the algorithm finding quadratic factors is randomised
(Monte Carlo). The authors further generalised their result in [68], where they give a ran-
domised polynomial time algorithm computing all irreducible factors of degree at most d
of sparse multivariate polynomials over algebraic number fields. We note here the gener-
alisation is two-fold: the computed factors of degree at most d may belong to an arbitrary
number fields (as opposed to a fixed one as above), and the input polynomial may be mul-
tivariate.

A few years later, a different line of work generalising Lenstra’s approach was initiated.
The aim was to simplify the above mentioned results, avoiding the deep number theoretic
results on heights of algebraic numbers that some of them rely on. Chattopadhyay et al. [69]
proposed a new Gap Theorem that does not depend on the height of an algebraic number,
but rather on the valuation of the polynomial. (We recall that the valuation of a polynomial
f ∈ Z[x] is the largest integer v such that xv divides f .) In this work, similarly to Kaltofen
and Koiran [67], the authors consider bivariate polynomials. Using the new Gap Theorem
they give a deterministic polynomial time algorithm for computing irreducible multilinear
factors of degree at most d of bivariate polynomials over algebraic number fields. As in
Lenstra’s work [65], the field in question is specified by a dense univariate polynomial.

This approach was further developed by Grenet [70, 71], who subsequently proposed an
algorithm for computing factors of degree at most d of multivariate polynomials, running
in time polynomial in d and the size of the polynomial, analogous to the generalisation [68].
The algorithm is valid for any field of zero characteristic. The new Gap Theorem that it is
based on, allows the author to reduce the problem to several instances of the univariate
case via the Newton polygon of the input polynomial. These algorithms are practical, and
were implemented in [72].

Another aspect of factoring sparse polynomials that has been explored is whether the
lower-degree factors also admit a succinct representation. In [73] it was shown that any
factor of a sparse n-variate polynomial with at most s terms of individual degree bounded
by d can itself have at most sO(d2 logn) terms. Here by the bound on the individual degree
we mean that in all monomials in the factor, every variable xi appears with exponent at
most d. The authors noted that the best known lower bound for the sparsity is slog d for
fields of characteristic zero and about sd for general fields. It has thus been conjectured
that the upper bound could be improved to spoly(d), which was further explored in [74].
The problem has also been considered for the case of circuits; recent works on the subject
are, e.g. [75, 76].

Factoring polynomials over other fields. Across this section, we have seen that com-
puting with polynomials is often done by reducing modulo a prime p and taking the com-
putation to a finite fields Fp. A significant body of work has also been dedicated to factoring
polynomials over finite fields, see, e.g., [77] for a survey. More recently, the problem of fac-
toring (or at least root counting) modulo composite numbers has also attracted attention.
We refer the reader to the recent PhD thesis on the subject [78] for an overview of results

– 15 –



Chapter 1

in the area.

Another line of work concerns finding real roots of polynomials, or more generally,
determining intervals in which real roots of a polynomial appear. For examples of such
work, see, e.g., [79] and the references therein.

1.2 Testing for the existence of zeros in algebraic ex-
pressions

We have just gone through an extensive overview of identity testing problems, which,
given a polynomial and a possible solution, boils down to verifying whether the polynomial
vanishes on the given input. We have seen that a first generalisation of the problem asks to
determine, given a polynomial, whether it admits a solution in a given ring or field. In the
second part of this thesis, we consider an even more general variant of the latter problem,
namely, verifying whether a system of polynomials admits a solution in a given field.

The question has been considered by mathematicians for centuries. In 1893, David
Hilbert showed a fundamental result, known as the Hilbert’s Nullstellensatz, which gives
a condition characterising when a system of polynomial equations is not satisfiable. Given
a system of polynomial equations

f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0 (1.1)

where fi ∈ K[x1, . . . , xn] for K an algebraically closed field, the weak version of the
Nullstellensatz says that the system is unsatisfiable if and only if there exist polynomials
g1, . . . , gk ∈ K[x1, . . . , xn] such that

k∑
i=1

figi = 1 . (1.2)

A naturally associated computational problem asks to determinewhether a given family
of polynomials f1, . . . , fk have a common zero. One version of this problem, denotedHNC,
asks to determine whether a given system of polynomial equations with integer coefficients
admits a common solution over C.

The characterisation given in Equation (1.2) essentially reduces HNC to an ideal mem-
bership problem, namely whether the constant 1 lies in the ideal generated by the fi’s. By
a result of Mayr and Meyer [4], this places HNC in the complexity class EXPSPACE. On
the other hand, it is easy to reduce the Boolean satisfiability problem to HNC, making it at
least NP-hard.

To this end, recall that a formula is said to be in conjunctive normal form (CNF) if it is
a conjunction of clauses, where each clause is a disjunction of literals. The 3-SAT problem
asks, given a formula φ in CNF, where each clause contains exactly 3 literals, whether
φ admits a satisfying assignment. We take an instance of 3-SAT comprising a formula φ
which is a conjunction of k clauses over n logical variables x1, . . . , xn, and construct a
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system of n + k polynomials over n variables x1, . . . , xn that is satisfiable over C if and
only if φ admits a satisfying assignment. For every variable appearing in φ, we introduce
an equation xi(xi − 1) = 0, ensuring that the variables can only take values 0 or 1. The
remaining k equations in the system represent each one clause of the formula φ, where
we write xi for every positive literal xi in the formula, (1 − xi) for every negative literal
xi, and replace every disjunction by a multiplication. Take for example the formula φ :=
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4). Determining whether φ admits a satisfying assignments
reduces to verifying whether the system comprising xi(xi−1) = 0 for all i = 1, . . . , 4, and
x1(1− x2)x3 = 0, x2(1− x3)(1− x4) = 0 is satisfiable over C.

The ideal membership problem is known to be EXSPACE-complete, which is far from
the NP-lower bound for HNC we have just recalled. The challenge over the years has
been to match the latter and improve the complexity of HNC. A first improvement came
with various versions of Effective Nullstellensätze [5, 6, 7], which gave single-exponential
degree bounds on the gi’s. This in turn helps reduce the Nullstellensatz to solving a single-
exponential-sized system of linear equations, placing HNC in PSPACE, since linear equa-
tions can be solved in polylogarithmic space. In particular, we introduce new variables for
all coefficients of the gi’s and construct a system of equations from Equation (1.2) by adding
one equation for each one of the monomials xe11 · · ·xenn appearing in (1.2). The new system
has a solution if and only if f1, . . . , fk are unsatisfiable. Furthermore, the upper bound
on the degree of the gi’s ensures that we had to introduce exponentially-many variables,
implying that the size of the newly-constructed system is also exponential.

In an influential paper [3, 8], Koiran proved that HNC ∈ AM assuming GRH. For any
system S of polynomial equations with integer coefficients, the idea behind his approach
is to examine the satisfiability of S in Fp for primes p. In particular, he shows that if the
system is unsatisfiable in C, it is satisfiable in Fp only for a small number of primes p,
whereas if the system is satisfiable in C, it will be satisfiable in Fp for many primes p.
More precisely, there exist effective boundsA and x0 such that if the system is unsatisfiable
in C, the number of primes p ≤ x0 such that the system is satisfiable in Fp is at most A.
On the other hand, if the system is satisfiable in C, the number of primes p ≤ x0 such
that the system is satisfiable in Fp is shown to be at least B = O(A logA). Here A <
B are both numbers whose magnitude is a single-exponential function of the parameters
(namely, number of variables, degree, bitsize of coefficients, and number of polynomial
equations) of the system S . Therefore to decide HNC it suffices to count the number of
primes for which S is satisfiable over Fp; the latter task has an easyNP algorithm when the
primes are small (single-exponential in magnitude). This already implies a #PNP algorithm
for HNC. By further observing that there is a sufficiently large gap between A and B,
Koiran proves that it suffices to approximately count the number of primes following the
techniques introduced by Stockmeyer [80], which yields the claimed upper bound for the
problem.

AM is well-known to be included in the complexity class RPNP. Since HNC is NP-
hard, Koiran’s complexity upper bound is tight up to randomisation. In fact, no improve-
ments have been shown since its publication in the late 90s. Furthermore, he exhibits an
example showing that his technique cannot be easily modified to yield a NP algorithm for
the problem. Intuitively speaking, the problem is that there may be exponentially many
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primes such that an unsatisfiable system becomes satisfiable modulo p. This means that a
certificate of a positive (i.e. satisfiable) instance of HNC cannot comprise solely polynomi-
ally many primes p and the corresponding solutions in Fp witnessing satisfiability of the
system in Fp.

The complexity of HNC has also been studied in relation to the transcendence degree
of the input polynomials. Given polynomials f1, . . . , fk, their transcendence degree r is
defined as the size of any maximal subset of the polynomials that are algebraically inde-
pendent. In [81], Garg and Saxena show thatHNC can be solved in time single-exponential
in the transcendence degree. They state their result in terms of radical membership testing.
In particular, they show that given polynomials f1, . . . , fk of transcendence degree r, test-
ing whether a polynomial f belongs to the radical ideal

√
⟨f1, . . . , fk⟩ can be performed

in time polynomial in dr, k and n, where d is the degree-bound on the polynomials and n
is the number of variables. Furthermore, they show that when the system is unsatisfiable,
the gi’s such that f1g1 + · · · + fsgs = 1 are of degree at most dr+1. They also exhibit an
algorithm computing the transcendence degree of the polynomials that runs in time poly-
nomial in dr, k and n. That is, the running time of the algorithm is bounded by a function
in the size of the output.

Let us also note that HNC is the canonicalNPC-complete problem for the Blum-Shub-
Smale computation model. We recall that a Blum-Shub-Smale machine is a Random Access
Machine, where registers can store arbitrary complex (or real) numbers and that can com-
pute rational functions over the complexes (respectively reals) in a single time step. See the
survey [82] for more details on the model and known results related to it.

Hilbert’sNullstellensatz in proof complexity. Hilbert’s Nullstellensatz has also found
its application in the field of proof complexity, a branch of computational complexity theory
that studies the complexity of theorem proving in proof systems, with the main complexity
measure being the size of proofs. Propositional proof systems, in particular, are systems of
proofs for the set of all unsatisfiable Boolean formulas. There are two types of proof sys-
tems: dynamic proof systems, which consist of a set of deduction rules, and every proof is a
tree-like derivation using the rules, and static proof systems, where the formula is encoded
in a suitable algebraic structure, and the proof boils down to exhibiting a property of the
structure.

The Nullstellensatz System (NS) [83] is a static proof system based on Hilbert’s Nullstel-
lensatz. The NS proof system works by encoding a propositional formula into a system of
polynomial equations f1, . . . , fk such that the system of polynomials is satisfiable if and
only if the formula is satisfiable. A proof that a formula is unsatisfiable thus consists of the
polynomials g1, . . . , gk witnessing that a system (more precisely, the encoding f1, . . . , fk)
is unsatisfiable. The complexity measures of such proofs are the size and degree of the
polynomials.

Hilbert’s Nullstellensatz over other fields and rings. The computational complexity
of solving systems of polynomial equations depends on the underlying field or ring. Over
the ring of rational integers Z, for example, HNZ is also known as Hilbert’s tenth problem.
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After being open for 70 years, the problem was shown to be undecidable by Matiyasevich,
Robinson, Davis and Putnam [84]. Whether one can decide the existence of a common zero
in rational numbers, on the other hand, remains open [85]. Over the reals, the problem is a
special case of the existential theory of the reals, and is thus decidable in PSPACE [2].

Over finite fields, the problem isNP-complete. Indeed, the hardness proof follows anal-
ogously to the one over C, and the non-deterministic algorithm just guesses a solution
and verifies it. For finite fields of small prime characteristic (e.g. p = 2) and low de-
gree polynomials, the search variant of the problem has also been studied extensively, as
it has applications in coding theory and cryptology. Most recently, the search variant of
the Hilbert’s Nullstellensatz problem has been inspected over the ring of integers modulo a
prime power pk [86]. Here, the authors no longer work over finite fields, but rather Galois
rings (which are isomorphic to Z/pkZ and admit fewer algorithmically-nice properties),
proposing a randomised polynomial time algorithm for the case when the number of vari-
ables and the exponent k of the prime power is constant. HN over Galois rings may be seen
as a first generalisation of the problem between its variants over finite fields and Zp. To the
best of our knowledge, no nontrivial upper bounds for HNZp are known.

Related problems. The Hilbert’s Nullstellensatz problem has been shown to relate to
several other well-studied problems on polynomials. One such example is the problem
of testing equivalence of polynomials under shifts, which given two polynomials f, g ∈
R[x1, . . . , xn] over a ring R, asks whether there exists a vector (a1, . . . , an) ∈ R such
that f(x1 + a1, . . . , xn + an) = g(x1, . . . , xn). In [87] this problem was shown to be
at least as hard as checking if a given system of polynomial equations over R[x1, . . . , xn]
has a solution, thus making it undecidable for the case when R = Z. The problem is
actually a special case of the affine polynomial projection problem. Formally, an m-variate
polynomial f is said to be an affine projection of some n-variate polynomial g if there exists
an n×mmatrix A and an n-dimensional vector b such that f(x) = g(Ax+ b). The latter
is closely related to many well-known problems from arithmetic complexity theory, the
most notable being the VP versus VNP problem, which is the arithmetic equivalent of the
P versus NP problem in classical complexity theory. Concretely, a way to prove that VP is
not equal to VNP would be to show that the permanent polynomial of an n × n matrix is
not an affine projection of the determinant polynomial of some m ×m matrix. For more
details, we refer the reader to, e.g., [88].

Hilbert’s Nullstellensatz is also related to the tensor rank problem, which asks, whether
a given tensor with entries in a ring R has rank at most r. Let us recall that the rank of a
tensor T is the smallest integer r such that T can be decomposed into a sum of r simple
tensors. The tensor rank problem has been known to be NP-complete over finite fields
since the late 80s [89], and has later been shown to be polynomial time equivalent to HN,
see, e.g. [90, Theorem 3].

Geometric interpretation and dimension. Given a system of polynomial equations
such as in Equation (1.1), when satisfiable, the polynomials define an algebraic variety
inKn. One of the most important parameters we can look at is its dimension. The complex-
ity of computing the dimension of a variety was first studied by Giusti and Heintz [91], who
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gave a randomised exponential time algorithm for the problem. Under GRH, Koiran [11]
showed that the dimension of a variety can be computed in AM. More formally, he stud-
ied the DIMC problem, which asks, given an integer d ≤ n, whether the variety V ⊆ Cn

defined by polynomials f1, . . . , fk ∈ Z[x1, . . . , xn] has dimension at least d, exhibiting a
randomised polynomial time reduction of DIMC to HNC. Note here that HNC, which asks
whether the variety defined by the given polynomials is non-empty, is precisely the prob-
lem DIMC specialised to d = 0.

The reduction works by first applying a random linear transformation A to the vari-
ety V such that with high probability the coordinates in which the imageAV of the variety
takes infinitely many values are x1, . . . , xd, if the dimension of V is at least d. The second
step of the reduction involves randomly choosing an integer point (a1, . . . , ad), and adding
equations x1 = a1, . . . , xd = ad to the system defining the image AV . If dimV ≥ d, then
with high probability this new system (with more polynomials but fewer variables) is sat-
isfiable over C, which can be verified using the AM algorithm for HNC. The error analysis
relies on a result from [92] on the proportion of integer points in a real variety. Applying
it requires an intricate analysis of the number of connected components of the variety V
embedded in R2n, as well as studying the Lebesgue measure of V ∩ Rn.

Koiran further proved that the DIMC problem is NPC-complete in the Blum-Shub-
Smale computation model, and in a later work [93] showed that the same holds for the
problem of computing dimensions of constructible sets. Other related problems, such as
computing the decomposition of a variety in equidimensional components, or determining
the degree of variety are known to belong to PSPACE [94].

A significant body of literature has been devoted to real varieties as well. Koiran showed
that given a set of polynomials with real coefficients, determining whether the real variety
they define is of dimension at least d is NPR-complete in the Blum-Shub-Smale compu-
tation model [95]. The problem of finding actually practical algorithms for computing the
dimension of a real variety has also been considered, see, e.g., [96, 97].

Parametric versions of Hilbert’s Nullstellensatz. In this thesis we study paramet-
ric versions of the HN problem. That is, given a system of polynomials f1, . . . , fk ∈
Z[x1, . . . , xn] we examine the existence and properties of solutions parametrised with re-
spect to a subset of variables x := (x1, . . . , xm) form < n, or even a function in x.

In this setting, wemay regard f1, . . . , fk as parametric equations inQ(x)[xm+1, . . . , xn].
Such systems of polynomial equations with coefficients inQ(x) are central objects of study
in algebraic combinatorics and in the theory of formal languages, where they are used to
specify generating functions of combinatorial objects (see, e.g., the overviews in [9, 10]),
and their solutions correspond to formal series in the variables xm+1, . . . , xn.

Studying the complexity of problems over Q(x) has also been used as a method to
try to understand their analogues over C or R. An example of such an application is the
work of Kayal and Saha on the Sum of Square Roots problem [50]. Given an expression
S =

∑n
i=1 ci

√
fi(x), where the fi are univariate polynomials not identically zero of degree

at most d, they study the problem of determiningwhether, if S ̸= 0, the maximum exponent
of x which has a nonzero coefficient in the power series S is bounded by a polynomial in n
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and the maximum degree of the fi’s. The idea behind their approach is to use such a bound
on the valuation of the power series in order to deduce a separation bound for sums of
square roots over R.

Going back to systems of polynomials, let us note that the first effective versions of
Hilbert’s Nullstellensatz we cited above concerned explicit solutions over C. An effective
version for the parametric case of Hilbert’s Nullstellensatz was first proven by Smietanski
[98], who showed degree bounds when the polynomials have at most 2 parameters. The
general case (for an arbitrary number of parameters) was considered in [99], where the
authors showed single-exponential bounds on the degrees of the gi’s as well as the degrees
of the parameters appearing in the coefficients of the gi’s. Analogously to the case over C,
these bounds allow to reduceHNQ(x) to solving a single-exponential system of linear equa-
tions, placing the problem in PSPACE. In our work, we prove an improved bound of the
problem, and observe its relation to the dimension problem over C discussed above.

In general, parametric solutions may be arbitrary algebraic expressions in the parame-
tersx and need not admit representations that are easy to be handled computationally. One
of the problems studied with respect to parametric systems is thus when they admit “nice”
solutions. The paper [100], for example, studies a specific class of well-behaved paramet-
ric solutions that can be represented via rational functions in the parameters. The author
exhibits bounds on the degrees of the polynomials that appear in such well-behaved solu-
tions and, furthermore, gives a probabilistic algorithm for computing this type of solutions,
running in time polynomial in the size of the output.

Parametric solutions of systems of polynomial equalities and inequalities were also con-
sidered in [101]. The author builds on the work of [102], computing solutions via the dis-
criminant variety in time exponential in the size of the input. Finally, computing irreducible
components of parametric algebraic varieties was considered in [103]; the proposed algo-
rithm for the problem runs in time doubly exponential in the size of the input.

1.3 Testing for the existence of zeros in sequences

In the last part of this thesis, we turn our attention to the problem of determining
whether a target value appears in a given hypergeometric sequence. The problem we con-
sider fits into the more general landscape of zero testing for recursive sequences. Here
the first class of sequences usually considered are sequences satisfying linear recurrences
with constant coefficients, which we call C-finite sequences. They are also commonly re-
ferred to as Linear Recurrence Sequences (LRS for short) in the literature. Formally, an
infinite sequence ⟨un⟩∞n=0 over a field K is said to be C-finite if it satisfies a recurrence
un =

∑d
k=1 ckun−k, where ci ∈ K and cd ̸= 0. We call the number of previous terms d

appearing in the recurrence relation defining an element un the order of the recurrence.

A fundamental result in the study of C-finite sequences is the Skolem-Mahler-Lech the-
orem, which states that the set {n ∈ N : un = 0} is a union of finitely many arithmetic
progressions and a finite set. The theorem was first proven for sequences defined over the
rationals by Skolem in the 1930s [104], then extended to sequences over algebraic numbers
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by Mahler [105], and finally to all fields of characteristic zero by Lech [106]. The result was
reproved several times, and later generalised to recurrences defined over fields of positive
characteristic as well, see, e.g. [107, 108, 109, 110]. Linear algebraic and algebro-geometric
interpretation of the theorem have also been explored, for example in [111]. All known
proofs of the theorem and its variants rely on p-adic techniques, and none of them are con-
structive. That is, while the theorem describes the shape of the zero set of such sequences,
its proofs give no indication on how to actually compute it, or determine whether it is non-
empty. In the context of computation, this gives rise to a decision problem known as the
Skolem problem, which asks, given a C-finite sequence ⟨un⟩∞n=0, whether there exists n ∈ N
such that un = 0.

The first positive decidability results for the problem appeared in the 1980s for se-
quences of order up to 4 [12, 13]. Notoriously, decidability for sequences of order 5 or
more remains widely open to this day. There is, however, an ongoing sequence of work on
the Skolem problem for various subclasses and generalisations of C-finite sequences, with
positive decidability results often conditioned to number theoretical hypotheses. For more
details, see the survey [112] by Ouaknine and Worrell and later works such as [113, 114,
115].

Let us now go back to our setting, where we consider sequences satisfying recurrences
with polynomial coefficients. The first generalisation of the Skolem-Mahler-Lech theorem
to P-finite sequences appeared in [116]. The authors show that for a sequence ⟨un⟩∞n=0

satisfying a polynomial recurrence un =
∑d

k=1 pk(n)un−k, under the assumption that pd
is a non-zero constant polynomial, the set {n ∈ N : un = 0} is the union of a finite
set and finitely many arithmetic progressions. As in the linear setting, the proof relies on
techniques from p-adic analysis, namely Strassman’s Theorem (which, loosely speaking,
asserts that convergent power series overZp are either identically zero or have only finitely
many zeroes). The proof again is not constructive, and it remains open whether the result
extends to general P-finite sequences.

From a computational point of view, one may consider the problem of determining
whether there exists n ∈ N such that un = 0 for a P-finite sequence ⟨un⟩∞n=0. Here we
consider general P-finite sequences again, that is sequences satisfying polynomial relations

p0(n)un + p1(n)un−1 + · · · pd(n)un−d = 0 ,

where p0(x) has non-negative integer zeros and pd(x) is not identically zero (but need not
be constant) as defined in Section 2.4.1. Let us note that for hypergeometric sequences,
that is, P-finite sequences of order 1, the problem is trivial. To see this, fix ⟨un⟩∞n=0 where
p(n)un = q(n)un−1 and note that if such an n exists, then the sequence is ultimately zero.
This is the case if and only if q(x) has a positive integer zero, which is easily decidable by
verifying whether q(n) = 0 for all n ∈ N up to a certain bound depending only on the
polynomial q.

A polynomially recursive sequence is said to be in (hypergeometric) closed form if it is
the sum of hypergeometric sequences [117, Definition 8.1.1]. In this thesis, we study the
problem of determining whether there exists n ∈ N such that un = 0, where un is the
sum of two hypergeometric sequences. This is arguably the first case of P-finite sequences
for which the zeroness problem is not trivially decidable. It is not difficult to show that
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the problem reduces to the problem of verifying, given a hypergeometric sequence and a
target value t, whether t appears in the sequence. To see this, fix hypergeometric sequences
⟨vn⟩∞n=0, and ⟨wn⟩∞n=0 with respective initial terms u0, and v0, satisfying

p(n)vn = q(n)vn−1 and f(n)wn = g(n)wn−1.

We aim to decide whether 0 appears in the sequence ⟨un⟩∞n=0 given by un = vn + wn.

Writing vn = v0
∏n

k=1
q(n)
p(n)

and wn = w0

∏n
k=1

g(n)
f(n)

, notice that un = 0 if and only if

v0

n∏
k=1

q(n)

p(n)
+ w0

n∏
k=1

g(n)

f(n)
= 0.

By multiplying out the denominators, we can write

v0

n∏
k=1

q(n)f(n) = −w0

n∏
k=0

g(n)p(n).

and finally rearrange the above equality as
n∏

k=1

q(n)f(n)

g(n)p(n)
= −w0

v0
.

Thus asking whether un = 0 is equivalent to determining whether the target −w0

v0
ap-

pears in the hypergeometric sequence given by the shift quotient q(x)f(x)
g(x)p(x)

and initial term 1.
We refer to the latter problem as Membership Problem for hypergeometric sequences, and
study this formulation instead. In this thesis, we present decidability results for the problem
when the sequences have rational parameters (that is, when the defining polynomials in the
recurrence split over Q). The approach was later extended to several classes of sequences
with higher-degree algebraic parameters — we defer the discussion on these extensions to
Section 5.4.

To the best of our knowledge, this is the first step towards testing zeroness for P-finite
sequences, and the problem remains widely open for general sequences of order 2 or more.

Threshold problems for sequences. A related domain of study of sequences are thresh-
old problems. Given a sequence of real numbers, the Threshold Problem asks whether every
term in the sequence lies above a given threshold. A notable instance often considered is
the Positivity Problem, which asks whether all terms of the sequence are positive. In fact,
one can show that the Skolem Problem for C-finite sequences actually reduces to the Posi-
tivity Problem, entailing a quadratic increase in the order. Threshold problems find appli-
cations across many areas, such as biology, economics, software verification, probabilistic
model checking, and more. From the point of view of program verification, for example,
the sequence can be seen as a simple loop program, and deciding the Threshold Problem
corresponds to determining whether a given loop program’s variables remain above a fixed
threshold before and after each iteration of the loop. In automated verification, deciding
such problems can answer questions regarding program termination (e.g., Is the loop con-
dition ever satisfied?), correctness and reachability (e.g., Is a bad state ever reached?).
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As in the zero testing case, a significant body of work has been dedicated to studying
the Positivity Problem for C-finite sequences. An example of such work is say [118], where
decidability of both the Positivity and the Ultimate Positivity Problems is established for
C-finite sequences of order 5 or less. Here the Ultimate Positivity Problem asks, given a
sequence ⟨un⟩∞n=0, whether there exists N ∈ N such that for all n ≥ N , un > 0.

How about P-finite sequences? Let us first look at order-1 P-finite sequence satisfying
recurrences of the form p(n)un = q(n)un−1. It is not difficult to notice that since p and q are
ultimately monotonic, the same will hold for the sequence ⟨un⟩∞n=0. As long as the sequence
is not ultimately zero (which we can decide, as discussed above), it will either be ultimately
positive or ultimately negative. To determine the Positivity problem, it thus suffices to
check for zeroness and then compute sufficiently many initial terms of the sequence until
it stabilises.

As for order-2 P-finite sequences, the problem of deciding positivity has been consid-
ered by various different authors. A common thread to all the work that has been published
on it seems to be that they all place syntactic restrictions on the degrees of the polynomial-
coefficients involved in the recurrences, and give algorithms that are not guaranteed to ter-
minate for all initial values of a given recurrence. In the work [119], the authors give partial
algorithms for deciding Positivity Problem (as well as zeroness) for sequences of the satis-
fying recurrences of the form un = p(n)un−1 + q(n)un−2 where the degree of q is smaller
or equal to the degree of p. The work [120], for example, considers sequences satisfying
recurrences of the form r(n)un = p(n)un−1+q(n)un−2, but the polynomial coefficients are
assumed to have degree at most 1. The paper [121], later extended in [122] studies positiv-
ity for sequences satisfying balanced recurrences; a recurrence is said to be balanced if the
leading and trailing coefficient have the same degree and all other coefficients are bounded
by this degree. Given a converging hypergeometric sequence ⟨un⟩∞n=0 and a target value
t, the sequence un − t satisfies a balanced second order recurrence. One might hope that
by deciding positivity of un − t, we could simply determine the Membership Problem for
⟨un⟩∞n=0 and t. However, the algorithms given in [121] are only guaranteed to terminate for
certain classes of sequences. As it turns out, these exclude precisely the instances of MP
that we identify as the non-trivial cases in Section 5.2. Most recently, in [123], the problem
of giving explicit positivity certificates for order-2 P-finite sequences was considered, again
excluding the sequences corresponding to the non-trivial cases we study in this thesis.
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Preliminaries

2.1 Notation

Given a field K , we denote by K[x] the ring of univariate polynomials with rational
coefficients, and byK(x) the field of univariate rational functions with rational coefficients.

We denote by Z for the ring of rational integers, and by N the positive integers. We
writeQ for the field of rational numbers, R for the field of real numbers, and C for the field
of complex numbers.

We use ∼ to denote asymptotic equivalence. That is, we write f(x) ∼ g(x) if and only
if limx→∞

f(x)
g(x)

exists and is equal to 1. We use the Landau’s big O notation O(·) to denote
that a function f(x) is asymptotically bounded by g(x). That is, we write f(x) = O(g(x))
is there existsM ∈ R>0 and x0 ∈ R>0 such that |f(x)| ≤Mg(x) for all x ≥ x0.

We denote by log the logarithm function with base 2 and by ln the natural logarithm.

Given a rational number a
b
, we write ht(a

b
) = logmax{|a|, |b|} for its (logarithmic)

height.

2.2 Complexity theoretical preliminaries

2.2.1 Representation of polynomials and models of computation

LetX = {x1, . . . , xn} be a set of commutative variables. Given an n-variate polynomial
f ∈ Z[X] of degree d, one natural way to represent it using a computer is via a list of
coefficients for every possible exponent vector (ei,1, . . . , ei,n) with

∑n
j=1 ei,j ≤ d. We call

this the dense representation. We define the size of the representation in this case to be the
number of possible monomials of total degree at most d (which is equal to

(
n+d
d

)
) alongside

the bitsize of the corresponding coefficients. The size thus upper-bounds the degree and
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the (logarithmic) height of the polynomial. The latter is defined as the maximum height
its coefficients. For polynomials which have many zero terms, such a representation may
seem wasteful, which leads to the following, alternative representation.

The sparse (lacunary) representation of an n-variate polynomial f is a list of t non-zero
terms (c0, e2,1, . . . , e0,n), (c1, e1,1, . . . , e1,n), . . . , (ct, et,1, . . . , et,n) such that

f(X) =
t∑

i=0

cix
ei,1
1 · · ·xei,nn ,

with each coefficient ci non-zero and all exponent tuples (ei,1, . . . , ei,n) ∈ Nn distinct. We
call the number of non-zero terms t the sparsity of the polynomial. We define the size of
the representation as

size(f) =
t∑

i=1

(size(ci) + size(ei,1 · · · ei,n + 2))

where the size of an integer refers to its logarithmic size. The degree of the polynomial can
be exponential in the sparsity. Let us now look at a model of computation which subsumes
the sparse representation, and allows for an efficient representation of an even larger class
of polynomials.

An algebraic circuit overX is a directed acyclic graph with labelled vertices and edges.
Vertices of in-degree zero (leaves) are labelled with the constants 0, 1 or with variables inX ;
and the remaining vertices have labels in {+,−,×}. Each gate of such a circuit represents
a polynomial in Z[X]. There is a unique vertex of out-degree zero which determines the
output of the circuit, an n-variate polynomial, computed in an obvious bottom-up manner.
The size of a circuit is the number of its gates; see Figure 2.1. The degree of a circuit C is
defined inductively as follows: input gates have degree 1, the degree of an addition gate is
the maximum of the degrees of its inputs, the degree of a multiplication gate is the sum of
the degrees of its inputs, and the degree of C is the degree of the output gate. Note that the
degree of an algebraic circuit is an upper bound on the degree of its underlying polynomial.
Thus the total degree and the bitsize of the coefficients of a polynomial represented by a
circuit is at most exponential in the size of the circuit.

The following proposition shows that circuits can be exponentially more succinct than
polynomials.

Proposition 2.1. Given m ∈ N, there is a circuit of size O(logm) that represents the poly-
nomial

∑m
i=0 x

i.

Proof. Define Sm :=
∑m

i=0 x
i. Note thatSm+1

1

 =

x 1

0 1

 ·

Sm

1


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Figure 2.1 – An algebraic circuit representing the polynomial
∑2s

i=0 2
ixi of size 3s+2. This

is a modified case of Proposition 2.1 withm = 2s.

and thus Sm

1

 =

x 1

0 1


m 1

1


for allm. Since exponentiation of amatrix to the powerm can be implemented viaO(logm)

steps of repeated squaring, the statement follows.

As a conclusion to this section, let us note that while algebraic circuits can be used to
represent polynomials of degree and with the number of monomials exponential in the size
of the circuit, as well as with coefficients of magnitude doubly exponential in the size of the
circuit, not every polynomial of this size admits a small circuit. The question of whether
a polynomial f admits a succinct representation in the form of an algebraic circuit is the
main object of study in the field of arithmetic complexity theory.

2.2.2 Complexity classes

In this section we recall the definitions of the complexity classes we use in our results.
For more details and extended definitions, we refer the reader to a standard reference, such
as [124].

In computational complexity theory, polynomial time (P, also PTIME) is the class of
computational problems that are considered to be “efficiently solvable” or “tractable”. For-
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mally, P contains all decision problems that can be solved by a deterministic Turingmachine
in polynomial time. In terms of languages, a language L is in P if and only if there exists a
deterministic Turing machineM , such thatM runs for polynomial time on all inputs, and
for all x in L,M outputs “yes”, and for all x not in L,M outputs “no”.

The complexity class nondeterministic polynomial time (NP) is the set of decision prob-
lems for which the problem instances where the answer is “yes” have proofs verifiable in
polynomial time by a deterministic Turing machine, that is, only “yes”-instances have a
polynomial-length certificate and there is a polynomial-time algorithm that can be used to
verify any purported certificate. Alternatively, NP can be understood as the set of prob-
lems that can be solved in polynomial time by a nondeterministic Turing machine. The
complexity class coNP is the class of problems whose complement is in NP. That is, a
decision problem is in coNP precisely if only ”no”-instances have a polynomial-length cer-
tificate and there is a polynomial-time algorithm that can be used to verify any purported
certificate.

The complexity class randomised polynomial time (RP) is the class of problems forwhich
there is a probabilistic Turingmachine that runs in polynomial time in the input size, always
returns “no” if the correct answer is “no”, and, if the correct answer is “yes”, returns “yes”
with probability at least 1

2
. Analogously, coRP is the class of problems whose complements

are in RP. That is, problems for which there is a probabilistic Turing machine that runs in
polynomial time in the input size, always returns “yes” if the correct answer is “yes”, and,
if the correct answer is “no”, returns “no” with probability at least 1

2
. The class bounded-

error probabilistic polynomial time (BPP) is the class of decision problems solvable by a
probabilistic Turing machine in polynomial time with an error probability bounded by 1

3

for all instances. In terms of languages, a language L is in BPP if and only if there exists a
probabilistic Turing machineM , such thatM runs for polynomial time on all inputs, and
for all x in L,M outputs “yes” with probability at least 2

3
, and for all x not in L,M outputs

“yes” with probability at most 1
3
.

The complexity class polynomial space (PSPACE) is the class of all decision problems
that can be solved by a Turing machine using a polynomial amount of space.

An oracle machineMB is a Turing machineM equipped with an oracle B to whichM
may ask membership queries on a special oracle tape. The oracle B is a black-box able to
solve a specific problem (e.g., a decision problem or a function problem) in a single opera-
tion. We write AL for the complexity class of decision problems solvable by an algorithm
in class A with an oracle for a language L. We extend the notation to a set of languages B
(or a complexity class B), by writing AB =

⋃
L∈B A

L.

The polynomial hierarchy (PH) is a hierarchy of complexity classes that generalises the
classes NP and coNP. We define ∆P

0 := ΣP
0 := ΠP

0 := P. Then for i > 0, we define

∆P
i+1 := PΣP

i ΣP
i+1 := NPΣP

i ΠP
i+1 := coNPΣP

i .

PH is known to be included in PSPACE.

The Arthur-Merlin protocol (AM) is an interactive proof system, formalising the inter-
action between a prover P and a verifier V such that the prover is trying to convince
the verifier of the truth of some statement x. In this case, Merlin is the (all-powerful, i.e.,
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nondeterministic) prover trying to convince the (polynomial-time) verifier Arthur that a
statement is true by providing a proof π for it. Here, additionally, Arthur has access to
randomness, and may use some public random bits in order to verify the statement. For the
class AM specifically, Arthur acts first by sending its random bits to Merlin, then Merlin
sends a proof that uses these random bits, and Arthur verifies it. Formally, a languageL is in
AM if there exists a deterministic algorithm V (Arthur, the verifier) running in polynomial
time (in the length of its first input) such that if x ∈ L, then for all random strings r there ex-
ists a proof π such that V (x, r, π) = 1, and if x /∈ L, then Pr[∃π : V (x, r, π) = 1] ≤ 1

2
. The

class AM is known to belong to the second level of the polynomial hierarchy, in particular,
AM ⊆ RPNP ⊆ ΠP

2 . Both NP and BPP are contained in AM.

2.3 Algebraic preliminaries

2.3.1 Ring theory

In this thesis we assume all rings to be commutative with unity.

Given a ring R, a subset I of R is said to be an ideal if I is an additive subgroup of
the additive group of R that absorbs multiplication by the elements of R. Given a rational
prime p ∈ Z, the additive group pZ is an ideal of Z. Any ideal I of R that is not the whole
of R is said to be a proper ideal, that is, the underlying set of I is a proper subset of the
underlying set of R. A proper ideal I is called a prime ideal if for any a and b in R, if ab is
in I , then at least one of a and b is in I .

The radical of an ideal I of R is the set
√
I = {r ∈ R | rn ∈ I for some n ∈ N}.

Equivalently, the radical of I can be defined as the intersection of all prime ideals P of R
containing I .

An R-module over a ring R is a generalisation of the notion of vector space over a
field. Formally, given a commutative ring R, an R-module is an additive abelian group
M equipped with a map · : R × M → M , called scalar multiplication, such that for all
r, s ∈ R and all m,n ∈ M , we have (r · s) ·m = r · (s ·m) , (r + s) ·m = r ·m + s ·m,
r · (m+ n) = r ·m+ r · n, and 1 ·m = m.

2.3.2 Algebraic number theory

In this and the following two sections we recall some important definitions concerning
algebraic number fields and their Galois groups. For more details, we refer the reader to
[125, 126].

A complex number α is algebraic if it is a root of a univariate polynomial with integer
coefficients. The minimal polynomial of α, denoted fα, is the unique (up to multiplication
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by ±1) integer polynomial of least degree, whose coefficients have no common factor, that
has α as a root. The degree of an algebraic number α, denoted by degα, is the degree of its
minimal polynomial fα. If fα is monic then we say that α is an algebraic integer. The sum,
the difference, the product and the quotient of two algebraic numbers are algebraic num-
bers; this means that the set of all algebraic numbers is a field, commonly denoted byQ. The
sum, the difference, and the product of two algebraic integers is again an algebraic integer;
the set of all algebraic integers forms a ring. Complex numbers that are not algebraic, such
as π and e, are called transcendental numbers.

A fieldK is said to be a field extension, denotedK/L, of a field L, if L is a subfield ofK .
Given a field extensionK/L, the larger fieldK is an L-vector space. The dimension of this
vector space is called the degree of the extension and is denoted by [K : L].

An algebraic number field (or simply number field)K is a finite degree field extension of
the field of rational numbers Q. ThusK is a field that contains Q and has finite dimension
when considered as a vector space over Q. We further denote by OK the subring of K
comprised by the algebraic integers in K . The ring OK is a finitely generated free abelian
group.

TheGaussian rationalsQ(i) are the first nontrivial example of an algebraic number field,
obtained by adjoining i :=

√
−1 to Q. All elements of Q(i) can be written as expressions

of the form a+ bi with a, b ∈ Q; hence [Q(i) : Q] = 2. Furthermore, OQ(i) := Z[i].

An order O in a number fieldK is a free Z-submodule ofOK of rank [K : Q]. SinceOK

is also a freeZ-module of rank [K : Q], it follows from the structure theorem forZ-modules
that the quotientOK/O is a finite abelian group. The order of this quotient, denoted [OK :
O], is called the index of O in OK . It is known that mOK ⊂ O for m = [OK : O]. For
example, Z[2i] = Z+Z2i is an order of the Gaussian integers of index 4, and 4Z[i] ⊂ Z[2i].

Let p(x) ∈ K[x] be a polynomial. The splitting field of p(x) over K is the smallest
extension of K over which p(x) can be decomposed into linear factors. The splitting field
of x2 + 1 over Q is Q(i).

A root of unity is any complex number that yields 1 when raised to some positive integer
power n, i.e., ζ such that ζn = 1. If ζn is an nth root of unity and for each k < n, ζk ̸= 1,
then we call it a primitive nth root of unity. We can always choose a primitive nth root
of unity by setting ζn = e2iπ

k
n for k with k ∈ Z∗

n. The nth cyclotomic polynomial, for
any positive integer n, is the unique irreducible polynomial Φ(x) ∈ Z[x] that is a divisor
of xn− 1 and is not a divisor of xk − 1 for any k < n. The nth cyclotomic polynomial Φn is
the minimal polynomial of a primitive nth root of unity, and its roots are all nth primitive
roots of unity. The number field Q(ζn) is an extension of Q obtained by adjoining ζn to Q;
the degree [Q(ζn) : Q] of the extension is the degree of Φn. It is well known that the ring
of integers of Q(ζn) is the ring Z[ζn] that is generated over Z by ζn.
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2.3.3 Galois theory

An algebraic field extension K/L is normal (we say K is normal over L) if every irre-
ducible polynomial over L that has at least one root inK splits completely overK . In other
words, if α ∈ K , then all conjugates of α over L (i.e., all roots of the minimal polynomial of
α over L) belong toK . An algebraic field extensionK/L is said to be a separable extension
if for every α ∈ K , the minimal polynomial of α over L is a separable polynomial. That
is, it has no repeated roots in any extension field. Every algebraic extension of a field of
characteristic 0 is separable. A Galois extension is an algebraic field extension that is normal
and separable. In other words, a field extension K/L is Galois if it is the splitting field of
some polynomial over L. If K ′/L is a separable field extension, the Galois closure K of K ′

over L is a field K that is a Galois extension of L and is minimal in that respect, i.e., no
proper subfield of K containing K ′ is normal over L.

Separable (and hence also Galois) extensions admit the following important property.

Theorem 2.2 (Primitive Element Theorem). Let K/L be a separable extension of finite de-
gree. Then K = L(θ) for some θ ∈ K ; that is, the extension is simple and θ is a primitive
element.

The proof of the Primitive Element Theorem is constructive (see, for example, [127,
Theorem 4.1.8] or [128, Theorem 5.1]), and computes the primitive element θ as a linear
combination of the generators of the finite extension. That is, if K := L(α1, . . . , αk), then
θ =

∑k
i=1 ciαi. The computation of θ is done inductively, constructing first a primitive ele-

ment θ2 for L(α1, α2), then θ3 for L(α1, α2, α3), and so on until θ is obtained. Furthermore,
one can show that only finitely many combinations of the constants ci fail to generate a
primitive element for the field extensionK . In particular, if L is an extension ofQ, the con-
stants can be chosen in Z, as summarised in the following lemma (which is a generalisation
of [129, Proposition 6.6]).

Lemma 2.3. Let L be an extension of Q, and K/L an extension of finite degree. Let α, β ∈
K be algebraic elements of respective degrees ℓ and m over L. There exists an integer c ∈
{1, . . . , ℓ2m2 + 1} such that α + cβ is a primitive element for L(α, β).

Proof. Let p and q be minimal polynomials of α and β over L, and let F be a splitting field
for pq containing L. Let α1 = α, . . . , αℓ be the roots of p in F and let β1 = β, . . . , βm be
the roots of q in F .

Notice that for j ̸= 1, we have βj ̸= β and thus the equation

αi +Xβj = α +Xβ ,

has exactly one solution, namelyX = αi−α
β−βj

. By choosing c ∈ L different from any of these
solutions, we obtain that

αi + cβj ̸= α + cβ unless i = j = 1.

Furthermore, notice that the set of values αi−αr

βs−βj
with s ̸= j consists of

(
ℓ
2

)
·
(
m
2

)
values

from F . Hence c can be chosen in the set {1, . . . , ℓ2m2 + 1}.
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Now let θ = α + cβ. We will show that L(α, β) = L(θ). To this aim, note that the
polynomials q(x) and p(θ − cx) have coefficients in L(θ) and both have β as a root, since
q(β) = 0 = p(α) = p(θ−cβ). Furthermore, β is their only common root, since cwas chosen
such that θ− cβj ̸= αi unless i = j = 1. It follows that gcd(q(x), p(θ− cx) = x−β. Hence
β ∈ L(θ), implying that α = θ − cβ ∈ L(θ).

Given a Galois extension K/L, the Galois group of K/L, denoted by Gal(K/L) is the
group of automorphisms of K that fix L pointwise. That is, the group of all isomorphisms
σ : K → K such that σ(x) = x for all x ∈ L.

Fix α to be an algebraic number over a Galois extension K/L. The image of α under
an automorphism σ ∈ Gal(K/L) is called a Galois conjugate of α. The Galois conjugates
of α are precisely the roots of the minimal polynomial fα of α. The Galois conjugates of a
root of unity ζn are its powers ζkn such that k ∈ Z∗

n (i.e., gcd(k, n) = 1); and Gal(Q(ζn)/Q)
includes all automorphisms σ defined by σ(ζn) = ζkn for k ∈ Z∗

n.

Given a separable algebraic field extensionK/L, every α ∈ K defines an L-linear map
of the L-vector space K into itself

µα :K → K

x 7→ αx

We define the norm of α ∈ K/L by

NK/L(α) = det(µα) .

If K/L is Galois, then the norm of α can equivalently be defined by

NK/L(α) =
∏

σ∈Gal(K/L)

σ(α) .

For short, we may drop the subscript K/L if the underlying field is understood from the
context. For α = a+ bi ∈ Z[i] the only Galois conjugate is a− bi, and thus its norm is the
product N(α) = (a+ bi)(a− bi) = a2 + b2. Recall that the norms of all Galois conjugates
are equal, and the norm of an algebraic integer is always a rational integer.

The trace of α ∈ K/L is defined by

TrK/L(α) = tr(µα) .

If K/L is Galois, then the trace of α can equivalently be defined by

TrK/L(α) =
∑

σ∈Gal(K/L)

σ(α) .

Again, we drop the subscriptK/L if the underlying field can be understood from the con-
text.

The ring of integersOK ofK is a free abelian group of rank n, and hence admitsZ-basis
{α1, . . . , αn}. Given such a basis, we denote with ∆K the discriminant, and define it as

∆K = det(TrK/L(αiαj))1≤i,j≤n

Note that ∆K is always a non-zero rational integer.
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2.3.4 Ramification theory

Given a number field K , the ring of integers OK may not be a unique factorisation
domain. However, we do have unique factorisation of ideals into products of prime ideals.
Let p ∈ Z be a rational prime and assumeK to be a Galois extension ofQ of degree n. The
ideal pOK may not be prime in OK , but does factorise into prime ideals as

pOK = pe1 · · · peg. (2.1)

For all prime ideals pi in the equation above, we have that p∩Z = pZ is a prime ideal of Z,
and we say that pi is above p.

Note that in the ring of integers of a number field, all prime ideals are maximal, hence all
pi’s are also maximal ideals of OK . In general, given a commutative ring R and a maximal
idealm ofR, the residue field is the quotient k = R/m. Now, given a maximal ideal p ofOK ,
OK/p is an Fp-vector space of finite dimension. The residual class degree (inertial degree),
denoted fp, is the dimension of the Fp-vector space OK/p, that is,

fp = dimFp(OK/p).

IfK is a Galois extension, the residue class degrees of each one of the pi’s appearing in (2.1)
are equal, and we denote them by f . We call e the ramification index of the prime p, and
we have that efg = n.

We say that p is ramified if e > 1. A prime p is said to be totally ramified if e = n, g = 1,
and f = 1. That is, pOK = pe for some p. Conversely, p is non-ramified if pOK = p1 · · · pg
where the pi are distinct. We further say that a prime p ∈ Z is inert if the ideal pOK is
prime, in which case we have pOK = p, that is, g = 1, e = 1, and f = n. Finally, a prime
is said to be toally split if g = n, e = 1 and f = 1, i.e., pOK = p1 · · · pn.

Whether or not a prime is ramified is directly related to the discriminant of the field.

Theorem 2.4. Let K be a number field. If p is ramified, then p divides the discriminant ∆K .

For the Gaussian integers, the ideals 2Z[i] and 5Z[i] are not prime ideals and have re-
spective factorisations 2Z[i] = p2 and 5Z[i] = p1p2 where p = (1+ i)Z[i], p1 = (2+ i)Z[i],
and p2 = (2 − i)Z[i] are prime ideals. The prime 2 is the unique ramified prime in the
Gaussian integers.

2.3.5 The p-adic field Qp

Here, we give a brief preliminary on the field of p-adic numbers Qp; for more details
see, e.g., [130].

Let p be a prime. We denote by vp : Q → Z ∪ {∞} the p-adic valuation on Q. Recall
that for a non-zero rational number x, the valuation vp(x) is the unique integer such that
x can be written in the form x = pvp(x) a

b
with p ∤ ab. Following the standard convention,

we define vp(0) := ∞.
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The fieldQp is the completion ofQ with respect to the p-adic absolute value | · |p, given
by |x|p = p−vp(x). We denote by Zp the valuation ring {x ∈ Qp : |x|p ≤ 1}. This is the local
ring with unique maximal ideal generated by p. A basic result aboutQp is Hensel’s lemma.

Lemma 2.5 (Hensel). Given f(X) ∈ Z[X], if there exists α ∈ Fp such that

f(α) = 0 and f ′(α) ̸= 0

then there exists a unique x ∈ Zp with f(x) = 0 and x ≡ α mod p.

Given a number field K/Q, let p be a rational prime and p a prime ideal of OK lying
above p. Then the p-adic absolute value | · |p corresponding to p extends uniquely to an
absolute value | · |p corresponding to p such that the restriction of | · |p to Q coincides with
| · |p. This, in turn, corresponds to a field extension Kp/Qp, which is the completion of K
with respect to the absolute value | · |p. Equivalently, Kp/Qp can be obtained by adjoining
the generators of K over Q to Qp.

The extension Kp/Qp can be analysed using the ramification of p in K . In particular,
if p completely splits inK , then [Kp : Qp] = 1, that is, the extension is trivial and we have
Kp = Qp. If p is inert, then the degree of the extension Kp over Qp is equal to the inertial
degree of p in K . Finally, if p is totally ramified, then the degree of the extension Kp over
Qp is equal to the degree of K over Q, i.e., [Kp : Qp] = [K : Q].

Given a prime ideal p of OK , we define the decomposition group Dp of p to be the set of
all automorphisms ofGal(K/Q) fixing p, that is,Dp = {σ ∈ Gal(K/Q) | σ(p) = p}. If the
fieldK is Galois overQ, the following isomorphism holds; see, e.g., [131, Proposition 8.10].

Dp
∼= Gal(Kp/Qp).

This entails that p completely splits inK if and only if the decomposition groupDp is trivial
for all prime factors p of p in OK .

2.3.6 Prime density

In this section we briefly recall well-known results on the distribution of prime numbers
which we use in our proofs. We only give the asymptotic versions of the results, and defer
the concrete effective statements we require in our proofs to later chapters.

We denote by π(x) the number of primes less than or equal to x. The Prime Number
Theorem describes the asymptotic distribution of the prime numbers among the positive
integers, formalising the intuitive idea that primes become less common as they become
larger.

Theorem 2.6 (Prime Number Theorem). The prime counting function π is asymptotically
equivalent to the function x

lnx
, that is, π(x) ∼ x

lnx
.

A generalisation of the Prime Number Theorem for primes in arithmetic progressions
was first proved by Dirichlet, showing that arithmetic progressions also contain infinitely
many primes.
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Theorem 2.7 (Dirichlet). Given coprime numbers a, n ∈ N, there are infinitely many primes
of the form n · k + a for k ∈ N.

Analogous to the assertion of the Prime Number Theorem, primes in arithmetic pro-
gressions also get less frequent. Given n ∈ N, the number of arithmetic progressions of
the shape nN + a for a ∈ {1, . . . , n − 1} that differ by infinitely many terms is given by
Euler’s totient function φ(n). Thus the proportion of primes in each of those is 1

φ(n)
. Given

coprime numbers a, n ∈ N with a < n, we write πn,a(x) for the number of primes less
than x that are congruent to a modulo n. Combining the observation on the number of
distinct arithmetic progressions with the Prime Number Theorem, the function πn,a(x) is
asymptotically equivalent to x

φ(n) lnx
.

Another generalisation of the Prime Number Theorem concerns the density of primes
splitting in a certain pattern in the ring of integers OK of a finite Galois extension K/L.
We recall that a set of primes S is said to have (natural) density δ if

#{p ≤ x : p ∈ S}
#{p ≤ x : p prime}

→ δ for x→ ∞ .

Chebotarev [132] proved that the different classes of splitting patterns correspond to con-
jugacy classes of the Galois group Gal(K/L) ofK and their density relates to the ratios of
automorphisms corresponding to the given class. The statement of his theorem, in partic-
ular, is in terms of the conjugacy classes given by the Frobenius endomorphism. We recall
that given a prime p, the Frobenius endomorphism maps every element to its pth power.
The Frobenius conjugacy class Fp of a prime ideal p is the class of automorphisms σ ∈ Dp

that act as the Frobenius automorphism on the residue field OK/p.

Theorem 2.8 (Chebotarev). LetK be a finite Galois extension of a number fieldLwith Galois
group G. LetX be a subset of G that is stable under conjugation. The set of primes p of L that
are unramified inK and whose associated Frobenius conjugacy class Fp is contained inX has
density |X|

|G| .

In our results, we generally rely on primes that split completely in K . As it turns out,
those primes correspond to the conjugacy class {id} containing solely the identity ele-
ment id of Gal(K/L). The asymptotic version of the theorem then asserts that the set of
completely split primes has density 1

|Gal(K/L)| .

2.3.7 Algebraic geometry

In this section we introduce some of the basic definitions and results from algebraic
geometry we use. For a more detailed introduction we refer the reader to, e.g., [133, 134].

An (affine) algebraic set or affine (algebraic) variety is the set of common zeroes of a
finite collection of polynomials S, i.e., a set of the form

V (S) = {x ∈ Kn : ∀p ∈ S . p(x) = 0}

where S ⊆ K[x1, . . . , xn]. For an arbitrary S, V (S) = V (I), where I is the ideal generated
by S.
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Algebraic sets are equipped with a topology called the Zariski topology, which is defined
by specifying its closed sets. Given an algebraic set V ⊆ Kn, the Zariski topology on V has
as closed sets all the algebraic subsets of V , i.e., those sets A ∈ V that are themselves alge-
braic sets inKn. The Zariski closure of a subsetW of an algebraic set V ⊆ Kn, denotedW ,
is the smallest algebraic subset of V , such thatW ⊆ W .

An algebraic set V is said to be irreducible if it is not the union of two proper closed
subsets. In other words, V ∈ Kn is irreducible if for all algebraic subsets A,B ⊆ V such
that V ⊆ A∪B, we have either V ⊆ A or V ⊆ B. Note that in some literature, irreducible
algebraic sets are called affine varieties, while we have chosen to follow the alternative
convention and defined affine (algebraic) varieties to be algebraic sets.

Given a variety V ⊂ Kn, we define

I(V ) = {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V },

that is, I(V ) is the ideal of all polynomials simultaneously vanishing on V .

Hilbert’s Nullstellensatz is a fundamental result in algebraic geometry that asserts that
the ideal of a variety is radical.

Theorem 2.9 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field.

1. If J ⊊ K[x1, . . . , xn] then V (J) ̸= ∅.
2. I(V (J)) =

√
J ; in other words, for f ∈ K[x1, . . . , xn],

f(P ) = 0 for all P ∈ V ⇐⇒ fk ∈ J for some k ∈ N.

Given an affine variety V ∈ Kn, the quotient ring K[x1, . . . , xn]/I(V ) is called the
coordinate ring of V . If V is irreducible, then I(V ) is prime and its coordinate ringK[V ] is
an integral domain. We denote its field of fractions byK(V ) and call it the function field of
the variety.

If V and W are subvarieties of Kn and Km respectively, then a regular map f : V →
W is the restriction of a polynomial map Kn → Km. Explicitly, it has the form f =
(f1, . . . , fm) where the fi’s are in the coordinate ring K[V ] of V . A rational function f ∈
K(V ) is regular at a ∈ V if it can be written as f = g

h
with g, h ∈ K(V ) and h(a) ̸= 0. A

rational function f ∈ K(V ) that is regular at all points of a closed subset of V is a regular
map, i.e., f ∈ K[V ].

The tangent space to an affine variety V at a point a, denoted TV,a is defined as the set
of all lines through a tangent to V .

Given an irreducible affine variety V , the local ring of V at point a ∈ V , denotedOa, is
defined to be the subring of the function field K(V ) consisting of all functions f ∈ K(V )
that are regular at a. We denote by ma the maximal ideal of Oa. The tangent space TV,a at
a point a is isomorphic to the vector space of all linear forms on ma/m

2
a (i.e. the dual space

of ma/m
2
a). The map da defines an isomorphism of the vector spaces ma/m

2
a and T ∗

V,a. The
vector space ma/m

2
a is called the cotangent space to V at a.

Suppose that f1, . . . , fk generate the ideal of the variety V . Then TV,a is the linear
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subspace defined by

n∑
i=1

∂fj
∂xi

(xi − ai) = 0 for all j ∈ {1, . . . , k}.

That is, TV,a is equal to the kernel of the Jacobian of the system f1, . . . , fk.

The dimension of V at a point a, denoted by dima V is the maximum of the dimensions
of the irreducible components of V through a. We say that a is nonsingular if dimTV,a =
dima V .

An algebraic variety inKn of dimension n− 1 is called a hypersurface. A hypersurface
that is also an affine space (i.e., satisfies a linear equation) is a hyperplane. A variety of
dimension 1 is said to be an algebraic curve.

We have the following definition of dimension [134, Section 9.5, Theorem 2].

Theorem2.10. LetV ⊆ Kn be an affine variety. Then the dimension ofV equals themaximal
number of elements of K[V ] which are algebraically independent over K .

If the variety V is irreducible, then its function fieldK(V ) is well-defined. The dimen-
sion of V is equal to the transcendence degree of K(V ) over K .

We recall another equivalent definition of the dimension of an algebraic variety [134,
Section 9.5, Corollary 4].

Theorem 2.11. Let V ⊆ Kn be an affine variety. Then the dimension of V is equal
to the largest integer d for which there exist d variables xi1 , . . . , xid such that I(V ) ∩
K[xi1 , . . . , xid ] = {0} (i.e., such that I(V ) contains no non-zero polynomials in only these
variables).
Furthermore, ifK is algebraically closed, the statement above remains true if we replace I(V )

with any defining ideal I of V .

Let I ⊆ {1, . . . , n} be a set of indices. We denote by πI : kn → k|I| the projection on
the |I|-dimensional subspace defined by the system of equations {xi = 0, i /∈ I}. In terms
of projections, one can deduce from Theorem 2.11 that the dimension of V is the largest
dimension of a coordinate subspace for which the projection of V is Zariski dense in the
subspace. To prove this, the following theorem [134, Section 3.2, Theorem 3] is needed.

Theorem 2.12 (Closure Theorem). Let k be algebraically closed. Let V = V (f1, . . . , fs) ⊆
Kn and let Iℓ = ⟨f1, . . . , fs⟩ ∩ K[xℓ+1, . . . , xn] be the ℓth elimination ideal of ⟨f1, . . . , fs⟩.
Then

(i) V (Iℓ) is the smallest affine variety containing πℓ(V ) ⊆ Kn−ℓ.

(ii) When V ̸= ∅, there is an affine varietyW ⊊ V (Iℓ) such that V (Iℓ) \W ⊆ πℓ(V ).

Item (i) of the Closure theorem thus asserts that V (Iℓ) is the Zariski closure of πℓ(V ).
Item (ii) furthermore shows that even if πℓ(V ) is not equal to V (Iℓ), it almost fills up V (Iℓ).
In particular, all the points that are missing lie in a smaller varietyW .
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Proposition 2.13. LetK be algebraically closed. Given a subvariety V ⊆ Kn, its dimension
is the largest dimension of a coordinate subspace for which the projection of V is Zariski dense
in the subspace.

Proof. Fix variables xi1 , . . . , xid such that I(V ) ∩ K[xi1 , . . . , xid ] = {0}, the existence of
which is asserted in Theorem 2.11. Let π be the projection map from Kn to Kd defined by
π(a1, . . . , an) = (ai1 , . . . , aid).

Let Ĩ = I(V ) ∩K[xi1 , . . . , xid ]. By the Closure Theorem (Theorem 2.12) V (Ĩ) ∩Kd is
the smallest variety containing the projection π(V ). Since

Ĩ = {0} ⇐⇒ V (Ĩ) = kd

⇐⇒ V (Ĩ) ∩ kd = kd

⇐⇒ the smallest variety containing π(V ) is precisely Kd (Theorem 2.12)
⇐⇒ π(V ) is dense in Kd.

That is, for a variety V ⊆ Cn, if dimV = d, then
— for r ≤ d there exists a set I of r indices such that πI(V ) is dense in Cr,
— for r > d there does not exist a set of r indices with this property.

2.4 Sequences and series

In this section we give a brief overview of recursively defined sequences and their gen-
erating series. For more details, we refer the reader to [135].

2.4.1 Sequences

LetK be a field. An infinite sequence ⟨un⟩∞n=0 of elements fromK is said to be C-finite
if it satisfies a recurrence

c0un + c1un−1 + · · ·+ cdun−d = 0

where c1, . . . , cd ∈ K and cd ̸= 0. We call the number of previous terms d appearing
in the recurrence relation defining an element un the order of the recurrence. C-finite se-
quences are also commonly referred to as Linear Recurrence Sequences (LRS for short) in
the literature.

Arguably the most well-known example of C-finite sequences is the Fibonacci sequence
⟨Fn⟩∞n=0, which satisfies the equation Fn = Fn−1 + Fn−2 and is given by the initial terms
F0 = F1 = 0.
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An infinite sequence ⟨un⟩∞n=0 of elements from K is said to be P-finite if it satisfies a
recurrence

p0(n)un + p1(n)un−1 + · · ·+ pd(n)un−d = 0 (2.2)
where p0(x), . . . , pd(x) ∈ K[x], the polynomial pd(x) ̸= 0 and p0(x) has no non-negative
integer zeros. By the latter assumption on p0(x), the recurrence relation (2.2) uniquely
defines an infinite sequence once the initial values u0, . . . , ud ∈ K are specified. Here d is
again called the order of the sequence.

A simple example of a P-finite sequence is the factorial sequence ⟨fn⟩∞n=0 where for each
term we have fn = n!. The sequence is given by the initial term f0 = 0 and satisfies the
recurrence fn = n · fn−1.

P-finite sequences of order 1 are known as hypergeometric sequences. Formally, the
sequence ⟨un⟩∞n=0 is called a univariate hypergeometric sequence if it satisfies a recurrence
of the form

p(n)un − q(n)un−1 = 0 , (2.3)
where p(x), q(x) ∈ K[x] are polynomials, and p(x) has no non-negative integer zeros.
Recurrence (2.3) can be reformulated as

un = r(n)un−1 ,

where r(x) = q(x)
p(x)

∈ Q(x) is a rational function that, by the assumption above, has no
nonnegative integer pole. The rational function r(x) is called the shift quotient of ⟨un⟩∞n=0.

An example of a hypergeometric sequence often used in computer science is the se-
quence of Catalan numbers ⟨Cn⟩∞n=0, which counts, for example, the number of well paren-
thesised expressions of length n or, say, the number of full binary trees with n + 1 leaves.
The sequence satisfies the relation Cn = 2(2n−1)

n+1
Cn−1, and we define its initial term to be

C0 = 1.

2.4.2 Power series

Number sequences are one of the principal objects of study in combinatorics as well.
Given a field K , and a sequence ⟨an⟩∞n=0 of values from K , a standard way to represent it
is via its generating series, which we define as a univariate formal power series

a(x) =
∞∑
n=0

anx
n.

More generally, a (multivariate) formal power series in variables x1, . . . , xm is defined by

a(x1, . . . , xm) =
∑

(α1,...,αm)∈Nm

aαx
α1
1 · · ·xαm

m .

The formal power series in the variables x := (x1, . . . , xm) overK with pointwise addition
and Cauchy product form a ring, which we denote by

KJxK =
{ ∑

α∈Nm

aαx
α | aα ∈ K

}
.
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We define the support of a formal series by

supp(a) := {α ∈ Nm | aα ̸= 0}.

If f = a0 + a1x
α1 + a2x

α2 + · · · is a formal power series then f has an inverse inKJxK if
and only if a0 ̸= 0.

If K is a field, the quotient field of the ring of rational functions KJxK is the field of
(formal) Laurent series, which we denote by K ((x)). It consists of series of the form

a(x) =
∑
α∈Zn

aαx
α

whose support supp(a) := {α ∈ Zm | aα ̸= 0} takes values in the set {n0, n0 +
1, . . . ,−1, 0} ∪ N for some integer n0. Explicitly, we can write it as

K ((x)) =
{ ∑

α∈Zm

aαx
α | aα ∈ K

}
.

A Puiseux series in the variables x := (x1, . . . , xm) is a formal series

a(x) =
∑
α∈Qn

aαx
α

whose support supp(a) := {α ∈ Qm | aα ̸= 0} satisfies supp(a) ⊆ 1
k
Zm for some positive

integer k. The field of Puiseux series in x over a field K is defined as

K {{x}} =
{ ∑

α∈Qm

aαx
α | aα ∈ K

}
.

It is the algebraic closure of the field of Laurent series.

A series a(x) ∈ KJxK is said to be algebraic over K[x] if there exist polynomials
p0(x), . . . , pd(x) ∈ K[x] ⊆ KJxK, not all zero, such that

p0(x) + p1(x)a(x) + p2(x)a(x)
2 + . . .+ pd(x)a(x)

d = 0.

Taking the pi(x) as rational functions allows us to regard

p(x, y) := p0(x) + p1(x)y + p2(x)y
2 + . . .+ pd(x)y

d = 0

as a univariate polynomial in y over the coefficient fieldK(x). The substitution p(x, a(x))
for a(x) ∈ K(x) then takes place in the bigger domain K ((x)) of Laurent series with
coefficients in K , which contains both K(x) and KJxK as subrings.

Given an algebraic power series a(x) we denote by A ⊆ K(x)[y] the ideal of all uni-
variate polynomials with coefficients inK(x)which vanish on the power series a(x). That
is, all polynomials p(x, y) ∈ K(x)[y] such that p(x, a(x)) = 0. We say thatA is the ideal of
annihilating polynomials for a(x). The generatorm(x, y) ofA (where the leading term in y
is monic) is called the minimal polynomial of a(x). By virtue of being monic, the minimal
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polynomial m(x, y) is uniquely defined. Furthermore, the minimal polynomial m(x, y) is
always irreducible.

In the univariate setting, the Newton-Puiseux theorem [136, 137] gives a characterisa-
tion of the fieldK(x) in terms of Puiseux series. The theorem says that given a polynomial
equation p(x, y) = 0 with coefficients in an algebraically closed field of characteristic zero,
its solutions in y, viewed as functions of x, may be expanded as Puiseux series in x that are
convergent in some neighbourhood of 0. In terms of fields, the theorem asserts that the set
of Puiseux series over an algebraically closed field of characteristic 0 is itself an algebraically
closed field. In other words, the algebraic closure K(x) for K a field of characteristic 0 is
a subfield of K {{x}}. The algebraic closure Q(x), for example, is equal to the subfield of
the field of Puiseux series C {{x}} consisting of those series that are algebraic over the field
Q(x) of rational functions.

This characterisation does not extend directly to the multivariate setting, that is, to
K(x1, . . . , xn). Take for example the equation z2 − x1 − x2 with solution

√
x1 + x2, which

does not admit a Puiseux series expansion. The closest result to the Newton-Puiseux theo-
rem here is McDonald’s theorem [138], which asserts that the elements that are algebraic
overK[x1, . . . , xm] can be expressed as series with support in the translation of a strongly
convex rational cone. As discussed above, if supp(a) ⊂ 1

k
Z for some k, then the series is a

Puiseux series, whereas in McDonald’s theorem the series have the support is a subset of a
cone instead. More generally, characterising the algebraic closure of the field of multivari-
ate rational functions or say the field Laurent series is still an active area of research; see,
e.g., [139] and the introduction therein.
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The Radical Identity Testing problem

In this chapter we study the Radical Identity Testing (RIT) problem, which asks, given a
polynomial f(x1, . . . , xk) represented by an algebraic circuit, and radicals d1

√
a1, . . . ,

dk
√
ak,

whether f( d1
√
a1, . . . ,

dk
√
ak) = 0. We further consider two restricted variants of the prob-

lem: the 2-RIT problem and the bounded-RIT problem.

The results presented in this chapter are based on a joint work with Nikhil Balaji, Mahsa
Shirmohammadi, and James Worrell [140].

Organisation of the chapter. We begin this chapter by recalling notation and the state-
ments of the problems we consider in Section 3.1. In Section 3.2 we discuss our approach
to solving RIT, which generalises the well-known randomised polynomial time algorithm
for ACIT. We outline the ring of computation in the radical setting and give an overview
of our algorithm. In Section 3.3 we generalise a subroutine of the well-known algorithm
for bounded-RIT and show that we can always assume that the input radicands ai are
pairwise coprime and the minimal polynomials of the radicals di

√
ai over Q are xdi − ai.

Our arguments actually allow to generalise the algorithm for the bounded-RIT problem as
well, which we observe in Section 3.3.1.

Section 3.4 is dedicated to the complexity of the general variant ofRIT. In Section 3.4.1,
we give the arguments ensuring the soundness of our algorithm when taking the compu-
tation to a finite field. As a parenthesis, we show that one of the soundness lemmas also
allows us to reduce RIT to determining the satisfiability of a system of polynomial equa-
tions in Section 3.4.2. We then go back to our algorithm, showing how to choose suitable
primes for the computation in Section 3.4.3, and stating the algorithm in Section 3.4.4.

In Section 3.5 we turn our attention to a restricted variant of the problem, namely the
2-RIT problem, wherein the input radicals are square roots of primes, and show an im-
proved complexity bound for this case. Finally, we conclude the chapter by discussing
possible extensions of our approach and listing some open questions in Section 3.6.
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Relevant preliminaries. The preliminary sections useful for reading this chapter are
Section 2.2 and Sections 2.3.1 to 2.3.6.

3.1 Notation

Let f(x1, . . . , xk) be a multivariate polynomial computed by an algebraic circuit, and
d1
√
a1, . . . ,

dk
√
ak be k radicals, where the radicands ai ∈ N, and the exponents di ∈ N are

nonnegative integers, written in binary. The Radical Identity Testing (RIT) problem asks
whether

f(
d1
√
a1, . . . ,

dk
√
ak) = 0.

We define the size of an RIT instance as the maximum of the size of the circuit and the
bitsize of the radicands ai and exponents di.

The 2-RIT problem is a special case of RIT where all input radicals √a1, . . . ,
√
ak are

square roots and all radicands ai are rational primes, written in binary.

The bounded-RIT problem is a variant of RIT defined exactly as the RIT problem,
except that the input also includes an upper bound on the degree of the circuit that is given
in unary. Thus in bounded-RIT the degree of the circuit is at most the size of the instance.

3.2 Approaching the problem

We approach the Radical Identity Testing problemwith the aim of generalising the well-
known fingerprinting procedure for solving ACIT [1], which involves evaluating an arith-
metic circuit modulo a randomly chosen prime. The soundness of the latter approach relies
on the fact that if the integer z ∈ Z computed by the circuit is non-zero, then one can with
high probability randomly sample a prime p ∈ Z of size polynomial in the bitsize of the
input such that z is non-zero modulo p.

Formally speaking, in the setting of ACIT, the computation occurs in the ring of inte-
gers Z. The prime ideals of Z are pZ, for (rational) primes p. The algorithm evaluates the
circuit in the finite field Fp by a surjective homomorphism φ : Z → Fp with kernel pZ.

The approachwas first generalised to identity testing over number fields in [32], namely
to deciding the CIT problem, which asks, given an algebraic circuit C representing a poly-
nomial f ∈ Z[x] and an integer n ∈ N given in binary, whether f(ζn) = 0. There, the
computation occurs in the ring of integers Z[ζn] of a cyclotomic field Q(ζn). In the algo-
rithm, the computation is done in a finite field Fp corresponding to the quotient of Z[ζn] by
a prime ideal factor p of pZ[ζn]. Concretely, the algorithm chooses a prime p such that Fp

contains an nth primitive root of unity, and evaluates the polynomial modulo p. If the result
is non-zero, then the instance of CIT is negative. Otherwise, the prime p must divide the
norm of the cyclotomic integer computed by the circuit, which means that there are only
finitely many primes for which the finite field evaluation could give a false positive.
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In our work, we further generalise the CIT technique of [32] to identity testing for
radical expressions. To understand the differences between the two problems, let us see
what is the ring of evaluation in the case of RIT. To this aim, first note that given a, d ∈ N,
the radical d√

a is an algebraic integer. Theminimal polynomial of the real radical d√
a overQ

has the form xt−cwhere t is the smallest positive integer such that there exists an integer c
with d√

a =
t√
c. The conjugates of d√

a are then ζjt
t√
c with 1 ≤ j ≤ t, where ζt is a tth

primitive root of unity.

The number field Q(
d1
√
a1, . . . ,

dk
√
ak) is the smallest extension of Q that contains the

radicals di
√
ai. Since we are in characteristic zero, the extension is separable over Q, but

note that it is normal (hence Galois) over Q if and only if di = 2 for all i ∈ {1, . . . , k}.
The splitting fieldK of

∏k
i=1(x

di −ai) isQ(
d1
√
a1, . . . ,

dk
√
ak, ζd), obtained by adjoining the

radicals di
√
ai and a primitive root of unity ζd, with order d = lcm(d1, . . . , dk), to Q.

In the RIT problem, we may thus think of the evaluation as occurring in the ring of
integers OK of K . Again, the idea behind our approach is to work modulo a prime ideal p
of OK such that the quotient OK/p is isomorphic to Fp for some rational prime p. As
discussed in Section 1.1, the Galois group of the radical number fieldK we work with may
not be as well-behaved as Gal(Q(ζn)/Q). Furthermore, in contrast to cyclotomic fields,
the ring of integers of a radical field extension need not be monogenic. That is, it may not
admit a power basis given by a single element such asZ[ζn]. This makes choosing a suitable
rational prime p more challenging.

Wemanage to get around these problems by examining primitive elements for the num-
ber fieldK in order to deduce a bound on primes p suitable for the finite field computation.
Themain correctness proof of our algorithm relies on the characteristics of the Galois group
of K and concepts from number theory.

We will now give a brief overview of our algorithm, and sketch its correctness.

Our non-deterministic algorithm for RIT. Given input radicals d1
√
a1, . . . ,

dk
√
ak to

RIT, we first reduceRIT to the case that the radicands ai are pairwise coprime numbers and
that the minimal polynomials of the input radicals di

√
ai are xdi − ai for all i ∈ {1, . . . , k}.

To do this we generalise the reduction in [42] and use the factor refinement algorithm [141];
see Section 3.3.

Our algorithm then proceeds in two steps. In Step 1, we find a rational prime p such
that each polynomial among xd1−a1, . . . , xdk−ak splits into distinct linear factors over Fp.
We can find such a prime p in non-deterministic polynomial time in the size of the problem
instance by (i) choosing a prime p such that p ≡ 1 mod d, which ensures that Fp contains
a primitive dth root of unity, and (ii) guessing and checking α1, . . . , αk ∈ Fp such that αi

is any root in Fp of the polynomial xdi − ai.

In Step 2, we evaluate the polynomial f(α1, . . . , αk) in Fp, where f(x1, . . . , xk) ∈
Fp[x1, . . . , xk] is the reduction of f modulo p. If the result of this computation is zero
then we report ‘Zero’; otherwise we report ‘Non-zero’.

The algorithm we just described (stated fully in Figure 3.3) allows us to place the RIT
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problem in coNP assuming GRH. Overall, the key idea is that if f( d1
√
a1, . . . ,

dk
√
ak) ̸= 0

then there is a polynomial-size polynomial-time checkable witness of this fact — namely
a prime p and α1, . . . , αk ∈ Fp, satisfying αdi

i ≡ ai (mod p), such that f(α1, . . . , αk) is
non-zero, where f is the reduction of f modulo p. Note that the algorithm works directly
with the finite field Fp—the prime ideal p is implicit in the choice of radicals in Step 1, and
ideals in K only feature in the proof of correctness of the algorithm, which we will briefly
outline now.

The first element of the correctness proof of the coNP algorithm is to argue that the
prime p chosen in Step 1 completely splits in the ring of integers OK . In this situation, for
any prime-ideal factor p of p, each quotient field OK/p is isomorphic to the finite field Fp.
By standard results in algebraic number theory we know that p completely splits in OK if
each polynomial xd1 − a1, . . . , x

dk − ak splits into linear factors over the field Qp of p-adic
numbers.

The latter requirement is guaranteed by Hensel’s Lemma in tandem with Conditions (i)
and (ii) in Step 1 that determine the choice of p in the algorithm. Inmore detail, Condition (i),
that p ≡ 1 (mod d), entails that Fp contains a primitive dth root of unity. To see this, first
recall that the powers of a root of unity are also all roots of unity themselves. Now since
the multiplicative group F∗

p is cyclic, it is clear that F∗
p contains a primitive dth root of unity

if and only if d | p − 1. In combination with Condition (ii), requiring that each of the
polynomials xd1 −a1, . . . , xdk −ak has a root in Fp, we can conclude that each of the above
polynomials in fact splits into distinct linear factors over Fp. Then Hensel’s Lemma allows
us to lift this factorisation over Fp into a factorisation over Qp.

The second element of the correctness proof concerns the choice of α1, . . . , αk in Fp. In
particular, we argue that the correctness of the algorithm does not rely, for i ∈ {1, . . . , k},
on a specific choice of αi among the di roots of xdi − ai in Fp. This argument is based on
the fact that the Galois group Gal(K/Q) acts transitively on the set

{(α1, . . . , αk) ∈ Kk : αd1
1 = a1 ∧ · · · ∧ αdk

k = ak}.

That is, for any two k-tuples τ1 and τ2 in the set above, there exists an automorphism σ in
Gal(K/Q) such that σ(τ1) = τ2. We will call this property joint transitivity; see Lemma 3.3.

Now for every prime ideal factor p of pOK there is a surjective homomorphism φ :
OK → Fp with kernel p. For each choice of p and for all i ∈ {1, . . . , k}, the correspond-
ing homomorphism φ maps αi to some root αi of xdi − ai in Fp. Conversely, using joint
transitivity, we are able to show that every mapping α1 7→ α1, . . . , αk 7→ αk where, for
i ∈ {1, . . . , k}, αi is an arbitrary root of xdi − ai in Fp, arises from the quotient map by
some prime ideal factor of p. We conclude that the value f(α1, . . . , αk) in Item 2 is the
image of f(α1, . . . , αk) under the quotient map OK → OK/p for some prime ideal p.

It follows from the line immediately above that the algorithm has no false positives: if
f(α1, . . . , αk) = 0 in K then certainly f(α1, . . . , αk) = 0. We moreover show that for a
suitable choice of prime p, namely such that p does not divide the norm of f(α1, . . . , αk)
over K/Q, the converse holds: if f(α1, . . . , αk) ̸= 0 in K then f(α1, . . . , αk) ̸= 0 in Fp.
For more details, see Lemma 3.4.

We complete our correctness proof by employing a quantitative version of the Cheb-
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otarev density theorem. Informally speaking, Chebotarev’s density theorem states that the
set of rational primes p that split completely in OK has density 1

|Gal(K/Q)| . The original
statement of the theorem is asymptotic, whereas for our algorithm we use its quantitative
version in order to obtain a bound on the number of totally split primes p of size polynomial
in the bitsize of the input, which requires GRH. We use the bound in combination with a
bound on the norm of f(α1, . . . , αk) to ensure we can find at least one small prime that will
not divide the norm and ensure our computation is sound.

Our randomised algorithm for 2-RIT. In contrast to the algorithm for ACIT, or its
generalisation toCIT, our algorithm runs in non-deterministic polynomial time, as opposed
to randomised polynomial time. In order to be able to choose the prime randomly, we
would require the density of split primes to be polynomial in the size of the input instance.
However, since the size of the Galois group of K over Q is exponential in the size of the
input, by Chebotarev’s density theorem, totally split primes do not have sufficient density
in order to directly be chosen randomly. This is the case even if the exponents di are prime
numbers written in unary.

Nonetheless, we manage to improve the obtained coNP bound for RIT in the case of
2-RIT, wherein all input radicals are square roots and all radicands ai are odd rational
primes (written in binary). As explained above, the density of arbitrary primes in this case
is not good enough for random sampling either, however, we show that there is an arith-
metic progression with a good density of primes, and that all primes in this progression are
suitable. The latter allows us to improve the complexity for 2-RIT, placing it into coRP
assuming GRH. To obtain this result, we rely on the law of quadratic reciprocity, as well as
Dirichlet’s theorem on the density of primes in arithmetic progressions.

We recall that a suitable prime p for our symbolic algorithm is such that the minimal
polynomials of all input radicals split into linear factors over Fp. In the setting of 2-RIT,
the minimal polynomials of the input radicals are of the form x2 − qi where qi is an odd
rational prime. The condition entails that the equations x2 ≡ qi have solutions in Fp,
that is, that qi is a quadratic residue modulo p for all i ∈ {1, . . . , k}. Now by the law of
quadratic reciprocity, p is a quadratic residue modulo prime qi if and only if qi is a quadratic
residue modulo p, condition to p ≡ 1 (mod 4). Roughly speaking, the latter holds if p ≡ 1
(mod 4qi) (as 1 is a perfect square in Fp).

By the Chinese remainder theorem and a more detailed argument similar to the intu-
ition we have just given, we show that there is an arithmetic progression AN+ b such that
for all primes p in the progression, all polynomials x2 − qi, with i ∈ {1, · · · , k}, split into
linear factors over Fp. We further impose an additional condition on A and b, based on
Pocklington’s algorithm, ensuring that a root of each x2− qi can be computed in determin-
istic polynomial time in the size of the problem instance.

Finally, we use effective versions of Dirichlet’s theorem on the density of primes in
an arithmetic progression, see Theorem 3.14, to show that the 2-RIT problem is in coRP
assuming GRH and in coNP unconditionally.

Now that we have given an outline of our algorithms and their correctness proofs, let
us go to the technical details.
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3.3 A reduction to coprime radical inputs

In this section we show that without loss of generality, we can assume the input radi-
cands a1, . . . , ak to be pairwise coprime. In particular, given an algebraic circuit C repre-
senting a polynomial f(x1, . . . , xk) together with k input radicals

d1
√
a1, . . . ,

dk
√
ak, we con-

struct another algebraic circuit C ′ representing an ℓ-variate polynomial f ′(y1, . . . , yℓ) and
input radicals t1

√
n1, . . . ,

tℓ
√
nℓ, with the nj pairwise coprime and respective minimal poly-

nomials xtj − nj , such that f( d1
√
a1, . . . ,

dk
√
ak) = 0 if and only if f ′(

t1
√
n1, . . . ,

tℓ
√
nℓ) = 0.

To this aim, we rely on the factor-refinement algorithm, introduced in [141]. Given a set
of integers a1, . . . , ak, the algorithm computes a set {m1, . . . ,mℓ} of (not necessarily prime)
factorsmj of the ai’s such that gcd(mj,mk) = 1 for all 1 ≤ j < k ≤ ℓ, and each ai can be
written as a product of these factors, i.e., ai =

∏l
j=1m

eij
j with the eij ∈ N. If we denote by

a = lcm(a1, . . . , ak), the factor-refinement algorithm runs in time O(log2(a))(see also [42,
Lemma 3.1]), and the number ℓ of factors is bounded by

∑k
i=1 log(|ai|).

The reduction algorithm is illustrated in Figure 3.1. Let us now verify its correctness
and show that it runs in polynomial time in the size of the input instance of RIT.

In Step 1, we first compute the partial factorisation of each one of the ai’s by going
through all primes up to log a, where a = lcm(a1, . . . , ak). This can clearly be done in time
polynomial in log a. We denote bym1, . . . ,mr, the primes p appearing in the factorisations
of the ai.

In Step 2, we apply the factor-refinement algorithm to the unfactored parts of the ai’s
and compute a set of pairwise coprime factors {mr+1, . . . ,mℓ} such that ai =

∏l
j=1m

eij
j .

As discussed above, this can again be done in time polynomial in log a. Then

f(
d1
√
a1, . . . ,

dk
√
ak) = 0 ⇐⇒ f

( l∏
j=1

m
e1j
d1
j , . . . ,

l∏
j=1

m

ekj
dk
j

)
= 0

To construct the new input radicals ti
√
ni with respective minimal polynomials xti −ni,

in Step 3, we compute for each di
√
mj the smallest dij such that di

√
mj

dij ∈ Z. Observe that
in generalmj = p

fj1
1 . . . p

fjs
s with p1, . . . , ps rational primes, and we have

di
√
mj

dij =
di
√
p
fj1
1 · · · pfjss

dij

=
(
p
fj1
1 · · · pfjss

) dij
di

whichwill be an integer if and only if di| gcd(fj1, . . . , fjs)·dij . Furthermore, observe that dij
will be the smallest such power precisely when

di = gcd(fj1, . . . , fjs) · dij. (3.1)

Now for the first r factors of the ai’s which are all prime, we have thatmj = p for some
rational prime p, and dij = di.

For mj , r < j ≤ l, first note that all mj’s are products of powers of primes larger
than log a. Thus the multiplicities of the primes appearing in the decompositions mj =
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Reduction

Input: Algebraic circuit C of size at most s computing a polynomial
f ∈ Z[x1, . . . , xk] with input radicals d1

√
a1, . . . ,

dk
√
ak where the

bitsize of the di and ai is at most s, and the ai are mutually co-
prime.

Output: Algebraic circuit C ′ of size at most polynomial in s computing a
polynomial f ′ ∈ Z[x1, . . . , xk]with input radicals

t1
√
n1, . . . ,

tℓ
√
nℓ

where the bitsize of the ti and ni is at most s, and the ni are mu-
tually coprime such that f( d1

√
a1, . . . ,

dk
√
ak) = 0 if and only if

f ′(
t1
√
n1, . . . ,

tℓ
√
nℓ) = 0.

Step 1: For each ai, compute a partial factorisation ai = mei1
1 · · ·meir

r a′i,
wherem1, . . . ,mr are primes of magnitude at most log a and a =

lcm(a1, . . . , ak).

Step 2: Apply factor-refinement to the unfactored part a′i of each ai to
compute a set of pairwise coprime factors {mr+1, . . . ,mℓ} such
that ai =

∏l
j=1m

eij
j .

Step 3: For each di
√
mj , compute the smallest dij such that di

√
mj

dij ∈ Z.

Step 4: Construct the new input radicals by setting nj = m
1

lcm(d1j ···dkj)

j and
tj =

d1···dk
lcm(d1j ···dkj)

.

Step 5: Construct the algebraic circuit C ′ from C by replacing the
leaves xi, i ∈ {1, . . . , k}, with a small circuit that computes∏l

j=1 y
eijd1···dk

di
j .

Figure 3.1 – Our polynomial time reduction of an instance of RIT to an instance of the
problem where the input radicands are mutually coprime.

p
fj1
1 . . . p

fjs
s , that is, all fj’s, are small. In particular, fj < logmj for all j, and furthermore

gcd(fj1, . . . , fjs) < logmj . Keeping this observation in mind, we can now show how to
compute the dij in time polynomial in logmj .

Following (3.1), we go trough the candidates for the gcd(fj1, . . . , fjs). That is, we con-
sider gij = 1, . . . , logmj − 1, computing f = di

gij
, the candidate for our dij (note that if

f /∈ Z, we discard it and move on). We then approximate di
√
mj

f
= m

f
di
j = m

1
gij

j with
absolute error less than 1/2 to obtain the unique integerm with | gij

√
mj −m| < 1/2. This

can be done by doing logmj < log a iterations of the Newton iteration [142, Lemma 3.1].
We conclude by checking whethermdi = mf

j . This can be efficiently computed by writing
di = fg and observing that we are checking whether (mgij)f = me

j , which simplifies to
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circuit C

x1 . . . xk 1

=⇒ circuit C ′

× ×

y1 y2 . . . yℓ 1

Figure 3.2 – The scheme of the reduction fromRIT to its variant where the input radicands
are pairwise coprime and the exponents are all equal. In this simple example, a1 is factored
tom1m

2
2mℓ.

mgij = mj , with gij unary.

Finally, in Step 4, we construct the new input radicals by setting nj = m
1

lcm(d1j ···dkj)

j and
tj =

d1···dk
lcm(d1j ···dkj)

.

We complete the reduction in Step 5 by constructing the algebraic circuit C ′ from C by

replacing the leaves xi, i ∈ {1, . . . , k}, with a small circuit that computes
∏l

j=1 y
eijd1···dk

di
j ;

see Figure 3.2.

3.3.1 The complexity of bounded-RIT

The reduction presented in Section 3.3 is a generalisation of a subroutine proposed by
Blömer in [42], where it is used as a first step in the randomised polynomial time algorithm
for a variant of the bounded-RIT problem. In particular, the work studies bounded-RIT
where the exponents di of the radical input

di
√
ai are given in unary. The algorithm works

by computing an approximation of a random conjugate of the algebraic integer α computed
by evaluating the input circuitC on the radical input. Then, following a result on separation
bounds for algebraic numbers, whenever α is non-zero, a random conjugate α′ of α has a
large absolute value with probability at least 2

3
.

Let us note again that such a numerical approach does not yield good complexity bounds
for the general variant of RIT, as the coefficients of polynomials represented by algebraic
circuits could be doubly exponential in the size of the circuit. In particular, this means that
numerical approximation in this casewould require toomuch space in order to be feasible in
polynomial time. This is why the algorithms we develop in this thesis all work by reducing
the polynomials modulo some prime p, and taking the computation to the finite field Fp

instead.

Given an instance of bounded-RIT where the exponents di are given in binary, the
correctness argument behind the algorithm presented in [42] still applies, however the al-
gorithm no longer runs in polynomial time. The increase in complexity appears in Steps 1
and 2 of the algorithm, that is, when sampling a random conjugate of α.

– 50 –



The Radical Identity Testing problem

Denote by K the Galois closure of the field we obtain by adjoining the input radi-
cals to Q. Given an element α ∈ K that can be computed as a polynomial expression
in d1

√
a1, . . . ,

dk
√
ak, its Galois conjugates are given by evaluating the same expression on

the conjugates of the di
√
ai’s if the ai’s are pairwise coprime. The idea presented in the orig-

inal paper [42] is thus to first compute pairwise coprime factors m1, . . . ,mℓ of the input
radicands a1, . . . , ak, such that di

√
ai =

∏ℓ
j=1

di
√
mj

eij . Then, if we compute the minimal
dij ∈ Z such that di

√
mj

dij ∈ Z, given a primitive dith root of unity ζdi , the Galois conjugates
conjugates of di

√
mj are given by di

√
mjζdi , . . .

di
√
mjζ

di−1
di

. In the paper [42], a clever way to
randomly choose primitive dith roots of unity is described. This, in combination with fac-
tor refinement, gives an algorithm to sample conjugates of the di

√
mjζdij , thus computing a

conjugate of α.

Nowwhen the input exponents are given in binary, computing theminimal dij such that
di
√
mj

dij ∈ Z can no longer be done in polynomial time. However, by first partially factoring
the radicands ai as done in our reduction in Section 3.3, we can avoid the complexity-
increase of the first two steps of Blamer’s algorithm. Thus, replacing the first two steps of
Blömer’s algorithm by our reduction allows us to extend his result to the most general case
of bounded-RIT and conclude that

Corollary 3.1. The bounded-RIT problem is in coRP.

3.4 The complexity of RIT

In this section we present a nondeterministic polynomial time algorithm for the com-
plement of RIT. As discussed in Section 3.2, the idea is to work in a finite field obtained
by quotienting the ring of integers of the splitting field of the input radicals by a suitable
prime ideal.

Below, we fix an instance of RIT comprising an algebraic circuit C , and input radi-
cals d1

√
a1, . . . ,

dk
√
ak with respective minimal polynomials xdi − ai, where the radicands ai

are pairwise coprime; this assumption is without loss of generality as discussed in Sec-
tion 3.3. We denote by s the size of our fixed RIT instance; that is, the size of the circuit
is bounded by s, and the magnitude of the ai and di is at most 2s. Note that k ≤ s, by
the definition of size of an algebraic circuit. We further denote by K the splitting field of∏k

i=1(x
di −ai), which can be generated by adjoining toQ the radicals di

√
ai and a primitive

dth root of unity ζd, with d = lcm(d1, . . . , dk). We denote byOK the ring of integers ofK .

In our construction, we evaluate the polynomial given by an algebraic circuit in a finite
field Fp for some rational prime p that splits completely in OK . That is, such that pOK =
p1 · · · pn where pi are distinct prime ideals ofOK , and n is the degree of the number fieldK .

As discussed in Section 2.3.4, in general, given a number field L and a rational prime q
with prime ideal q dividing qOL, we say that q lies above q inOL. The residue fieldOL/q is
isomorphic to an extension of the finite field Fq, and we have that q∩Z = qZ. However, in
our special case of a completely split prime p inOK , all residue fieldsOK/pi are isomorphic
to Fp. This is crucial, as it ensures that the values in our finite field computation really will
all be in Fp and not in one of its finite extensions.
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It is a well-known result in number theory that all irreducible polynomials of degree
at most d split completely in Fpd for every prime p. It may thus be tempting to consider
working instead in a finite extension of Fp. However, a major problem with this approach
is that if d is given in binary then representing an element of the field Fpd requires space
exponential in the bitsize of d. Moreover, specialising to 2-RIT, where Fp2 contains all
the input square roots for all rational primes p, not all primes p are suitable for such a
computation either. Let us illustrate this with an example.

Example 3.1. Consider the polynomial f(x1, x2) = x1 − 4x2 with input
√
2 and

√
7. The

polynomial f clearly does not vanish on (
√
2,
√
7). Let us choose the prime p = 11, and observe

that both x2 − 2 and x2 − 7 are irreducible in F11, and their respective minimal polynomials
both split over F112 . Assume we choose the field F11[x]/(x

2 − 7) obtained by adjoining
√
7 to

F11 as the finite field of our computation. Let α1 be a solution of x2 − 7 in F112 . Notice that
(4α1)

2 is a solution of x2 − 4 in F112 . Indeed,

(4α1)
2 ≡ 16α2

1 ≡ 16 · 7 ≡ 2 (mod 11).

This implies that
√
2 − 4

√
7 converts to 4α1 − 4α1 ≡ 0 modulo 11, which is clearly a false

positive.

The example above illustrates that for 2-RIT, working in Fp2 is only sound if the latter
does actually arise as quotient of the number fieldK by a suitable prime ideal. In particular,
if p has inertial degree 2 overK (i.e., p is inert inK). By Chebotarev’s density theorem, such
primes correspond to a conjugacy class of the Galois group, and their asymptotic density is
the same as for those that split over K . We thus focus our attention onto split primes that
allow for a sound computation both in the general variant of RIT, as well as its restriction
2-RIT.

The following proposition asserts that a prime p completely splits in K if the minimal
polynomials xdi − ai of our input radicals and the dth cyclotomic polynomial (the minimal
polynomial of ζd) split into distinct linear factors in Fp. As discussed in Section 2.3.5, the
splitting pattern of a rational prime q in a number field L relates to the degree of the local
extension Lq of Qq, which is obtained by adding the generators of L over Q to Qq. We use
this correspondence in order to prove our claim.

Proposition 3.2. Given a monic polynomial h ∈ Z[x] and its splitting field L, a prime q ∈ Z
splits completely in L if h splits into distinct linear factors in Fq.

Proof. Write n for the degree of L over Q, and recall that |Gal(L/Q)| = n. Denote by Lq

the finite field extension of Qq obtained by adjoining the roots of h to Qq. Let q be a prime
ideal lying above q in L. Recall this means that q is one of the prime ideals qi appearing in
the factorisation

qOL = qe1 · · · qeg (3.2)

of the ideal qOL in OL.

Recall, furthermore, that the decomposition group of a prime ideal q ⊂ OL is defined as
the set of all automorphisms ofGal(L/Q) that fix q, i.e.,Dq = {σ ∈ Gal(L/Q) | σ(q) = q}.
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In other words,Dq is the stabiliser subgroup ofGal(L/Q)with respect to q. Moreover, since
the field extension L is Galois over Q, the Galois group Gal(L/Q) acts transitively on the
set of prime ideals {q1, . . . , qg} above q (see, e.g., the proof of [131, Theorem 3.34]). That
is, for every pair qi, qj , there exists σ ∈ Gal(L/Q) such that σ(qi) = qj . Furthermore, the
following isomorphism holds (cf. [131, Proposition 8.10]).

Dq
∼= Gal(Lq/Qq) (3.3)

Now given that h splits into distinct linear factors in Fq, it follows that for each x ∈ Fq

such that h(x) ≡ 0 (mod q), we have h′(x) ̸≡ 0 (mod q). We may thus apply Hensel’s
lemma to assert that each root of h in Fq lifts to a unique solution in Qq, that is, h splits
completely in Qq.

This, in turn, implies that Lq = Qq and the group Gal(Lq/Qq) is trivial. Equation (3.3)
asserts that the same holds for Dq. This entails that the only automorphism in Gal(L/Q)

that fixes the prime ideal q is the identity, and that the index [Gal(L/Q) : Dq] of Dq in
Gal(L/Q) is equal to |Gal(L/Q)| = n.

By the orbit-stabiliser theorem, [Gal(L/Q) : Dq] is equal to the number of elements in
the orbitOrb(q) of q under the action ofGal(L/Q). But sinceGal(L/Q) acts transitively on
set {q1, . . . qg}, we have thatOrb(q) = {q1, . . . qg} and |Orb(q)| = g. Thus the number g of
prime ideal factors of qOL in (3.2) must be equal to n, which implies that q splits completely
in L.

With the proposition we have just proved in hand, we are now ready to prove the cor-
rectness of our algorithm. Before we do so, let look at yet another example illustrating why
totally split primes are indeed a good choice for our finite field evaluation.

Example 3.2. Consider an RIT instance asking whether the polynomial f(x) = x2 − 10

vanishes at the radical input
√
5. The computation occurs in the field L = Q(

√
5), with ring

of integers OL = Z[1+
√
5

2
].

We can observe that 11 is a completely split prime and note that the principal ideal of OL

generated by 11 factors as 11OL = (4 +
√
5)(4 −

√
5). Since 11 totally splits in OL, we

have OL/q ∼= F11 for the prime ideal q = (4 +
√
5) lying above 11. The polynomial x2 − 5

completely splits to (x− 4)(x+ 4) in F11, and consequently we have that Q11(
√
5) = Q11.

The rational prime 5, however, is an example of the primes that we want to avoid as 5OL =

(
√
5)2. In particular, the polynomial x2 − 5 is irreducible in F5, implying that Lq = Qq(

√
5)

and [Lq : Qq] = 2. If we evaluate f on the input
√
5 in F11, we get a true negative, as the

computed value will be 6 ∈ F11, whereas evaluating the polynomial in F5 would give us a
false positive.

Similarly to Example 3.1, in the example above 5 is also not a suitable prime for com-
puting in F52 as its inertial degree over L = Q(

√
5) is equal to 1. An example of a prime

with inertial degree 2 in this case is 7, as 7OL is itself already a prime ideal in OL.
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3.4.1 Proof of correctness

Given a polynomial h ∈ Z[x] that is irreducible over Q, the Galois group Gal(L/Q) of
the splitting field L of h acts transitively on the roots of h [126, Proposition 22.3]. That is,
for every pair of roots α, β of h, there exists an automorphism σ ∈ Gal(L/Q) such that
α = σ(β). We show that a stronger notion of transitivity holds for our real radicals di

√
ai.

Lemma 3.3. The group Gal(K/Q) acts transitively on the set of k-tuples

S :=
{
(α1, . . . , αk) ∈ Kk | αd1

1 = a1 ∧ · · · ∧ αdk
k = ak

}
Proof. Recall that d1

√
a1, . . . ,

dk
√
ak are real radicals with respective minimal polynomials

xdi − ai and ai mutually coprime.

Let Li := Q(
d1
√
a1, . . . ,

di
√
ai) for i ∈ {1, . . . , k}. By virtue of the ai being coprime

and [42, Lemma 4.6], the polynomial fi := xdi − ai stays irreducible over Li−1, and thus is
the minimal polynomial of di

√
ai over this field.

The proof now follows by repeated use of the Isomorphism extension theorem, cf. [126,
Theorem 5.12]. Note that Li is a simple extension of Li−1 with Li = Li−1(αi) where αi is a
solution of fi. Denote by ψi−1 an embedding of Li−1 intoK . If α′

i is a root of ψi−1(fi) then
there is a unique extension of ψi−1 to a homomorphism ψi : Li → K such that ψi(αi) = α′

i.
Applying the above inductively, we obtain a homomorphism ψk : Q(

d1
√
a1, . . . ,

dk
√
ak) →

K , which by the Isomorphism extension theorem can again be extended to an automor-
phism of K acting jointly transitively on S .

In simple words, the lemma above asserts that given any two tuples (α1, . . . , αk) and
(β1, . . . , βk) of solutions of the minimal polynomials xd1 − ai of our input radicals, there
exists an automorphism σ ∈ Gal(K/Q) such that (α1, . . . , αk) = σ(β1, . . . , βk).

We now show that for an instance of RIT, that is, an algebraic circuit with underlying
polynomial f , and radical input with pairwise coprime radicands, the finite field compu-
tation is sound. Given a rational prime p and a polynomial h(x) ∈ Z[x] we denote by
h̄ ∈ Fp[x] the reduction of h modulo p.

Lemma 3.4. Let p be a prime that completely splits in OK , and let α1, . . . , αk ∈ Fp be
roots of the polynomials xd1 − a1, . . . , x

dk − ak, respectively. Then for all f(x1, . . . , xk) ∈
Z[x1, . . . , xk], we have

1. if f( d1
√
a1, . . . ,

dk
√
ak) = 0 then f(α1, . . . , αk) = 0, and

2. if f(α1, . . . , αk) = 0 then p | NK/Q(f(
d1
√
a1, . . . ,

dk
√
ak)).

Proof. Recall that the radicals d1
√
a1, . . . ,

dk
√
ak are such that their respective minimal poly-

nomials are xd1 − a1, . . . , x
dk − ak.

Consider a prime-ideal factor p of pOK . The quotient homomorphism OK → Fp with
kernel p maps the di distinct roots of each polynomial xdi − ai in OK bijectively onto
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the roots of the same polynomial in Fp. Then, by joint transitivity of the Galois group
Gal(K/Q), established in Lemma 3.3, there is a homomorphism φ : OK → Fp such that
φ(

di
√
ai) = αi for all i ∈ {1, . . . , k}.

Item 1 follows from the fact that if f( d1
√
a1, . . . ,

dk
√
ak) = 0 then f(α1, . . . , αk) =

φ(f( d
√
a1, . . . , d

√
ak)) = 0. For Item 2, note that the kernel of φ is a prime ideal of OK

lying above p. Thus if f(α1, . . . , αk) = 0 then p | NL/Q(f(α1, . . . , αk)).

We have just shown that given an instance of RIT, the computation can be taken to
a finite field Fp for some rational prime p. In Section 3.4.3 we discuss how to choose an
appropriate prime p that satisfies the two conditions given in Lemma 3.4.

Lemma 3.3 plays an important role in the construction of our algorithm, and further-
more is one of the properties of the input to RIT that makes our technique difficult to
generalise to more general identity testing problems. In particular, joint transitivity en-
sures that in Lemma 3.4(1), no matter which representative of the di

√
ai we choose in Fp,

that is, no matter which solution of the equation xdi − ai we guess in Fp, the computation
remains sound. If we were, for instance, to generalise our identity testing problem to allow
radical and cyclotomic inputs, joint transitivity may not hold anymore, as illustrated in the
following example.

Example 3.3. Consider the polynomial f(x1, x2) = x22 − x1x2 + 1 with input
√
2 and a

primitive 8th root of unity ζ8. The polynomial f vanishes at (
√
2, ζ8). The number field of the

computation is Q(
√
2, ζ8), and we can choose the completely split prime 17 for our finite field

computation. The minimal polynomials of our input split as x2 − 2 = (x − 6)(x + 6) and
x4 + 1 = (x+ 2)(x− 2)(x+ 8)(x− 8) in F17.

However, since the Galois group of the field Q(
√
2, ζ8) does not act jointly-transitively on

the input, we cannot choose the representatives of our two input numbers in F17 arbitrarily. In
particular, by choosing 6 for

√
2 and 2 for ζ8, and evaluating f in F17, the result would be 10,

a clear false negative. This is due to the fact that the minimal polynomial Φ8(x) = x4 + 1

of ζ8 reduces in Q(
√
2), hence, as soon as we choose 6 as a representative for

√
2, we cannot

choose the representative for ζ8 freely.

In fact, if we replace x1 by
√
2 and x2 by x in the polynomial f , we obtain (x2−

√
2x+1),

which is a factor of Φ8(x) inQ(
√
2). Indeed, Φ8(x) factors as (x2−

√
2x+1)(x2+

√
2x+1)

in Q(
√
2). This implies that as soon as we choose 6 as a representative for

√
2, we may only

choose the roots of (x2−6x+1) as representatives for ζ8 in order for the computation to remain
sound, whereas 2 is a root of the polynomial (x2 + 6x+ 1) in F17.

Lemma 3.3 also ensures that deciding RIT can be reduced to deciding HNC by con-
structing a system of polynomial equations representing the intermediate computations of
the circuit. We give this alternative way of proving that RIT belongs to the polynomial
hierarchy in the next section.
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3.4.2 A reduction placing RIT in the polynomial hierarchy

In the Introduction we recalled that arguably the simplest complexity bound for RIT
can be obtained by reducing the problem to the existential theory of the reals, which is
known to belong to PSPACE. The reduction involves constructing a system of polynomial
equalities and inequalities representing the circuit, and calling to ∃R to determine whether
it is satisfiable. Here the inequalities in the construction ensure that the solutions of the
system are real positive radicals, and may seem necessary for the reduction to be sound.
However, it turns out that once we observe the property of joint transitivity, we can avoid
them completely, and simply reduce the problem to determining satisfiability of a system
of polynomial equations.

We will now show how we can use this observation to apply the algorithm of [3, 8]
for HNC to our problem, which allows us to give a first improvement on the PSPACE
bound.

Corollary 3.5. The RIT problem is in AM assuming GRH.

Proof. The proof follows by a reduction toHNC. Given an instance ofRIT comprising an al-
gebraic circuitC representing a k-variate polynomial f and radical inputs d1

√
a1, . . . ,

dk
√
ak,

we first reduce RIT to the case that the radicands ai are pairwise coprime numbers and
that the minimal polynomials of the input radicals di

√
ai are xdi − ai for all i = 1, . . . , k

as discussed in Section 3.3. We now construct a system of polynomial equations which is
satisfiable over C if and only if f( d1

√
a1, . . . ,

dk
√
ak) = 0.

To this end, we first add equations xdii −ai = 0 for all i ∈ {1, . . . , k}. We then introduce
a new formal variable xj for every gate of the circuit, adding the equations xj = xℓ ⊙ xm
with ⊙ ∈ {+,−,×}, where xj is an ⊙-gate, and xℓ and xm are the two inputs of xj in C .
Finally, we add an equation xn = 0 where xn is the topmost (output) gate of the circuit.

The constructed system has a solution (α1, . . . , αk, αk+1, . . . , αn) ∈ Cn if and only if
f(α1, . . . , αk) = 0. Recall we denote byK the splitting field of the polynomial

∏k
i=1(x

di
i −

ai), and note that by construction, the first k coordinates of the solution will in fact be-
long to Kk. Now given (α1, . . . , αk) ∈ Kk satisfying αdi

i = ai for i ∈ {1, . . . , k}, the
joint transitivity condition given in Lemma 3.3 asserts that there exists an automorphism
σ ∈ Gal(K/Q) such that ( d1

√
a1, . . . ,

dk
√
ak) = σ(α1, . . . , αk). Hence f(

d1
√
a1, . . . ,

dk
√
ak) =

f (σ(α1, . . . , αk)) = σ (f(α1, . . . , αk)). That is, f(α1, . . . , αk) is a Galois conjugate of
f(

d1
√
a1, . . . ,

dk
√
ak). Since the only Galois conjugate of zero is zero, f(

d1
√
a1, . . . ,

dk
√
ak) = 0

if and only if f(α1, . . . , αk) = 0.

The constructed system thus has a solution overC if and only if f( d1
√
a1, . . . ,

dk
√
ak) = 0.

By [3, 8] verifying whether a system of polynomial equations has a solution over C can be
done in AM assuming GRH, which completes our proof.

Let us now go back to our main algorithm, which allows us to improve on this bound
and place RIT in coNP assuming GRH.
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3.4.3 Choice of the prime p for the non-deterministic algorithm

In Lemma 3.4 we have shown that a prime suitable for our finite field computation is
one that splits completely in the number fieldK , and does not divide the norm N(α) of the
algebraic integer α computed by the circuit. In this section we show that we can always
find such a prime of bitsize polynomial in the size of the input.

To this aim, let us first note that the norm N(α) has at most log |N(α)| prime divisors.
In simple terms, this means that if we have a set of log |N(α)| + 1 split primes, at least
one of them will not be a divisor of N(α). To upper-bound the number of prime divisors
of N(α), we thus first compute an upper bound on |N(α)|. Next, we compute a bound B
such that the number of totally split primes in K of magnitude at most B is greater than
log |N(α)|+1. Since the computed bound B has bitsize polynomial in the size of the input
instance, this completes our construction.

Recall that the norm of an algebraic number in a Galois field can be computed as the
product of its Galois conjugates. Thus in order to bound the magnitude of N(α), we need
a bound on the number and the magnitude of the conjugates of α. Now the number of
conjugates of an algebraic number in a Galois field is given by the cardinality of the Galois
group, which is equal to the degree of number field itself. For our fixed instance of RIT,
the latter can be bounded as follows.

Proposition 3.6. |Gal(K/Q)| ≤ 22s
2 .

Proof. Recall that the splitting field K of
∏k

i=1(x
di − ai) is Q(

d1
√
a1, . . . ,

dk
√
ak, ζd). Since

the di’s are of magnitude at most 2s, it follows that d = lcm(d1, . . . , dk) is of magnitude
at most 2s2 . Thus the degree of K and hence the cardinality its Galois group over Q is at
most 22s2 .

We will repeatedly use the bound above in our reasoning. As a first application, we
show the following bound on N(α).

Lemma 3.7. Denote by α ∈ OK the algebraic integer computed by C evaluated on the di
√
ai.

We have
|N(α)| ≤ 22

s3

for s ≥ 4.

Proof. Recall that s is an upper bound on the number k of input radicands, the size of the
circuit, and that the magnitude of ai and di is at most 2s.

Write α =
∑

i bix
ei1
1 · · ·xeikk where ei1 + . . . + eik ≤ 2s, bi ∈ Z with bi ≤ 22

s , and i
ranges over all monomials of the shape xei11 · · ·xeikk . Let us denote by M the number of
all such monomials, and count how many of them we can construct. Denote by D =

max(d1, . . . , dk), then

M =

(
k +D

D

)
=

(
k +D

k

)
≤
(
s+ 2s

s

)
≤ (s+ 2s)s ≤ 2s

2
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We can thus write

N(α) = N

(
M∑
i=1

bix
ei1
1 · · · xeikk

)

=
∏
σ∈G

σ

(
M∑
i=1

bix
ei1
1 · · ·xeikk

)

=
∏
σ∈G

M∑
i=1

biσ
(
x
ei1
1 · · ·xeikk

)
.

(3.4)

Denote by G = Gal(K/Q), and recall that by Proposition 3.6 |G| ≤ 22s
2 . Observe that

the action of all σ ∈ G is determined by their action on ζd, that is,

σ(
di
√
ai) =

di
√
aiσ(ζd).

For every term x
ei1
1 · · ·xeikk appearing in α, we thus have

σ(x
ei1
1 · · ·xeikk ) = σ(x

ei1
1 ) · · ·σ(xeikk ) = x

ei1
1 · · ·xeikk σ(ζd)#ei ,

where #ei = ei1 + · · · + eik . This observation in combination with Equation (3.4) allows
us to write

|N(α)| =
∏
σ∈G

M∑
i=1

∣∣biσ (xei11 · · ·xeikk

)∣∣
≤
∏
σ∈G

M∑
i=1

|bi|
(

k
max
j=1

|xj|
)#ei

|σ (ζd)|#ei

=
∏
σ∈G

M∑
i=1

|bi|
(

k
max
j=1

|xj|
)#ei

,

where the last equality follows since |ζd| is equal to 1, and the same holds for all of its
conjugates.

Finally, putting together the bounds on |G|,M , bi, xi and #ei yields

|N(α)| ≤
22s

2∏
l=1

 2s
2∑

l=1

22
s · (2s)2s

 =
22s

2∏
l=1

 2s
2∑

l=1

22
s(s+1)

 .

We can further simplify this expression to write

|N(α)| ≤
(
2s

2 · 22s(s+1)
)22s2

= 22
2s2 (s2s+2s+s2).

For s ≥ 4 the value above is at most 22s
3

, which completes the proof.
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In the context of our algorithm, this means that if we find 2s
3
+ 1 primes that split

completely in OK , at least one of them will not divide N(α), and hence our finite field
computation will be sound. We will now see how to ensure we are able to find enough
primes splitting completely inOK of bitsize polynomial in the size of the input to complete
our reasoning.

To this aim, we use a quantitative version of the Chebotarev density theorem. As dis-
cussed in Section 2.3.6, intuitively speaking, given a Galois extension L of Q, the theorem
gives a bound on the number of primes splitting in a certain pattern in OL. The different
classes of splitting patterns correspond to conjugacy classes of the Galois groupGal(L/Q)
of L. In our case, we are interested in completely split primes, which correspond to the
conjugacy class {id} containing solely the identity element id of Gal(L/Q). The asymp-
totic version of the theorem then asserts that the set of completely split primes has density

1
|Gal(L/Q)| . Denoting by π1(x) the number of completely split primes less or equal to x, the
quantitative version of the theorem is as follows [143, 144].

Proposition 3.8 (Bound on π1(x)). Assuming GRH,

π1(x) ≥
1

|Gal(L/Q)|
(
π(x)− log∆L − cx1/2 log(∆Lx

|Gal(L/Q)|)
)

where c is an effective constant.

To obtain a bound on the number of split primes in our setting using the proposition
above, we require a bound on the discriminant∆K of the number fieldK . Recall that given
a Z-basis {b1, . . . , bn} of the ring of integers OL of a number field L, the discriminant ∆L

is defined as the determinant of the matrix tr(bibj) for all i, j = 1, . . . , n. However, in
the case of a radical field extension L, computing a basis for its ring of integers OL is not
known to be feasible in polynomial time (see, e.g., [145, Theorem 1.3]). In order to avoid
this computation, we upper-bound the discriminant using the discriminant of an order of
our ring of integers OK instead.

Recall that an orderO in a number field L is a free Z-submodule ofOL of rank [L : Q].
Looking again at the number field L = Q(

√
5) with ring of integers OL = Z[

√
5+1
2

] we
considered in Example 3.2, note that Z[

√
5] ⊂ OL. In particular, Z[

√
5] is an order of index

2 in OL.

We have the following relation between the discriminant of the ring of integersOL of a
number field L and the discriminant of an orderO ofOL (see, e.g., [127, Proposition 4.4.4]).

Proposition 3.9. Suppose O is an order in OL. Then

Disc(O) = Disc(OL) · [OL : O]2

We will now see how to construct an order O of OK , the discriminant of which we
can bound using a standard result in algebraic number theory. To this aim, we rely on
the Primitive Element Theorem, which states that any number field L can be generated by
adjoining a single element θ, called the primitive element, to Q, i.e., L = Q(θ). If θ ∈ OL,
then the subring Z[θ] of OL is an order of OL.
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As discussed in Section 2.3, the proof of the Primitive Element Theorem is constructive,
and computes the primitive element θ of a number field L as a linear combination of its
generators. That is, if L := Q(α1, . . . , αk), then θ =

∑k
i=1 ciαi. Furthermore, only finitely

many combinations of the constants ci fail to generate a primitive element for the field
extension L. This gives rise to an effective version of the theorem (see Lemma 2.3), which
induces a bound on the degree of the primitive element θ, as well as on the magnitude of
the ci’s. We use this to construct a primitive element for our number fieldK .

Lemma 3.10. The field K has a primitive element θ, computed as the linear combination

θ = c0ζd +
k∑

i=1

ci
di
√
ai

with ci ≤ 24s
2
+ 1 ∈ Z and deg θ ≤ 22s

2 .

Proof. We follow the proof of the Primitive Element Theorem and use Lemma 2.3 induc-
tively to compute the bounds on the degree of θ and the size of the constants ci. Recall
that Lemma 2.3 states that given α and β of respective degrees ℓ andm overQ, there exists
c ∈ {1, . . . , ℓ2m2 + 1} such that α + cβ is a primitive element of Q(α, β).

For j ∈ {1, . . . , k}, define θj =
∑j

i=0 ci
di
√
ai to be the primitive element of the field

Q(
d1
√
a1, . . . ,

dj
√
aj). Note that since for all i ∈ {1, . . . , k}, deg di

√
ai ≤ 2s, the degree of θj

is at most 2j·s.

Now for every j ∈ {2, . . . , k}, θj = θj−1 + cj
dj
√
aj , where deg θj−1 ≤ 2(j−1)·s and

deg dj
√
aj ≤ 2s, hence by Lemma 2.3,

cj ≤ (2s)2(2(j−1)·s)2 = 2j·2s + 1.

Since k ≤ s, the value above is upper bounded by 24s
2
+ 1 for all j.

Finally, let θ = c0ζd +
∑k

i=1 ci
di
√
ai + c0ζd + θk. Recall that since d1, . . . , dk ≤ 2s, their

least commonmultiple is upper-bounded by 2s2 , and hence deg ζd ≤ 2s
2 . Thus deg θ ≤ 22s

s

and by Lemma 2.3,
c0 ≤ (2s

2

)2(2k·s)2 + 1 ≤ 24s
2

+ 1.

Note that in general, we may choose the constants ci ∈ Qwith only finitely many com-
binations of the ci’s not yielding a primitive element — thus the primitive element need
not be an algebraic integer in general. However, by picking ci ∈ Z we ensure the minimal
polynomial fθ of θ is monic and θ an algebraic integer. Henceforth, we fix a primitive ele-
ment θ for our number fieldK , computed as in Lemma 3.10. Now Proposition 3.9 suggests
that ∆K ≤ ∆fθ , where ∆fθ = Disc(Z[θ]).
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Recall that given a polynomial f(x) = anx
n + . . . + a1x+ a0 with roots r1, . . . , rn, its

discriminant can be computed as

∆f = a2n−2
n

∏
i<j

(ri − rj)
2 = (−1)

N(n−1)
2 a2n−2

n

∏
i ̸=j

(ri − rj) . (3.5)

We use Equation (3.5) to obtain the following bound.

Lemma 3.11 (Bound on the discriminant). We have

|Disc(Z[θ])| ≤ 22
5s2

for s ≥ 4.

Proof. Denote by G = Gal(K/Q) the Galois group of K . By Lemma 3.10, we construct
the primitive element θ = coζd +

∑k
i=1 ci

di
√
ai, where ci ∈ Z with ci ≤ 24s

2 for all i ∈
{0, . . . , k}. The minimal polynomial fθ of θ has roots θ = θ1, . . . , θ|G|, which are given by
the elements of G. That is, θi = σj(θ) for some σj ∈ G. Recall also that the elements of
the Galois group G act on conjugates of a given element of K by permuting the dth roots
of unity. That is, given α ∈ K , σj(α) = αζtd for some t ≤ d.

Now given σj ∈ G, write

σj(θ) = σj

(
c0ζd +

k∑
i=1

ci
di
√
ai

)

= c0σj(ζd) +
k∑

i=1

ciσj(
di
√
ai)

= c0ζ
j0
d +

k∑
i=1

ci
di
√
aiζ

ji
d .

Then for 1 ≤ j, ℓ ≤ |G| with j ̸= ℓ

σj(θ)− σℓ(θ) =

(
c0ζ

j0
d +

k∑
i=1

ci
di
√
aiζ

ji
d

)
−

(
c0ζ

ℓ0
d +

k∑
i=1

ci
di
√
aiζ

ℓi
d

)

= c0
(
ζj0d − ζℓ0d

)
+

(
k∑

i=1

ci
di
√
ai

)(
ζjid − ζℓid

)
.

Note that for any two dth roots of unity ζjd, ζℓd, we always have ζ
j
d − ζℓd ≤ 2, hence

σj(θ)− σℓ(θ) ≤ 2c0 + 2

(
k∑

i=1

ci
di
√
ai

)
.
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By using the bounds shown in Lemma 3.10, we can rewrite the inequality above as

σj(θ)− σℓ(θ) ≤ 2 · (24s2 + 1) + 2

(
s∑

i=1

(24s
2

+ 1) · 2s
)

≤ 24s
2+2 + s · 24s2+s+2.

For s ≥ 4, the value above is at most 22s3 , hence

|∆fθ | = |
∏
j ̸=ℓ

(σj(θ)− σℓ(θ))| ≤
(
22s

3
)|G|2

.

We now employ the bound on |G| to write

|∆fθ | ≤
(
22s

3
)(22s2)2

= 22s
3·24s2 .

Noting that for s ≥ 4, the value above is at most 225s
2

completes the proof.

Recall that our aim was to find enough totally split primes p of bitsize polynomial in s
so that at least one of them does not divide the norm of the computed algebraic integer. In
concrete words, we would like to ensure thatB such that π1(B) ≥ 2s

3
+1 can be chosen of

bitsize polynomial in s. Using Lemma 3.11 in combination with the effective version of the
Chebotarev density theorem in Proposition 3.8, we claim that this is the case for B ≥ 24s

3 .

Lemma 3.12. Assuming GRH,
π1(2

4s3) ≥ 2s
3

+ 1.

Proof. We will use the bound on π1 given in Proposition 3.8

π1(x) ≥
1

|Gal(K/Q)|
(
π(x)− log∆K − cx1/2 log(∆Kx

|Gal(K/Q)|)
)
,

which we rewrite as

π1(x) ≥
1

|Gal(K/Q)|

(
x

log x
− log∆K − cx1/2 log∆K − cx1/2 log x|Gal(K/Q)|

)
by replacing the prime counting function π(x) by x

log x
.

Lemma 3.11 in combination with Proposition 3.9 implies that ∆K ≤ 22
5s2 . Recall also

that |Gal(K/Q)| ≤ 22s
2 as shown in Proposition 3.6 and Lemma 3.10.

We can thus write

π1(2
4s3) ≥ 1

2s2

(
24s

3

4s3
− 25s

2 − c · 22s3 · 25s2 − c · 22s3 · 22s2 · 4s3
)

=
24s

3

22s2 · 4s3
− 23s

2 − c · 22s3 · 23s2 − c · 22s3 · 4s3.

– 62 –



The Radical Identity Testing problem

Note that for s ≥ 4, 22s2 · 4s3 ≤ 2s
3 and 23s

2 ≤ 22s
3 , which allows us to rewrite the

inequality above as

π1(2
4s3) ≥ 24s

3

2s3
− 22s

3 − c · 22s3 · 23s2 − c · 22s3 · 4s3

= 22s
3

(2s
3 − 1− c · 23s2 − c · 4s3) ≥ 22s

3

.

Finally, for a fixed constant c and s ≥ max(c, 5) the inequality rewrites as

π1(2
4s3) ≥ 22s

3 ≥ 2s
3

+ 1

which completes the proof.

3.4.4 The coNP algorithm for RIT

In the previous section we have shown that there exists a prime p suitable for our finite
field evaluation that is of bitsize polynomial in the size of the RIT instance. We can now
finally state our algorithm, see Figure 3.3, and prove its complexity.

Radical Identity Testing

Input: Algebraic circuit C of size at most s with input radicals
d1
√
a1, . . . ,

dk
√
ak where the bit-length of the di and ai is at most s,

and the ai are mutually coprime.

Output: Whether f(
d1
√
a1, . . . ,

dk
√
ak) = 0 for the polynomial

f(x1, . . . , xk) computed by C .

Step 1: Guess a prime p ≤ 24s
3 and α1, . . . , αk ∈ Fp such that p ≡ 1

(mod d) and αdi
i ≡ ai (mod p).

Step 2: Output ‘Zero’ if f(α1, . . . , αk) = 0, where f is the reduction of f
modulo p; and ‘Non-zero’ otherwise.

Figure 3.3 – Our nondeterministic algorithm for the complement of RIT.

Theorem 3.13. The RIT problem is in coNP assuming GRH.

Proof. Figure 3.3 presents a nondeterministic polynomial time algorithm for the comple-
ment of RIT as follows.

Given input radicals d1
√
a1, . . . ,

dk
√
ak, denote byK the splitting field of

∏k
i=1(x

di − ai).
Further denote by θ a primitive element of K , computed as in Lemma 3.10.

Let us first argue that the algorithm runs in polynomial time. In Step 1, after guessing
candidates for p such that p ≡ 1 (mod d) and α1, . . . , αk, verifying whether αdi

i ≡ ai
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(mod p) can be done in polynomial time by the repeated-squaring method. It is clear that
Step 2 can be done in polynomial time.

Now let us show that the RIT problem is in coNP. Suppose f( d1
√
a1, . . . ,

dk
√
ak) ̸= 0.

Under GRH, the lower bound in Lemma 3.12 shows that π1(24s
3
) ≥ 2s

3
+ 1. It follows that

there exists a prime p ≤ 24s
3 such that

— p ∤ N(f( d1
√
a1, . . . ,

dk
√
ak)), and

— p splits completely in K .

The polynomial certificate of non-zeroness of f( d1
√
a1, . . . ,

dk
√
ak) then comprises, the

prime p above, as well as the list of integers α1, . . . , αk ∈ Fp such that αdi
i ≡ ai (mod p).

Following Lemma 3.4, we then have that f(α1, . . . , αk) ̸= 0.

On the other hand, as we have noted above, for any prime p and representation α1, . . . ,

αk of the radicals
d1
√
a1, . . . ,

dk
√
ak in Fp, if f(

d1
√
a1, . . . ,

dk
√
ak) = 0, then f(α1, . . . , αk) = 0,

as shown in Lemma 3.4, which concludes the proof.

3.5 The complexity of 2-RIT

Our algorithm forRIT uses non-determinism to guess a suitable prime p in order for the
computation in Fp to be sound. It is natural to wonder whether such primes can instead be
randomly sampled. This is what is done, say, in the coRP algorithm for decidingACIT [1],
or the BPP algorithm for CIT [32] that we are adapting. Recall we require that the prime p
have bitsize polynomial in the size of the input, and that the congruences xdi ≡ ai (mod p)
are solvable in Fp. In order to be able to choose the prime randomly, we would require
the density of split primes to be polynomial in s−1. However, by the Chebotarev density
theorem, the density of such primes is roughly 1

|Gal(K/Q)| . Since the size of the Galois group
ofK overQ is exponential in the size of the input, totally split primes do not have sufficient
density in order to directly be chosen randomly. The density remains insufficient even if
the radicals are square roots.

Let us note that in the CIT setting, the degree of the number field may also be expo-
nential in the size of the input, however, randomisation is possible as the suitable primes
all lie in one arithmetic progression. Indeed, the authors of [32] use the fact that a prime p
is totally split for a cyclotomic fieldQ(ζn) if and only if p ≡ 1 (mod n). This, in particular,
implies that all primes suitable for the finite field computation lie in the arithmetic progres-
sion nN+ 1. Now Dirichlet’s theorem on the density of primes in arithmetic progressions
asserts that the proportion of all primes lying in nN+1 is roughly 1

φ(n)
. That is, the function

counting primes in nN + 1 is asymptotically equivalent to x
φ(n) lnx

. An effective version of
Dirichlet’s theorem then implies that assuming GRH, the density is high enough in order
for the algorithm to choose a suitable prime randomly.

In general, given a radical number field, the totally split primes need not lie in one
arithmetic progression. However, we observe that if the radical number field is generated by
square roots of odd primes, then a majority of totally split primes lie in a certain arithmetic
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progression, and the density of split primes within this progression is good. We apply this
intuition to the 2-RIT problem, which recall, is the identity testing problem for an algebraic
circuit C evaluated on square roots √a1, . . . ,

√
ak for k odd rational primes a1, . . . , ak. In

particular, we show that 2-RIT is in coRP assuming GRH, and in coNP unconditionally.

The proofs from Section 3.4.1 ensure that the finite field computation in our algorithm
is sound. In this section, we show how to choose a completely split prime p and determine
the solutions to the equations x2 ≡ ai (mod p) in Fp. That is, we construct an arith-
metic progression such that for every prime p appearing in it, Fp contains a representation
α1, . . . , αk ∈ Fp of the square-root input

√
a1, . . . ,

√
ak. To this aim, we use classical results

on quadratic reciprocity, which we recall now.

Let p be an odd prime number. An integer a is said to be a quadratic residue modulo
p if it is congruent to a perfect square modulo p, i.e., if there exists an integer x such that
x2 ≡ a mod p. The Legendre symbol is a function of a and p taking values in {1,−1, 0},
defined as(

a

p

)
=


1 if a is a quadratic residue mod p and a ̸≡ 0 (mod p),

−1 if a is a non-quadratic residue mod p,
0 if a ≡ 0 (mod p).

The Legendre symbol can be defined explicitly as(
a

p

)
= a

p−1
2 (mod p).

Furthermore, given odd primes p and q, the Law of quadratic reciprocity states(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

We observe that in the case where p ∈ 4N+ 1, then(
p

q

)(
q

p

)
= 1 ⇔

(
p

q

)
=

(
q

p

)
= ±1.

In other words, p is a quadratic residue modulo q if and only if q is a quadratic residue
modulo p, when either p or q ≡ 1 (mod 4).

Let us now see how we apply the law of quadratic reciprocity in order to choose the
right field Fp for deciding 2-RIT. Recall that we are looking for a prime p such that x2− ai
has a solution in Fp for all i. That is, we require ai to be a quadratic residue modulo p. Since
we will be choosing p from an arithmetic progression, we can easily make that progression
to be of the shape 4N + 1, i.e., ensure that p ≡ 1 (mod 4). In that case the ai’s will be
quadratic residues modulo p if and only if p is a quadratic residue modulo ai for all i. In
order to ensure the latter, it suffices to choose p such that p ≡ 1 (mod ai) for all i. Indeed,
as 1 is a perfect square modulo ai for all i, p ≡ 1 (mod ai) implies that p is a quadratic
residue modulo ai.

We have just argued that if we choose p satisfying all the above-mentioned congru-
ences, the polynomials x2 − ai all split and have non-zero roots in Fp. Furthermore, fol-
lowing Pocklington’s algorithm, if p ≡ 5 (mod 8), there is a deterministic way to solve the
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equations x2 − ai. In particular, writing p = 8m + 5, the solution of the equation x2 ≡ a
(mod p) is given by the following function.

x =



±am+1 if a2m+1 ≡ 1 (mod p),
±y

2
if a2m+1 ≡ −1 (mod p) and
y = ±(4a)m+1 is even,

±p+y
2

if a2m+1 ≡ −1 (mod p) and
y = ±(4a)m+1 is odd.

(3.6)

Let us briefly elaborate on the correctness of the function above. Given p = 8m + 5 with
m ∈ N, following Fermat’s little theorem, we have x8m+4 ≡ 1 mod p. Since x2 ≡ a
mod p, we can rewrite it as a4m+2 ≡ 1 mod p. We now consider two separate cases for a:

(i) If a2m+1 ≡ 1 mod p, then a2m+2 ≡ a mod p. That is, (am+1)2 ≡ a mod p, hence
x = ±am+1.

(ii) For the case when a2m+1 ≡ −1 mod p, first note that 2 is a quadratic non-residue
since p ≡ 5 mod 8. Hence 42m+1 ≡ −1 mod p and 42m+1a2m+1 ≡ 1 mod p.
That is, (4a)2m+1 ≡ 1 mod p and following the reasoning from the previous case
y = ±(4a)m+1 is a solution of y2 = 4a. Thus x = ±y

2
, or if y is odd, x = ±p+y

2
.

We now show how to construct an arithmetic progression such that all primes p in the
progression satisfy the above congruences. Let us first note that the congruence p ≡ 5
(mod 8) encompasses the restriction on p being congruent to 1 modulo 4. Denote by A =∏k

i=1,ai
ai the product of all input radicands ai and notice that since the ai’s are odd primes,

their product A is also an odd number. Let us look now at the arithmetic progression

8AN+ b+ 1, (3.7)

where b is a solution of the following system of equations

b ≡ 4 (mod 8) (3.8)
b ≡ 0 (mod ai) for all ai.

Since all the moduli in the equations (3.8) are pairwise coprime, by the Chinese remain-
der theorem, the system has a solution. By the construction above, we have an arithmetic
progression such that all primes p in the progression are suitable for our finite field compu-
tation. We also ensure that p is such that we can deterministically find the representations
α1, . . . , αk of

√
a1, . . . ,

√
ak in Fp.

Define by S(a1, . . . , ak) the following set

{
p ≤ 25s

3 | p ∈ 8AN+ b+ 1 where A =
k∏

i=1

ai (3.9)

and b is a solution of (3.8)
}
.

We now show that the density of primes in the set S(a1, . . . , ak) is high enough in order to
randomly sample them in our 2-RIT algorithm. To this aim, we rely on effective versions
of Dirichlet’s theorem on the density of primes in an arithmetic progression. In particular,
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we make use of the following estimates, which have been shown in [146, Chapter 20, page
125] and [147, Corollary 18.8], respectively.

Theorem 3.14. Given a ∈ Z∗
n, write πn,a(x) for the number of primes less than x that are

congruent to a modulo n. Then under GRH, there is an absolute constant c > 0 such that

πn,a(x) ≥
x

φ(n) log x
− cx1/2 log x.

Unconditionally, there exist effective positive constants c1 and c2, such that for all n < c1x
c1 ,

πn,a(x) ≥
c2x

φ(n)x1/2 log x
.

Applying the results above to arithmetic progression defining the set S(a1, . . . , ak), we
show the following.

Proposition 3.15. Let C be an algebraic circuit of size at most s, and a1, . . . , ak primes of
bit-length at most s. Denote by α the algebraic integer obtained by evaluating C on the

√
ai.

Suppose that p is chosen uniformly at random from the set S(a1, . . . , ak) defined in (3.9). Then

(i) p is prime with probability at least 1
6s3

assuming GRH, and

(ii) given that p is prime, the probability that it dividesN(α) is at most 2−s3 unconditionally.

Proof. We follow the proof of [32, Proposition 9]. Recall that we set ai ≤ 2s, which implies
A ≤ 2s

2 .

For (i), we note that by Theorem 3.14, the probability that p is prime is at most

π8A,b+1(2
5s3)

25s3/8A
≥ 8A

φ(8A) · log 25s3
− c · log 25s3 · 8A

(25s3)1/2
.

Since φ(n) ≤ n for all n ∈ N and (25s
3
)1/2 ≥ 22s

3 , the inequality rewrites as

π8A,b+1(2
5s3)

25s3/8A
≥ 1

5s3
− c · 5s3 · 2s2+3

22s3
.

For s ≥ 2, we have 2s2+3 ≤ 2s
3 and hence

π8A,b+1(2
5s3)

25s3/8A
≥ 1

5s3
− c5s32s

3

22s3
,

where c is the absolute constant mentioned in the theorem. For s ≥ max(c, 3) sufficiently
large, the above is at least 1

6s3
, which proves the claim.

For (ii), by Lemma 3.7 the norm of α has absolute value at most 22s
3

, and hence N(α)
has at most 2s3 distinct prime factors. Then the probability that p dividesN(α) given that p
is prime is at most

Pr (p | N(α))
Pr (p prime)

≤ 6s3 · 8A · 2s3

25s3

which is at most 2−s3 for s sufficiently large.
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With Proposition 3.15 in hand, we can state our algorithm, see Figure 3.4, and prove its
complexity.

Radical Identity Testing for square root inputs

Input: Algebraic circuit C of size at most s and a list of k odd primes
a1, . . . , ak of magnitude at most 2s.

Output: Whether f(√a1, . . . ,
√
ak) = 0 for the polynomial f(x1, . . . , xk)

computed by C .

Step 1: Compute b such that b+1 ≡ 5 (mod 8), and b+1 ≡ 1 (mod ai)

for all i such that ai ̸= 2.

Step 2: Pick p uniformly at random from the set S(a1, . . . , ak) defined
in (3.9).

Step 3: Compute α1, . . . , αk ∈ Fp such that α2
i ≡ ai (mod p) as de-

scribed in Equation (3.6).

Step 4: Output ‘Zero’ if f(α1, . . . , αk) = 0, where f̄ is the reduction of f
modulo p; and ‘Non-zero’ otherwise.

Figure 3.4 – Our randomised polynomial time algorithm for the complement of 2-RIT.

Theorem 3.16. The 2-RIT problem is in coRP assuming GRH and in coNP unconditionally.

Proof. Figure 3.4 presents a randomised polynomial time algorithm for the complement
of 2-RIT. It is clear that the algorithm runs in polynomial time; we will now argue its
correctness.

First, suppose that f(√a1, . . . ,
√
ak) = 0. By Lemma 3.4, we have f(α1, . . . , αk) = 0,

and hence the output is ’Zero’. Second, suppose that f(√a1, . . . ,
√
ak) ̸= 0. Then the

output will be ’Non-Zero’ provided that p does not divide N(f(√a1, . . . ,
√
ak)). By Propo-

sition 3.15(ii), the probability that p does not divideN(f(√a1, . . . ,
√
ak)) is at least 1−2−s3 .

Thus, the probability that the algorithm gives the wrong output is at most 2−s3 .

It remains to show that 2-RIT is in coNP unconditionally. The idea is to modify the
algorithm in Figure 3.4, replacing randomisation with guessing. Theorem 3.14 shows that

π8A,b+1(2
3s3) > 2s

3 (3.10)

for s sufficiently large. It follows that there exists a prime p ≤ 23s
3 that does not divide

N(f(
√
a1, . . . ,

√
ak)). The rest of the argument follows as in the proof of Theorem 3.13.

Note that in the proof of the theorem above, GRH is required to obtain the coRP bound.
This is because the unconditional lower bound on density of primes in arithmetic progres-
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sions is not strong enough for our purposes (due to the presence of a
√
x factor in the de-

nominator in Theorem 3.14(ii)): The number of primes less than 23s
3 which are favourable

is just 2s3 , as computed in (3.10). This gives a probability of success at least 2−2s3 , which
is exponentially small in the instance size. In order to get a constant success probability,
we have to repeatedly sample and run this algorithm 22s

3 times, which yields an exponen-
tial time algorithm. However, under GRH, the bound is improved to 1

6s3
and polynomially

many repetitions suffice for a constant success probability.

3.6 Discussion and perspectives

In this chapter we studied the Radical Identity Testing problem, and improved on the
previously known PSPACE bound, placing the problem in coNP assuming GRH. We also
considered a restricted variant of the problem, namely 2-RIT, and showed it is in coRP
assuming GRH, and in coNP unconditionally.

Our algorithms work by reducing the polynomials modulo a “small” prime p and per-
forming the computation in the finite field Fp. Intrinsically, we choose a prime p such
that the finite field Fp corresponds to the quotient of the ring of integers OK of the Ga-
lois field K containing the radical inputs by a well-chosen prime ideal. The underlying
approach is analogous to that in the work [32] on CIT and preceding works on versions of
ACIT such as [1], however, the correctness proof is more involved. The Galois group in the
case of a radical extension is not abelian anymore, which precludes a direct generalisation
of the results in the cyclotomic case. Ensuring the correctness of our procedure, in partic-
ular, involves identifying a special transitivity condition on the Galois group of K over Q.
Notably, we observe that the group acts jointly transitively on the tuples of the conjugates
of the input radicals. In Example 3.3 we show that the transitivity condition is crucial in
our approach, whereas it has no equivalent in [32]. Furthermore, as opposed to the cyclo-
tomic setting, the ring of integers of the number fieldK here is no longer monogenic, and
computing the basis of OK is not known to be tractable.

In Section 3.4.2 we further employ the joint transitivity condition to show that the RIT
problem also belongs to the complexity classAM. This in combination with our main result
placesRIT in coNP∩AM assumingGRH. This indicates thatRITmost likely is not coNP-
hard, as the result coNP ⊆ AM would imply that the polynomial hierarchy collapses to
AM [148]. A natural question that arises now is whether this complexity bound for RIT
really is tight. One way to indicate this could be to relate RIT to another problem known
to belong to coNP ∩AM, such as the graph, group or ring non-isomorphism problem.

In our overview of identity testing for expressions in Section 1.1, we discussed existing
results for the case when the polynomial is given in a sparse representation. In particular,
we outlined a deterministic polynomial time algorithm developed for the problem, noting
however, that the algorithm only works for certain subvariants of the sparse-RIT problem.
As any sparse polynomial can also be represented by a polynomial size circuit, our result on
RIT also gives an upper bound for the general version of sparse-RIT (as well as the RadP
problem, as discussed in Section 1.1). This furthermore implies a complexity bound on the
sparse-GRIT problem, which, recall, given a sparse polynomial f ∈ Z[x1, . . . , xk], asks
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to determine whether there exist radicals d1
√
a1, . . .

dk
√
ak such that f( d1

√
a1, . . .

dk
√
ak) = 0.

AssumingGRH, sparse-GRIT can be placed in the second level of the polynomial hierarchy,
namely in Σ2. Indeed, the algorithm first non-deterministically guesses a polynomial-size
certificate (a list of k radicands a1, . . . , ak with respective degrees d1, . . . , dk that make the
input polynomial vanish), which via our RIT algorithm can be verified in coNP.

Open questions. In Section 3.3.1 we have shown that a clever modification of the re-
duction proposed [42] allows us to place the general version of the bounded-RIT problem,
wherein the input degrees di are given in binary, in coRP. Can a similar argument, possibly
in combination with our joint transitivity condition, help to improve the complexity of the
general version of sparse-RIT as well?

As discussed above, it is not clear whether the complexity bound we have proved for
RIT is tight. Let us point out that the authors of [32] observed that CIT is at least as hard
as PIT, which is known to be P-hard [149, Theorem 2.4.6, Theorem 2.6.3]. It is not difficult
to see that the same can be said for RIT, but can we show any tighter hardness results for
RIT?

The observation that RIT is at least P-hard implies that the general variant of RIT
does not admit efficient parallel algorithms. In the Introduction we recalled that efficient
parallel algorithms have been developed for variants of the sparse-RIT problem. In the
circuit setting the following question still remains open: Are there any subclasses of RIT
which are efficiently parallelisable?

Considering the underlying similarities of our approach and the CIT algorithm in [32],
a next natural generalisation would be to inspect the complexity of determining whether a
polynomial represented by an algebraic circuit vanishes on an input comprising real rad-
icals and a primitive root of unity. As shown in Example 3.3, joint transitivity does not
hold anymore in this setting, hence such a generalisation would require new insights on
the Galois group of the underlying field. A first step in this direction may be to consider the
combination of 2-RIT and CIT, i.e., an input comprising positive square roots alongside a
primitive root of unity. In this case, the Galois group of the input is abelian, as both cyclo-
tomic fields andmulti-quadratic extensions are known to be abelian, and the compositum of
two abelian Galois extension is abelian as well. To see this, suppose thatK and L are both
Galois extensions of a field k. Then the map Gal(KL/k) → Gal(K/k) × Gal(L/k) is an
injective group isomorphism (see, e.g., [150, Chapter VI, Theorem 1.14]). Hence ifK and L
are abelian, then Gal(KL/k) must be abelian too. As discussed in Section 1.1, abelian Ga-
lois groups are better understood algorithmically than solvable Galois groups, which may
help in designing the algorithm for the problem we just posed. Considering that CIT and
2-RIT both admit randomised polynomial time algorithms, we may even wonder whether
their combination does as well? Could the latter be the case if the degree of the input circuit
is bounded?

A related, more general question that may help in improving the complexity of the
problemwe just posed is to determine, given real radicals and an nth primitive root of unity,
whether the root of unity already exists in the Galois closure of the extension generated
by the radicals. Or, in other words, does the nth cyclotomic polynomial factor into lower-
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degree factors in the radical field?

Finally, throughout our survey on identity testing in number fields, we have seen its
relation to the Galois group of the field at hand. As mentioned in Section 1.1, computa-
tional problems on Galois groups for radical field extensions are not yet well-understood.
The best known results are on the problem of determining the order of a Galois group of
such an extension, which has been shown to belong to the second level of the polynomial
hierarchy [48]. Can the insights we have on the RIT problem be used in more general
Galois group problems, such as efficient random sampling of automorphisms of a Galois
group of a radical extension? Or could the Galois group of a field extension be handled
algorithmically when given an oracle for identity testing over that field?
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A parametric version of the Hilbert
Nullstellensatz problem

In this chapter we study a parametric version of the Hilbert Nullstellensatz problem,
which asks whether a system of multivariate polynomials with coefficients in Z[x] has a
solution in Q(x) for x := (x1, . . . , xm). We further consider the problem of determining
the dimension of an algebraic variety defined by such a system.

We recall that overC, the two respective related problems are theHilbert Nullstellensatz
problem (HNC) which, given f1, . . . , fk ∈ Z[y1, . . . , yn], asks whether the system admits a
common solution over Cn, and the dimension problem (DIMC), which, given f1, . . . , fk ∈
Z[y1, . . . , yn] and an integer d, asks whether the subvariety of Cn defined by the system is
of dimension at least d.

The results presented in this chapter are based on a jointworkwith RidaAit ElManssour,
Nikhil Balaji, Mahsa Shirmohammadi, and James Worrell [151].

Organisation of the chapter. We begin this chapter by recalling notation and some
simplifications that we may apply without loss of generality to the systems of polynomials
we consider in Section 4.1. In Section 4.2 we introduce a number-theoretic approach to
the parametric HN problem (HNQ(x) for short), which generalises the AM algorithm for
HNC. We give an overview of the approach in Section 4.2.1, then turn our attention to
unsatisfiable systems in Section 4.2.2 and satisfiable ones in Section 4.2.3. We combine the
results for the two kinds of systems in Section 4.2.4 and reduce the problem to HNC.

In Section 4.3 we look at the HNQ(x) problem from a geometric point of view. We
observe that a system of polynomials f1, . . . , fk ∈ Z[x][y1, . . . , yn] has a solution inQ(x)

n

forx := (x1, . . . , xm) if and only if the parameters x1, . . . , xm when treated as variables are
algebraically independent in the coordinate ring C[V ] of the variety V the system defines
in Cm+n (which implies that V has dimension at least m). We give examples illustrating
the geometry behind the problem, and then formally relate the parametric dimension of a
variety to its complex dimension in Section 4.3.1. We thus show how the existing algorithm
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for the DIMC problem can be used to reduce HNQ(x) to HNC in Section 4.3.2.

We conclude the chapter by comparing the approaches we developed and possible gen-
eralisations in Section 4.4.

Relevant preliminaries. The preliminary sections useful for reading this chapter are
Sections 2.2, 2.3.1 to 2.3.3, 2.3.7 and 2.4.2.

4.1 Notation and initial simplifications

Let x := (x1, . . . , xm), and recall that Q(x) denotes the algebraic closure of the field
of rational functions in m variables over Q. We investigate the complexity of deciding
whether the system of polynomial equations

f1(y1, . . . , yn) = 0, . . . , fk(y1, . . . , yn) = 0 (4.1)

with fi ∈ Z[x][y1, . . . , yn] has a solution in Q(x)
n
. We call this the Hilbert Nullstellensatz

problem over Q(x), and abbreviate it as HNQ(x).

Assumption on the degrees and coefficients of the fi’s and the size of the system.
We consider systems with coefficients in Z[x]. This is without loss of generality since any
system with coefficients in Q(x) can be transformed by scaling to one with coefficients in
Z[x] that has the same solution set over Q(x).

It is customary to describe the system by its size, which we define to be the maximum of
the numberm of parameters, numbern of variables, number k of polynomials, the logarithm
of the degrees of the polynomials in x and y, and the bitsize of the integer coefficients.

We assume that the degrees of the polynomials fi in x and y are at most 2 and the
integer constants of bitsize at most 1. We claim this assumption is without loss of generality.
Indeed, given a polynomial in a sparse representation, the degree of the system and the
integer constants of the coefficients can be at most exponential in the system’s size. By
introducing new intermediate variables and repeated squaring, we obtain a new system
of polynomials of degree at most 2, constants of bitsize 1, and system size polynomial in
the size of the input. In what follows, the size of the systems we consider is thus equal to
max(m,n, k).

4.2 A number-theoretic approach to parametric HN

We approach the HNQ(x) problem with the aim of generalising Koiran’s AM protocol
for HNC [8], which relies on examining the satisfiability of the system modulo primes p.
Technically speaking, for each one of the primes p, his idea can be understood as performing
the evaluation under a ring homomorphism, whose kernel is a prime ideal above p.
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We tackle HNQ(x) by studying the satisfiability of the system over C when specialised
at a given vector of values α := (α1, . . . , αm) in Cm. That is, we reduce our problem to
that of examining the satisfiability of the system under a ring homomorphism

φα : Q[x][y1, . . . , yn] → Q[α][y1, . . . , yn] .

By choosing the specialisation α randomly, we exhibit a BPP reduction of our problem to
HNC, which by [8] allows us to conclude that HNQ(x) ∈ AM, and thus in the polynomial
hierarchy. We give a more detailed overview of the approach in Section 4.2.1.

Letx := (x1, . . . , xm) and y := (y1, . . . , yn). Throughout Section 4.2, we fix an instance
of HNQ(x) comprising a system S of polynomial equations in Z[x][y] as in (4.1). As dis-
cussed in Section 4.1, we assume the degree of the polynomials in x and y to be at most 2.
We write s to denote the size of our fixed instance.

Given α := (α1, . . . , αm) ∈ Cm, we denote by Sα the system S specialised at xi = αi

for i ∈ {1, . . . ,m}.

4.2.1 Overview of the approach

In order to compute the probability that the systemSα is satisfiable overC, whenα is an
integer point chosen uniformly at random in a fixed range, we rely on the Schwartz-Zippel
Lemma [16, 17, 18], which we recall here.

Lemma 4.1 (Schwartz–Zippel). Let f ∈ K[x1, . . . , xn] be a non-zero polynomial of total
degree d ≥ 0 over a commutative ring K . Let S be a finite subset of K and let r1, . . . , rn be
selected independently and uniformly at random from S. Then

Pr (f(r1, . . . , rn) = 0) ≤ d

|S|
.

We will now give a brief overview of how we use the Schwartz-Zippel Lemma in com-
bination with algebraic and number-theoretic arguments in order to decide HNQ(x).

Unsatisfiable systems. Assume that S is not satisfiable in Q(x). The weak version of
Hilbert Nullstellensatz implies that the ideal generated by f1, . . . , fk contains the constant 1.
In particular, theremust exist a non-zero polynomial a ∈ Z[x] and polynomials g1, . . . , gk ∈
Z[x][y] such that

a = g1f1 + · · ·+ gkfk.

Observe that if the above equation holds in Q(x), the system S can only have a solution
when specialised at α ∈ Cm if α is a zero of a(x). An effective parametric version of
Hilbert’s Nullstellensatz [99, Theorem 5 and Corollary 4.20] gives a degree bound on a(x).
We may thus apply the Schwartz-Zippel Lemma to deduce a bound on the probability that
a(α) = 0, and hence an upper-bound on the probability of Sα admitting a solution over C,
whenα is an integer point chosen uniformly at random in a fixed range; see Proposition 4.3.
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Satisfiable systems. Assume, conversely, that the system S is satisfiable. We first show
that in that case, there exists a “small” solution β = (β1, . . . , βn) ∈ Q(x)

n
of S . In particu-

lar, in Proposition 4.5, we exhibit a bound on the degree (in x and y) of the defining poly-
nomials of the βi’s. To this end, we use results on quantifier elimination for algebraically
closed fields.

Fix K = Q(x)(β1, . . . , βn) to be the finite extension of Q(x) obtained by adjoining
the solution β to Q(x). The extension K is separable over Q(x), hence by the Primitive
Element Theorem there exists an element θ ∈ Q(x) such thatK = Q(x)(θ). That is, every
element γ ∈ K can be written as

γ =
N−1∑
j=0

pj(x)θ
j (4.2)

where pj ∈ Q(x), and N is the degree of K over Q(x).

Furthermore, θ can be constructed as a linear combination of the generators β1, . . . , βn.
Denote bymθ(x, y) ∈ Q(x)[y] the minimal polynomial of θ over Q(x). In Proposition 4.6
we exhibit an upper bound on the degreeN ofmθ(x, y) in y and the degree of its coefficients
in x (when considered as polynomials in Q[x]).

We then compute a bound on the denominators of the coefficients pj(x) that appear
when expressing the βi’s as polynomials in θ as in (4.2). More specifically, in Proposition 4.8,
we show that for all i ∈ {1, . . . , n},

βi =
Pi(θ)

b
,

where Pi(y) ∈ Q[x][y] is of degree at mostN −1 in y, and b ∈ Q[x] of total degree at most
polynomial in N .

Now given α ∈ Cm, we claim that the system Sα may be unsatisfiable over C only if
b(α) = 0. Otherwise, if b(α) ̸= 0, we can define a homomorphism φα :

1
b(x)

Q[x][θ] → C
by

1

b(x)

N−1∑
i=0

qj(x)θ
j 7→ 1

b(α)

N−1∑
j=0

qj(α)ωj

where qj(x) ∈ Q[x], and ω is a root ofmθ(α, y) ∈ C[y]. The homomorphism φα is surjec-
tive, hence every solution of Sα in Cn is the image of a solution of S in Q(x)

n
under φα.

In other words, for all α such that b(α) ̸= 0, a certificate that Sα has a solution over C
witnesses that S has a solution over Q(x).

Reducing the problem toHNC. Finally, we combine the results on the unsatisfiable and
satisfiable systems to compute a boundD such that if we chooseα1, . . . , αm in {1, 2, . . . , D}
independently and uniformly at random, with high probability the satisfiability of the sys-
tem remains unchanged over Cn when specialised to xi = αi for i ∈ {1, . . . ,m}. We
thus exhibit a randomised polynomial-time reduction from HNQ(x) to HNC, which places
HNQ(x) in AM assuming GRH.
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This completes the overview of our approach, so let us now look at the technical details
of the proofs.

4.2.2 Choosing specialisations for unsatisfiable systems

We use an effective version of the weak Hilbert Nullstellensatz for Q(x) given in [99,
Theorem 5 and Corollary 4.20].

Theorem 4.2 (Effective Parametric Hilbert’s Nullstellensatz). Let f1, . . . , fk ∈
Z[x][y1, . . . , yn] \Z[x] be a family of k polynomials of degree at most 2 in x and y that have
no common zero in Q(x). Then there exists a ∈ Z[x] \ {0} and g1, . . . , gk ∈ Z[x][y1, . . . , yn]
such that

a = g1f1 + · · ·+ gkfk, (4.3)

with

— degy(gifi) ≤ 2k,

— degx(a), degx(gifi) ≤ k2k.

Now if the system S is not satisfiable in Q(x), Theorem 4.2 in combination with the
Schwartz-Zippel Lemma allows us to compute a bound on the probability of Sα admitting
a solution over C, whenα is an integer point chosen uniformly at random in a fixed range.
Recall we use s to denote the size of our fixed system.

Proposition 4.3. Let D ∈ N be such that D ≥ s2s. If S has no solution in Q(x), then for
α1, . . . , αm chosen independently and uniformly at random from {1, 2, . . . , D}

Pr (Sα is satisfiable in C) ≤ s2s

D
.

Proof. If S has no solution in Q(x)
n
then by the weak Hilbert Nullstellensatz, the ideal

generated by the polynomials in S contains the constant 1. Furthermore, Theorem 4.2
asserts that there exists a ∈ Q[x] of degree at most s2s that can be computed as a Z[x]-
linear combination of the polynomials in S , i.e., Equation (4.3) holds. For all α such that
a(α) ̸= 0, the specialised system Sα cannot be satisfiable inC. That is, by the union bound

Pr (Sα is satisfiable in C) ≤ Pr (a(α1, . . . , αr) = 0) .

But a has degree at most s2s, and hence by Lemma 4.1 the bound follows.

4.2.3 Choosing specialisations for satisfiable systems

Satisfiable systems admit “small” solutions

We work with the first-order theory of algebraically closed fields of characteristic zero.
Let K be a field, and denote by K its algebraic closure. We consider the first-order lan-
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guageLwith constant symbols for all elements ofK , function symbols+,−, ·, and the rela-
tion symbol=. Atomic formulas have the formP (x1, . . . , xn) = 0, whereP ∈ K[x1, . . . , xn].
We say that a formula Φ is built over a set of polynomials P if every polynomial mentioned
in Φ lies in P . It is well-known that the theory of algebraically closed fields admits quan-
tifier elimination. We use the following quantitative formulation of quantifier elimination
overQ(x), which is a specialisation of [152, Theorem 2], and its reformulation stated in [3,
Theorem 6], to Q(x).

Theorem 4.4. Let P be a set of k polynomials each of degree at most d. Fix Y = (y1, . . . , yk1)

and Z = (z1, . . . , zk2) to be tuples of first-order variables. Consider the formula

Φ(Y ) := ∃Z Ψ(Y, Z) ,

whereΨ(Y, Z) is a quantifier-free formula built over P . There exists an equivalent quantifier-
free formula Φ′(Y ) that is built over a set of polynomials Q with degree bounded by
2n

O(1)(log kd)O(1) . The number of polynomials in Q is O
(
(kd)n

O(1)).
Moreover, when the coefficients of the polynomials in Ψ are elements of Z[x], and the com-
bined degree of the polynomials in x, Y and Z is bounded by d, then the coefficients of the
polynomials in Φ′ are elements of Z[x] of degree at most 2(n+r)O(1)(log kd)O(1) in x.

We now use the above result to show that polynomial systems with coefficients in Z[x],
when satisfiable, admit a bounded-degree algebraic solution. We closely follow the proof
[8, Theorem 7], adapting it to Q(x).

Proposition 4.5. LetP be a system of k polynomial equations in n variables y = (y1, . . . , yn)

with coefficients inZ[x] of degree at most 2 inx and y. There exists an effective constant c ∈ N
such that if P has a solution over Q(x), then there exists a solution β = (β1, . . . , βn) such
that each component βi is a root of a polynomial of degree at most 2(n log k)c with coefficients
that are polynomials in Z[x] of degree at most 2((n+m) log k)c in x.

Proof. We first prove the claim for the case when the system P has a finite number of
solutions. Let S ⊆ Q(x)

n
be the solution set of P and suppose it is finite. Write Si ⊆ Q(x)

for the projection of S on the ith coordinate axis. By Theorem 4.4, there exists an effective
constant c ∈ N such that Si can be defined by a quantifier-free formula built over a set of
polynomials Q having degree bounded by 2(n log kd)c and coefficients that are polynomials
in Z[x] of degree at most 2((n+m) log kd)c in x. If S is finite, then each Si is finite. Hence
each element of Si is a root of some polynomial in Q. Now given a solution β ∈ S, its
components are contained in S1, . . . , Sn, and thus are roots of polynomials in Q.

Let us now assume that P has infinitely many solutions. We prove the claim by induc-
tion on n. Let S ⊆ Q(x)

n
be the solution set of P . By the assumption on P , at least one of

the projections Si must be infinite. Now Si is a constructible set, and its algebraic closure Si

is a whole line, hence its complementQ(x)\Si must be finite. Furthermore, by Theorem 4.4
the elements of Q(x) \ Si are chosen among the roots of O

(
kn

O(1)) polynomials of degree
at most 2nO(1)(log kd)O(1) . Hence |Q(x) \ Si| < 2(n log k)c for some effective constant c ∈ N.
This implies that there exists an integerm ∈ Si with 0 ≤ m ≤ 2(n log k)c . By substituting yi
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withm in P , we obtain a new satisfiable system in n− 1 variables where the polynomials
are of combined degree at most 2 in x and y \ {yi}. By the induction hypothesis, the result
follows.

The primitive element

Assume that the system S is satisfiable. Fix β = (β1, . . . , βn) to be a solution of S in
Q(x)

n
and letK = Q(x)(β1, . . . , βn). The aim of this section is to upper-bound the degree

and coefficients of the minimal polynomial of a primitive element θ forK. We furthermore
construct θ to be integral over Q[x].

Recall that an element b of a commutative ringB is said to be integral overA, a subring
of B, if b is a root of a monic polynomial with coefficients in A. Given an algebraic exten-
sion K of Q(x), we define OK to be the subring of elements of K that are integral over
Q[x].

Let us note that given an element α ∈ K , we can always find a polynomial d ∈ Q[x]
such that αd = β ∈ OK . Indeed, let f(y) ∈ Q(x)[y] be the minimal (monic) polynomial
of α and choose d to be the least common multiple of the denominators of the coefficients
of f(y). Then, since f is monic,

ddegff
(y
d

)
= g(y),

and g(y) ∈ Q[x][y] is monic, with αd as a root. Thus αd ∈ OK . Furthermore, αd and α
have the same degree over Q(x).

Recall we write s to denote the size of our fixed system. By Proposition 4.5, the genera-
tors βi of the fieldK are algebraic overQ(x) of degree at most 2(s log s)c

′
for an effective con-

stant c′ ∈ N. By the argument above, for each βi, there must exist a polynomial di ∈ Q[x] of
degree atmost 2(s log s)c

′
inx such that diβi ∈ OK. Let d = lcmn

i=1di and observe that its total
degree is again bounded by 2(s log s)

c′′ for an effective constant c′′ > c′. Fix β̃i := dβi ∈ OK
for all i ∈ {1, . . . , n} . We compute the primitive element θ ∈ OK as aZ-linear combination
of the generators β̃1, . . . , β̃n, following a standard construction (see Section 2.3.3) also used
in Section 3.4.3.
Proposition 4.6. There exists a primitive element θ of K with monic minimal polyno-
mial mθ(x, y) ∈ Q[x][y] of degree at most 2(s log s)c in y, and coefficients of degree at most
2(s log s)

c in x, where c is an effective constant.

Proof. Denote by D := 2(s log s)
c′ the bound on the degrees of the βi’s (and hence the β̃i’s)

given by Proposition 4.5. We follow the proof of the Primitive Element Theorem and con-
struct the primitive element as θ =

∑n
i=1 ciβ̃i where the ci ∈ Z are of magnitude at most

D2n + 1, and θ is of degree at most Dn. To prove the bound on the constants ci, we use an
effective version of the theorem given in Lemma 2.3, which, recall, states that given α and
β of respective degrees ℓ and m over Q(x), there exists c ∈ {1, . . . , ℓ2m2 + 1} such that
α + cβ is a primitive element of Q(x)(α, β).
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We prove the claim by induction on n. For n = 2, we construct a primitive element θ2 =
β̃1+ c2β̃2 for the fieldQ(x)(β̃1, β̃2). By Lemma 2.3, we can choose c2 of magnitude at most
d4 + 1. To obtain the bound on the degree of θ2, denote by p(y), q(y) ∈ Q[x](y) the
respective minimal polynomials of β̃1 and β̃2 over Q(x). That is, we have p(β̃1) = q(β̃2) =

0. Notice that the polynomials p(θ2 − cy) and q(y) have a common root β̃2. Now recall
that the resultant of two polynomials is a polynomial expression of their coefficients that
is equal to zero if and only if the polynomials have a common root. That is, the resultant
of p(θ2 − cy) and q(y) is a polynomial expression in θ2 equal to zero. Since the resultant is
of degree at most D2, θ2 must be of degree at most D2 over Q(x).

Now let us assume that the bounds hold for n − 1, that is, the primitive element θn−1

of the field Q(x)(β̃1, . . . , β̃n−1) can be constructed as θn−1 =
∑n−1

i=1 ciβ̃i with ci integers of
magnitude at most D2(n−1) + 1, and that it is algebraic of degree at most Dn−1 over Q(x).
By Lemma 2.3, we can construct the primitive element of the fieldK = Q(x)(θn−1, β̃n) as a
linear combination θn−1 + cnβ̃n where cn is an integer of magnitude at most (Dn−1)2D2 +

1 = D2n + 1. The bound on the degree of θ again follows from the resultant argument
applied to the minimal polynomials of θn−1 and β̃n over Q(x).

We have thus shown that the minimal polynomial mθ(x, y) of θ is of degree at most
D2n ≤ 2(s log s)

c where c is an effective constant. In remains to prove the bound on the
coefficients ofmθ. To this aim, we construct a system of k+1 polynomial equations in n+1

variables with coefficients in Z[x] such that one of its solutions will be (β1, . . . , βn, θ).

For all i ∈ {1, . . . , k}, let gi(y1, . . . , yn, z) = fi(y1, . . . , yn), where fi is as in S . Define

gk+1(y1, . . . , yn, z) := z −
n∑

i=1

cidyi,

where d ∈ Q[x] is the polynomial such that β̃i = dβi for all i ∈ {1, . . . , n}. Then the
system

g1(y1, . . . , yn, z) = 0, . . . , gk+1(y1, . . . , yn, z) = 0 (4.4)

is satisfiable and admits the claimed solution. Furthermore, notice that the combined degree
of the polynomial gk+1 in x, y and z is at most 2(s log s)c

′′
, where c′′ is an effective constant.

By using the same reasoning as in Section 4.1, we can transform the system in (4.4) into
a system of polynomials of total degree bounded by 2, of size polynomial in s. We may
now apply Proposition 4.5 to this new system to assert that the coefficients of mθ(x, y)

are of degree at most 2(s log s)c in x. Moreover, since θ ∈ OK by construction, its minimal
polynomial must be monic.
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Expressing the solution via the primitive element

We have just constructed a primitive element θ for K that is integral over Q[x]. We
have that for all i, we can write

βi =
N−1∑
j=0

pi,j(x)θ
j, (4.5)

where pi,j ∈ Q(x) and N is the degree of K over Q(x). In this section we show that the
denominators of the coefficients pi,j cannot be of arbitrarily large degree in x.

To this end, we rely on the following proposition.

Proposition 4.7. Let K = Q(x)(θ) where θ ∈ OK has minimal polynomial mθ ∈ Q[x][y]

over Q(x) of degree N . Then OK ⊆ 1
disc(mθ)

∑N−1
i=0 Q[x]θi.

Proof. Given α ∈ OK, write α =
∑N−1

i=0 qiθ
i, where q0, . . . , qN−1 ∈ Q(x). Let σ0, . . . , σN−1

be a list of the monomorphismsK ↪→ Q(x) that fixQ(x). Applying these monomorphisms
to the previous equation gives σj(α) =

∑N−1
i=0 qiσj(θ

i) for j = 0, . . . , N − 1. Solving this
system of linear equations for q0, . . . , qN−1 using Cramer’s rule we obtain

qi =
det(Di)

det(D)
=

det(Di) det(D)

det(D)2
, (4.6)

where D = (σj(θ
i))i,j and Di is the matrix obtained from D by replacing the ith column

with the vector (σ0(α), . . . , σN−1(α))
⊤.

The denominator det(D)2 on the right-hand side of (4.6) is the discriminant ofmθ; see,
e.g. [153, p. 15, Equation (1.25.a)]. Moreover the numerator det(Di) det(D) on the right-
hand side of (4.6) lies in Q(x) and is integral over Q[x]. Since Q[x] is integrally closed we
thus have that det(Di) det(D) ∈ Q[x].

Proposition 4.8. There exists b ∈ Z[x] of degree at most 2(s log s)c in x and P1, . . . , Pn ∈
Z[x][y] such that for all i ∈ {1, . . . , n}, βi = Pi(θ)

b
, where c is an effective constant.

Proof. By Proposition 4.7 we have OK ⊆ 1
disc(mθ)

∑N−1
i=0 Q[x]θi, where disc(mθ) ∈ Q[x]

is the discriminant of the minimal polynomial mθ of θ. In general, the discriminant of a
polynomial of degree N is a polynomial in its coefficients of total degree 2N − 1. Thus, by
Proposition 4.5, disc(mθ) is a polynomial inQ[x] of total degree atmost (2N−1)·2(s log s)c ≤
2(s log s)

c′ , where c′ > c is again an effective absolute constant.

Recall that β̃i = dβi ∈ OK for all i ∈ {1, . . . , n} where d ∈ Q[x] of total degree at most
2(s log s)

c . We can thus write βi = Pi(θ)
b

, where b := d · disc(mθ) is of total degree at most
2(s log s)

c′′ for an effective absolute constant c′′.
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Choosing the specialisation

We now show that if the denominator b from Proposition 4.8 does not vanish on α ∈
Cm, the system Sα is satisfiable in C. The degree bound on b in combination with the
Schwartz-Zippel Lemma allows us to compute a bound on the probability of Sα admitting
a solution over C, whenα is an integer point chosen uniformly at random in a fixed range.

Proposition 4.9. There exists an effectively computable constant c such that for all D ∈ N
withD ≥ 2(s log s)

c , if S has a solution inQ(x), then for α1, . . . , αm chosen independently and
uniformly at random from {1, 2, . . . , D}

Pr (Sα is satisfiable in C) ≥ 1− 2(s log s)
c

D
.

Proof. Suppose S has a solutionβ = (β1, . . . , βn) inQ(x)
n
. Recall we set θ to be a primitive

element for K = Q(x)(β1, . . . , βn) that is integral over Q[x] and denote by mθ(x, y) ∈
Q[x][y] its minimal polynomial. By Proposition 4.8, there exist polynomials P1, . . . , Pn ∈
Z[x][y] and b ∈ Z[x] such that for all βi = Pi(θ)

b
. Furthermore, the degree of b is at most

2(s log s)
c where c is an effective constant.

We first show that given α ∈ Cm, the system Sα is satisfiable over C if b does not
vanish on α. For all i ∈ {1, . . . , k}, let

gi(y) = b2fi

(
P1(y)

b
, . . . ,

Pn(y)

b

)
. (4.7)

As discussed in Section 4.1, we assume the degrees of the fi’s in y are at most 2, thus it
must be that gi ∈ Z[x]. Furthermore, the polynomials gi must be multiples ofmθ sincemθ

is irreducible and gi(θ) = 0.

If b does not vanish on α, (4.7) must also hold in C when specialised at x = α. This
implies that if ω is a solution of mθ(α, y) in C, then

(
P1(α,ω)
b(α)

, . . . , Pn(α,ω)
b(α)

)
is a solution

of Sα in C. Note that such a solution ω of mθ(α, y) ∈ Q[y] exists for all α ∈ Cm as the
polynomialmθ is monic in y, hencemθ(α, y) is not constant.

Thus

Pr (Sα is satisfiable in C) ≥ Pr (b(α) ̸= 0) = 1− Pr (b(α) = 0) ,

which by the Schwartz-Zippel Lemma is at least 1− 2(s log s)c

D
.

4.2.4 Reduction to HNC

We have just given estimates on the probability that the system S specialised at an
integer point α randomly chosen in a fixed range, is satisfiable over C. We will now use
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them to exhibit a randomised polynomial-time reduction of HNQ(x) to HNC. This allows
us to use Koiran’s AM protocol for HNC to decide HNQ(x) in AM assuming GRH as well.

The AM protocol for HNC admits perfect correctness. That is, given a system of poly-
nomial equations in Z[y1, . . . , yn] that is satisfiable in C, the algorithm outputs “satisfiable”
with probability 1, whereas given a system that is not satisfiable over C, the probability of
outputting “satisfiable” is at most 1/2. We note that by standard amplification techniques,
the error bound for false positives can be improved to 1/2ℓ for a fixed ℓ ∈ N.

Theorem 4.10. HNQ(x) ∈ AM assuming GRH.

Proof. LetD := 3·2(s log s)c where c is the effective constant from Proposition 4.9. We reduce
our fixed instance of HNQ(x) to an instance of HNC by choosing the values α1, . . . , αm

independently and uniformly at random from the set {1, 2, . . . , D}, and running Koiran’s
algorithm from [8] on Sα. Let us now analyse the probabilistic correctness of our reduction.

Denote byA the event that Koiran’s algorithm outputs “satisfiable”, and byAc its com-
plement, i.e., the event that the algorithm outputs “unsatisfiable”. Let B be the event that
for α1, . . . , αm chosen uniformly at random from {1, 2, . . . , D}, the system Sα is satisfiable
in C, and let Bc be the complement of B, i.e., the event that Sα is not satisfiable in C.

Suppose that the system S is not satisfiable overQ(x). By Proposition 4.3, if we choose
α1, . . . , αm uniformly at random in {1, 2, . . . , D} the probability thatSα is satisfiable overC
(the event B) is at most s2s

D
. That is, since D ≥ 4s2s, we have Pr (B) ≤ 1

4
.

We recall that Koiran’s algorithm admits perfect correctness, that is, Pr (Ac | B) = 0.
By amplifying the error probability for unsatisfiable instances and repeating his algorithm
ℓ = 4 times, we further have Pr (A | Bc) ≤ 1

16
.

We can now bound from below the probability of the algorithm outputting “unsatisfi-
able” as follows.

Pr (Ac) = Pr (B) · Pr (Ac | B) + Pr (Bc) · Pr (Ac | Bc)

= Pr (Bc) · Pr (Ac | Bc)

≥
(
1− 1

4

)
·
(
1− 1

16

)
=

45

64
≥ 2

3
,

which is the desired probability of correctness for unsatisfiable instances.

Let us now suppose the system S is satisfiable overQ(x). By Proposition 4.9, the prob-
ability that Sα is satisfiable over C when α1, . . . , αm are chosen uniformly at random in
{1, 2, . . . , D} (the event B) is at least 2(s log s)c

D
. In particular, our choice of D = 3 · 2(s log s)c ,

implies that Pr (B) ≥ 2
3
.

Recall that Koiran’s algorithm admits perfect correctness, hence Pr (A | B) = 1.
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We can bound the probability of the algorithm outputting “satisfiable” as follows.

Pr (A) = Pr (C) · Pr (B | C) + Pr (Cc) · Pr (B | Cc)

≥ Pr (B) · Pr (A | B)

≥ 2

3
· 1 =

2

3

We have again obtained the required probability of correctness for satisfiable instances,
which completes our BPP reduction. Since AM is closed under probabilistic reductions,
this proves the theorem.

4.3 A geometric approach to parametric HN

In the previous section we have shown that the problem of determining whether a sys-
tem of polynomials with coefficients in Z[x] has a solution in Q(x) reduces to deciding
whether a system of polynomials with integer coefficients is satisfiable over C. We did this
through a number-theoretic approach, generalising theAM algorithm forHNC given in [8].

Systems of polynomials have a very natural algebraic interpretation, namely they define
algebraic varieties. Given a system S of polynomials f1, . . . , fk ∈ Z[x][y1, . . . , yn] for x :=
(x1, . . . , xm), it makes sense to ask what is the geometric interpretation of its solutions in
Q(x)

n
. Our arguments in Section 4.2.3 assert that if the system is satisfiable over Q(x),

the parameters x keeping the system satisfiable over C can be chosen from a Zariski-open
set. In particular, we have shown that given a solution β ∈ Q(x)

n
of S , we can compute

a polynomial b ∈ Q[x] such that for all α ∈ Cm with b(α) ̸= 0, the system Sα has a
solution in Cn, and that solution is the image of β under a ring homomorphism whose
kernel contains α. We could, in fact, compute such a polynomial bi for every solution
βi of S in Q(x)

n
. Denoting by B the set of common zeroes of the bi’s in Cm (which,

note, is Zariski-closed), our argument states that for all α in the Zariski-open complement
Cm \ B, the system Sα is satisfiable over C, and its solution in Cn is the image of one of
the solutions βi.

Furthermore, if we write V for the subvariety of Cm+n defined by the system S when
treating the parameters x1, . . . , xm as variables, the satisfiability of S over Q(x) is equiv-
alent to x1, . . . , xm being algebraically independent in the coordinate ring C[V ]. To see
this, it suffices to note that x1, . . . , xm are algebraically independent in C[V ] if and only if
I(V )∩C[x1, . . . , xm] = {0} (see Section 2.3.7 for details). But the weak Hilbert Nullstellen-
satz forQ(x) that we restated in Theorem 4.2 asserts precisely that I(V )∩Q[x1, . . . , xm] ̸=
{0} if and only if the systemS is not satisfiable overQ(x). Now I(V )∩Q[x1, . . . , xm] ̸= {0}
if I(V ) ∩ C[x1, . . . , xm] ̸= {0}; thus deciding HNQ(x) boils down to verifying whether the
variety V is of dimension at least m in Cm+n and, in particular, whether the projection of
the variables x1, . . . , xm is dense in Cm.

As discussed in Section 1.2, the complexity of determining the dimension of complex al-
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HNQ(x) HNC

DIMQ(x) DIMC

Theorem 4.10

[11]

Th
eor

em
4.1
6

Figure 4.1 – An illustration of the relations between the problems HN and DIM over Q(x)

and C respectively. We use A−→B to denote a randomised polynomial-time reduction
from the problem A to the problem B, and A 99K B to denote that the problem A is a
generalisation of the problem B.

gebraic varieties was first studied in [91]. Formally, the problem, denotedDIMC, asks, given
a system of polynomial equations f1, . . . , fk ∈ Z[y1, . . . , yn], and an integer d < n, whether
the variety V ⊆ Cn defined the system has dimension at least d. Let us note here that HNC
is precisely the problem DIMC specialised to d = 0. In [11] a randomised polynomial-time
reduction of DIMC to HNC is established, thus placing DIMC in AM assuming GRH.

The reductionworks by first applying a random linear transformationA to the varietyV
such that with high probability the projection of the coordinates y1, . . . , yd of the imageAV
of the variety under A is dense in Cd, if V has dimension at least d. The second step of the
algorithm involves randomly choosing an integer point (α1, . . . , αd), adding equations y1 =
α1, . . . , yd = αd to the system definingAV and verifying the satisfiability of the new system
(with more polynomials but fewer variables) over C via the HNC algorithm. Geometrically
speaking, the reduction corresponds to intersecting the variety V ∈ Cn with a generic
affine subspace of dimension n− d. This coincides with yet another characterisation of the
dimension, as such an intersection is non-empty precisely if the variety has dimension at
least d.

The technique presented in Section 4.2 is in essence equivalent to the second step of the
reduction we just described, however, the proof techniques ensuring its correctness and
error analysis are conceptually different. Our proof is a generalisation of Koiran’s proof
that HNC belongs to AM [8] and relies on algebraic number theory, whereas [11] relies on
arguments from (real) algebraic geometry. More specifically, the bound on the probability
of a randomly chosen integer point lying in the variety follows through an analysis of the
number of connected components of the variety V when embedded in R2n in combination
with a result on approximating the Lebesgue measure of V ∩Rn from [92]. The technique
of [11] thus relies on the fact that we are working over a field containing R, whereas the
number-theoretic approach uses the property that the field extensions we consider are sep-
arable.

We now show that with minimal changes the randomised polynomial-time reduction
of DIMC to HNC carries over to HNQ(x). Furthermore, the technique can be extended to
a common generalisation of the two problems: the DIMQ(x) problem, which asks, given
a system of polynomials f1, . . . , fk ∈ Z[x][y1, . . . , yn] and an integer d < n, whether the
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Figure 4.2 – An illustration of the system of polynomials from Example 4.1. On the left
hand side the hypersurface defined by the polynomial x21 + y1y2 − 1 = 0 is plotted in teal
and the one defined by 2x1 + y1 + y2 = 0 in pink. We can see that the intersection of the
hypersurfaces is an algebraic curve. On the right hand side, the plot is completed with the
hypersurface given by the polynomial x1y1 + 2 = 0 in blue. The three hypersurfaces on
the illustration intersect in two real points.

subvariety of Q(x)
n
defined by the system is of dimension at least d. We observe that to

decide DIMQ(x), it suffices to verify whether the subvariety of Cm+n defined by the system
(when we consider the parameters x1, . . . , xm as variables) is of dimension at leastm+ d,
with the additional restriction that the projection of the coordinates x1, . . . , xm is dense in
Cm before applying the linear transformation. We thus adjust the reduction to choose a
linear transformation that keeps the coordinates x1, . . . , xm unchanged.

Given an instance ofDIMQ(x), our algorithm directly reduces the problem toHNC. Note
that we could also first verify that the system is satisfiable over Q(x), and then use the
DIMC algorithm directly (with the promise that x1, . . . , xm are algebraically independent
in C[V ]) to determine the dimension of the variety they define. However, separating the
two steps would entail choosing a random integer point and calling to the HNC algorithm
twice, which our direct reduction toHNC avoids. For an illustration of the relation between
the Hilbert Nullstellensatz and dimension problems over Q(x) and C, and the reductions
we establish, see Figure 4.1.

Before proceeding to the technical proofs, let us look at an example illustrating how
satisfiability over Q(x) relates to the geometry of the variety over C.

Example 4.1. Consider the system

x21 + y1y2 − 1 = 0

2x1 + y1 + y2 = 0

inZ[x1][y1, y2]. The system admits two parametric solutions in the variable x1, namely (−x1+√
2x21 − 1,−x1−

√
2x21 − 1) and (−x1−

√
2x21 − 1,−x1+

√
2x21 − 1). If we briefly go back
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to the technique introduced in Section 4.2, we can note that the system remains satisfiable in
C2 for all positive integer specialisations α1 ∈ N for x1.

When considered as a variety in C3, the two polynomials define each a hypersurface, that
is, a 2-dimensional variety. The points satisfying the system are precisely those lying in the
intersection of the hypersurfaces, namely an algebraic curve, i.e., a variety of dimension 1. For
an illustration see Figure 4.2.

Now let us consider adding the polynomial x1y1+2 = 0 to the system above. The intersec-
tion of the hypersurfaces defined by the three polynomials in C3 is finite (i.e. 0-dimensional),
as illustrated on Figure 4.2. As expected, the system does not admit parametric solutions.

We give a second example that shows why it is essential that our reduction keeps the
parameters x1, . . . , xm unchanged when applying the linear transformation.

Example 4.2. Consider the system

x2y
2
1y

2
2 + x21 + 2x2 − 1 = 0

y1y2 − 3x21 + 2 = 0 .

in Z[x1, x2][y1, y2]. Notice that similarly to Example 4.1, the two polynomials define each a
hypersurface inC4, and the variety V they define inC4 is of dimension 2. However, in contrast
to the previous example, the system here does not admit a parametric solution inQ(x1, x2), as
the parameters x1 and x2 (when considered as variables) are not algebraically independent in
C[V ]. In particular, we have that 9x41x2−12x21x2+x

2
1+6x2−1 ∈ Z[x1, x2] belongs to I(V ).

4.3.1 Parametric dimension versus complex dimension

Given a subset of variables I ⊆ {x1, . . . , xn}, we denote by πI : Kn → K |I| the projec-
tion on the |I|-dimensional subspace defined by the system of equations {xi = 0, xi /∈ I}.
We say that a variety V ⊆ Kn is in normal position with respect to the set of variables I if
πI(V ) is dense in K |I|.

In this section we formally relate the dimension of a variety over C to its dimension
over Q(x). To this end, we require several concepts from algebraic geometry, which we
introduced in Section 2.3.7. Given V ⊆ Kn, we first rely on the characterisation of the
dimension of V as the largest integer d for which there exist d variables xi1 , . . . , xid such
that I(V ) ∩K[xi1 , . . . , xid ] = {0}, given in Theorem 2.11.

From now on, we fix polynomials f1, . . . , fk ∈ Z[x][y1, . . . , yn] for x = (x1, . . . , xm),
and write V ∗ ⊆ Q(x)

n
for the variety defined by the ideal I∗ := ⟨f1, . . . , fk⟩Q(x) ⊆

Q(x)[y1, . . . , yn]. We can consider the parameters x1, . . . , xm as variables, and write V ⊆
Cm+n for the variety defined by the ideal I := ⟨f1, . . . , fk⟩C ⊆ C[x1, . . . , xm, y1, . . . , yn].
Proposition 4.11. If V is a subvariety of Cm+n in normal position with respect to
{x1, . . . , xm, y1, . . . , yd}, then V ∗ is a subvariety of Q(x)

n
in normal position with respect

to {y1, . . . , yd}.
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Proof. V is a subvariety ofCm+n in normal positionwith respect to {x1, . . . , xm, y1, . . . , yd},
hence by Theorem 2.11, I ∩C[x1, . . . , xm, y1, . . . , yn] = {0}. SinceQ ⊂ C, we furthermore
have that

I ∩Q[x1, . . . , xm, y1, . . . , yd] = {0}. (4.8)

Notice that since {x1, . . . , xm} ⊂ Q(x),

Q(x)[x1, . . . , xm, y1, . . . , yd] = Q(x)[y1, . . . , yd] .

Similarly, since Q ⊂ Q(x), we can write

I∗ = ⟨f1, . . . , fk⟩Q(x) = Q(x)⟨f1, . . . , fk⟩Q.

Furthermore, since Q ⊂ C, the expression above rewrites as Q(x)⟨f1, . . . , fk⟩C = Q(x)I .

Altogether this allows us to write

I∗ ∩Q(x)[y1, . . . , yd] ⊂ Q(x)I ∩Q(x)[x1, . . . , xm, y1, . . . , yd]

= Q(x)(I ∩Q[x1, . . . , xm, y1, . . . , yd])

By (4.8), we get that I∗ ∩ Q(x)[y1, . . . , yd] = {0}. Now Theorem 2.11 implies that V ∗ is
a subvariety of Q(x)

n
in normal position with respect to the variables {y1, . . . , yd}, and

hence of dimension at leastm.

Given an (m+n)× (m+n)matrixA, we writeAV to denote the image of V ⊆ C(m+n)

by the linear transformation x 7→ Ax. We now reiterate the proof of Theorem 2.1 in [11],
which gives a condition on matrices A such that the variety AV is in normal position with
respect to the first m + d variables. The theorem relies on the fact that A is invertible if
and only if detA ̸= 0, and in this case AV is a variety of the same dimension. Under
the additional assumption of the variety over C being in normal position with respect to
the first m variables {x1, . . . , xm} before applying the linear transformation A, the claim
follows through an analogous proof.

The proof uses an alternative characterisation of dimension, namely via the dimension
of the tangent spaces to a variety; see Section 2.3.7. It relies, more specifically, on the fact
that invertible linear transformations preserve tangent spaces.

Theorem 4.12. Suppose V ⊆ C(m+n) is a variety of dimensionm+d in normal position with
respect to {x1, . . . , xm, y1, . . . , yd}. Let SV ⊆ C(m+n)2 be the set of matrices A ∈ Mn(C)
such that

— A is invertible,

— A as a linear transformation acts as the identity on the firstm coordinates {x1, . . . , xm},
— AV is a variety of dimension m + d in normal position with respect to

{x1, . . . , xm, y1, . . . , yd}.
SV contains a set of the form PV (A) · detA ̸= 0 where PV ∈ C[X1, . . . , X(m+n)2 ] is a multi-
linear polynomial of degree at mostm+ d.
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As in [11], we first show that the theorem holds for varieties defined by systems of
linear equations. We write πm+d for the projection from Cm+n to the (m+ d)-dimensional
subspace given by the system of equations xi = 0 for i ∈ {1, . . . ,m} and yj = 0 for
j ∈ {1, . . . , d}.

Lemma 4.13. Theorem 4.12 holds when V is an affine subspace.

Proof. Let {v1, . . . , vm+d} be a basis of V . Then{Av1, . . . , Avm+d} is a basis of AV , hence
{πm+d(Av1), . . . , πm+d(Avm+d)} generates πm+d(AV ).

Thus πm+d(AV ) = Cd if and only if πm+d(Av1), . . . , πm+d(Avm+d) are linearly inde-
pendent, that is, if

det(πm+d(Av1), . . . , πm+d(Avm+d)) ̸= 0.

We claim that this is a multilinear condition of degree m + d in the coefficients of A.
Indeed, note that the degree bound follows since the determinant of a matrix of dimension
(m+ d)× (m+ d) is a polynomial of degree at mostm+ d. To see that it is multilinear, it
suffices to note that

πm+d(Avi)j =
m+d∑
ℓ=1

Aj,ℓvi,ℓ

Hence if we multiply the jth row of A by λ, the entries of the jth row matrix πm+d(Avi)j
are also multiplied by λ. Since det is multilinear, the claim follows.

Proof of Theorem 4.12. By decomposing V in irreducible components if necessary, we may
assume that V is irreducible. Let x0 be a smooth point of V , and denote by T the tangent
space to V in x0. Since x0 is a smooth point, T has dimensionm+ d.

Let us apply Lemma 4.13 to T ; we will show that PV = PT . Indeed, let A be a ma-
trix in ST . Since A is an invertible linear transformation from Cm+n to Cm+n, AT is the
tangent space to AV in Ax0 and by the definition of ST , πm+d(AT ) = Cm+d. Recall that
AT ∼= (mAx0/m

2
Ax0

)∗. This, in particular, implies that x1, . . . , xm, y1, . . . , yd, when con-
sidered as functions in OAx0 , are a system of local parameters for AV at Ax0. (Indeed,
x1, . . . , xm, y1, . . . , yd ∈ mAx0 , and x1, . . . , xm, y1, . . . , yd span mAx0/m

2
Ax0

).

By the implicit function theorem (see [133, Chapter 2, Section 2.3]) there exists a system
of power series ϕ1, . . . , ϕn−d inm+ d variables x1, . . . , xm, y1, . . . , yd and ϵ > 0 such that

ϕj(x1, . . . , xm, y1, . . . , yd) converges for all xi, yj with |xi|, |yj| < ϵ

and
fi(x,y, ϕ1(x,y), . . . , ϕn−d(x,y)) = 0 for all i ∈ {1, . . . , k},

where x := (x1, . . . , xm) and y := (y1, . . . , yd). In other words, there exists η > 0 such
that any point (a1, . . . , am+n) ∈ AV with ai ≤ |η| for i ∈ {1, . . . ,m + n} is given by the
form am+d+i = ϕi(a1, . . . , am+d) for i ∈ {1, . . . , n − d}. It follows that (a1, . . . , am+n) 7→
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(a1, . . . , am+d) is a homeomorphism of the set {(a1, . . . , am+n) ∈ AV | |ai| < η} to a
domain of a (m+ d)-dimensional space.

Recall that a domain is a nonempty connected Euclidean-open set. That is, the implicit
function theorem asserts that πm+d(AV ) contains an Euclidean-open set. It is well-known
that for all ℓ ∈ N, all nonempty Euclidean-open subsets ofCℓ are Zariski-dense inCℓ, hence
πm+d(AV ) must be dense in Cd.

Proposition 4.11 in combination with Theorem 4.12 ensures we can reduce deciding
DIMQ(x) to deciding HNC, which we do in the next section.

4.3.2 Reduction to HNC

We are now ready to present our randomised polynomial-time reduction fromDIMQ(x)

to HNC. We follow the reduction presented in [11], using the results from Section 4.3.1 to
ensure its correctness in our setting. To this end, we fix an instance of DIMQ(x) with input
polynomials f1, . . . , fk ∈ Z[x][y1, . . . , yn]wherex := (x1, . . . , xm), and an integer and d <
n. The problem here is to determine whether dimV ∗ ≥ d, where V ∗ = V (f1, . . . , fk) ⊆
Q(x)

n
. We denote by V := V (f1, . . . , fk) ⊆ Cm+n the complex variety defined by the

polynomials when we consider the parameters x1, . . . , xm as variables. Recall that without
loss of generality, we assume the polynomials to be of degree at most 2, as explained in
Section 4.1.

Our reduction proceeds in two steps: In Step 1 we randomly choose an integer-valued
matrix A such that the coordinates x1, . . . , xm of AV are the same as those of V and
that with high probability AV is in normal position (i.e., πm+d(AV ) is dense in Cm+d)
if dimV ∗ ≥ d. The correctness of this step is ensured by Proposition 4.11. In Step 2 we ran-
domly choose positive integer values α1, . . . , αm+d and construct a system of polynomials

f1 = 0, . . . , fk = 0

x1 = α1, . . . , xm = αm

y1 = αm+1, . . . , yd = αm+d

which with high probability is satisfiable over C if dimV ∗ ≥ d.

In order to estimate the error probabilities in our reduction, we rely on the following
two theorems from [11], which we rephrase to fit our setting. The first theorem allows us
to estimate the probability of a randomly-chosen integer point belonging to the projection
πm+d(AV ).

Theorem 4.14 (Theorem 3.9 in [11]). Let V ⊆ Cm+n be a variety defined by a system of
degree-2 equations, and fix ℓ < n.

— If πm+d(V ) is dense in Cm+d, then the probability that α ∈ {1, 2, . . . , D}m+d is in
πm+d(V ) is at least 1− C/D, where C = 6(m+ d) · 24(n−d).

— If πm+d(V ) is not dense in Cm+d, then the probability that α ∈ {1, 2, . . . , D}m+d is in
πm+d(V ) is at most C/D.
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The second theorem concerns the probability of a randomly-chosen integer-valued ma-
trix belonging to the set SV defined in Theorem 2.11.

Theorem 4.15 (Theorem 3.10 in [11]). Let V ⊆ Cn be a variety of dimension d ≥ 1, the
probability that a matrix A with entries from {1, 2, . . . , D} vanishes on the polynomial PV

defined in Theorem 2.11 is at most 2n2/D.

Let us now prove the correctness and complexity of our reduction.

Theorem 4.16. DIMQ(x) ∈ AM assuming GRH.

Proof. Let D := 24 · 3(m + d) · 24(n−d). We reduce our fixed instance of DIMQ(x) to an
instance of HNC as discussed above, applying Koiran’s HNC algorithm [8] to decide the
problem.

Denote by A the event that Koiran’s HNC algorithm outputs “satisfiable”, and by Ac

its complement, i.e., the event that the algorithm outputs “unsatisfiable”. We recall here
that given a system of polynomial equations in Z[x1, . . . , xn] that is satisfiable in C, the
HNC algorithm outputs “satisfiable” with probability 1, whereas given a system that is not
satisfiable over C, the probability of outputting “satisfiable” is at most 1/2. We note that by
standard amplification techniques, the error bound for false positives can be improved to
1/2ℓ for a fixed ℓ ∈ N.

LetB be the event that forα1, . . . , αm+d chosen uniformly at random from {1, 2, . . . , D},
the system defining AV with the added polynomials xi = αi for i ∈ {1, . . . ,m} and
yj = αm+j for j ∈ {1, . . . , d} is satisfiable in Cn−d. Write Bc for its complement. Finally,
let C be the event that for a matrix A with entries from {1, 2, . . . , D} chosen uniformly at
random, the variety AV is in normal position with respect to {x1, . . . , xd}. Let Cc be the
complement of C.

If our fixed instance of DIMQ(x) is negative, i.e., dimV ∗ < d, then dimV < m+ d,
and for all linear transformations A, dimAV < m + d. Hence Pr (C) = 0 for all A, and
Pr (B) = Pr (B | Cc). That is, we have that πm+d(AV ) is not dense in Cm+d. However, it
may be that we choose an integer point α ∈ {1, 2, . . . , D}m+d such that α ∈ πm+d(AV ).
By Theorem 4.14 the probability Pr (B) that an integer point of height at most D is in
πm+d(AV ) is at most C

D
, whereC = 6(m+d)·24(n−d) (using the assumption the the polyno-

mials defining V are of degree at most 2). For the choice ofD we have made, Pr (B) ≤ 1/8.

Now for ℓ = 3 repetitions, the probability that theHNC outputs “yes” if the input system
is unsatisfiable over C is at most 1/8. That is, Pr (Ac | Bc) ≥ 1 − 1/8. The probability of
the algorithm applied to our system outputting “no” is then

Pr (Ac) = Pr (B) · Pr (Ac | B) + Pr (Bc) · Pr (Ac | Bc)

≥ Pr (Bc) · Pr (Ac | Bc)

≥
(
1− 1

8

)
·
(
1− 1

8

)
=

49

64
≥ 2

3
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If our fixed instance of DIMQ(x) is positive, i.e., dimV ∗ ≥ d, then dimV ≥ m+ d and
V is in normal position with respect to the variables {x1, . . . , xm, y1, . . . , yd} as asserted by
Proposition 4.11. We rely on Theorem 4.12 in order to compute the probability of πm+d(AV )

being dense in Cm+d where A is a randomly chosen linear transformation. Following the
theorem, πm+d(AV )may not be dense inCm+d if the polynomial PV defined in the theorem
vanishes on A, i.e., PV (A) = 0. By Theorem 4.15, the probability that the polynomial PV

vanishes on a randomly chosen integer-valued matrix with entries from {1, 2, . . . , D} is at
most 2(m+n)2

D
. That is, Pr (Cc) ≤ 2(m+n)2

D
, which for our choice of D is at most 1/8.

Now if we chooseA such that πm+d(AV ) is dense inCm+d, we may still choose an inte-
ger pointα ∈ {1, 2, . . . , D}m+d such thatα /∈ πm+d(AV ). By Theorem 4.14 the probability
that an integer point of height at mostD is in πm+d(AV ) if πm+d(AV ) is dense in Cm+d is
at least 1 − C

D
, where C = 6(m + d) · 24(n−d) (using the assumption the the polynomials

defining V are of degree at most 2). For our choice of D, the latter is at least 1− 1/8.

The probability of the system defining AV being satisfiable over C for a random choice
of A and α1, . . . , αm+d is thus

Pr (B) = Pr (C) · Pr (B | C) + Pr (Cc) · Pr (B | Cc)

≥ Pr (C) · Pr (B | C)

≥
(
1− 1

8

)
·
(
1− 1

8

)
=

49

64
≥ 2

3

Since theHNC algorithm admits perfect correctness Pr (Ac ∩ B) = 1. The final probability
Pr (Ac) of the algorithm outputting “yes” is thus greater or equal to Pr (B) ≥ 2/3.

We have thus established a BPP reduction from DIMQ(x) to HNC. Since AM is closed
under probabilistic reductions, this proves the theorem.

4.4 Discussion and perspectives

In this chapter we studied a parametric version of the Hilbert’s Nullstellensatz problem.
We began by showing that the problem of determining whether a system of polynomial
equations with polynomial coefficients admits a solution belongs to the complexity class
AM assuming GRH. We exhibited two proofs of the result, both reducing the problem to
HNC, whichwas shown to belong toAM assuming GRH in [8]. We first approachedHNQ(x)

using number-theoretic techniques generalising the approach presented in [8]. We then
discussed the relation of HNQ(x) to the dimension problem over C, and showed that with
a small modification, the AM protocol for DIMC from [11] applies to HNQ(x) and DIMQ(x)

as well.

The number-theoretic approach relies on an effective parametric variant of Hilbert’s
Nullstellensatz [99] for the negative instances and the fact that we are considering separable
algebraic extensions for the positive instances. The geometric approach taken from [11],
on the other hand, relies on the fact that the field containsR as a subfield. More specifically,
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the arguments are based on results on approximating the proportion of points with integer
coordinates that lie in a real variety by the Lebesgue measure of the variety. This, in turn,
requires a bound on the number of connected components of the variety. The arguments
are used both for positive and negative instances. Interestingly enough, to the best of our
understanding, the paper [99] on an effective parametric variant of Hilbert’s Nullstellensatz
does not seem to use techniques related to Koiran’s approach via connected components,
but rather works with the height of numbers, the Mahler measure, and resultants.

Both approaches to HNQ(x) we discussed boil down to reducing the problems to HNC,
but rely on conceptually different techniques. It is natural to wonder whether either of them
could be generalised to other variants of the HN problem. Could they be extended, say, to
other fields of characteristic zero (not necessarily algebraically closed)? Or, more generally,
separable fields? The field Q(x) can also be seen as a valued field where the valuation of a
formal series a(x) =

∑
e∈Qm aex

e ∈ Q(x) is defined as the lowest exponent e such that
the support ae is non-zero. While we do not use the properties of this valuation directly, it
is tempting to wonder whether one could use any of the insights onHNQ(x) to handle other
valued fields. A notable example of those is the field of p-adic numbers Qp for a prime p,
or better yet Cp, which is the algebraically closed and complete extension of Qp.

Open problems. As discussed above, we leave a more comprehensive comparison of the
two approaches to HNQ(x) and their possible extensions as a first open question. One such
extension could be to study the problem of determining, given polynomials f1, . . . , fk with
coefficients in Z[x], whether they admit a solution in an algebraically closed subfield of
Q(x). As a possible approach, let us mention the paper [154], which gives a characterising
theorem that, if made effective, may provide another algebraic technique to tackle HNQ(x),
and more importantly, its variants over other fields of characteristic zero. Using a combina-
tion of the primitive element theorem and the asymptotic version of Chebotarev’s density
theorem, the authors show that a finite set S in a characteristic zero integral domain can
be mapped to Z/pZ for infinitely many primes p, preserving all algebraic incidences in S.
Could applying their reasoning circumvent the reduction to HNC and allow for examining
satisfiability of a system f1, . . . , fk ∈ Z[x][y1, . . . , yn] in a finite field Fp directly?

In [11, Section 5] Koiran provided an alternative approach to proving that DIMC is in
AM in the bit model assuming GRH, namely by showing that DIMC is in NPC for the
Blum-Shub-Smale model, and using an independent result showing that all problems in
NPC are in AM under GRH. (The proof follows as HNC is the canonical NPC problem as
discussed in Section 1.2, and its boolean counterpart is inAM under GRH). He also showed
through the same reasoning that the problem which for a fixed d ∈ N, given a constructible
set, asks to determine whether the set contains an irreducible component of codimension
at least d is inAM under GRH [93]. Could one build on the work we did in this chapter and
show the same result via an algebraic reasoning through the standard bit model?

Another interesting observation that we reprove in Section 4.2.3 and that is also used
in [11, Section 5] is that if a variety V ⊆ Cn defined by a system of equations f1, . . . , fk ∈
Z[x1, . . . , xn] has dimension at least d over C and the d algebraically independent coordi-
nates in C[V ] are x1, . . . , xd, then the values which we can choose for x1, . . . , xd such that
the specialised system remains satisfiable over Cn−d belong to an open set. In other words,
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the set of values for x1, . . . , xd inCd keeping the system satisfiable overCn−d is dense inCd.
The positive instance of the problem could thus be read as “for almost all x1, . . . , xd ∈ Cd,
there exist xd+1, . . . , xn ∈ Cn−d such that f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0
hold.” It seems that deciding the HNQ(x) or the DIMC problem respectively is not far from
deciding first-order formulas with one quantifier alternation over C. The latter problem
is known to be decidable in PSPACE for a fixed number of quantifier alternations. Could
one use algebraic and number-theoretic techniques to improve the complexity of deciding
formulas with one quantifier alternation to AM or even just the polynomial hierarchy?
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The Membership Problem for
hypergeometric sequences

In this chapter we study the problem of deciding whether zero appears in a polynomi-
ally recursive sequence arising as a sum of two hypergeometric sequences. As shown in
Section 1.3, the problem at hand reduces to the problem of determining, given a hypergeo-
metric sequence ⟨un⟩∞n=0 and a target t ∈ Q, whether t is a member of ⟨un⟩∞n=0, which we
call the Membership Problem for hypergeometric sequences (MP).

The results presented in this chapter are based on a joint work with Amaury Pouly,
Mahsa Shirmohammadi, and James Worrell [155].

Organisation of the chapter. We begin this chapter by recalling notation and listing
some simplifications that wemay apply without loss of generality when studying theMem-
bership Problem in Section 5.1. In Section 5.2 we discuss the natural idea of deciding MP
by studying the asymptotic behaviour of the sequence, identifying the non-trivial cases of
MP to be those where the shift quotient r(x) converges to ±1 as x tends to infinity. In
Section 5.2.1, we discuss how solving this class of instances of MP relates to the Gamma
function, and in Section 5.2.2 give a decidability proof for the Membership Problem for
hypergeometric sequences with rational parameters conditioned to the assumption of the
Rohrlich-Lang Conjecture.

We then introduce our prime divisibility approach, which allows us to establish un-
conditional decidability for the Membership Problem for hypergeometric sequences with
higher-degree algebraic parameters. In Section 5.3.1 we give an overview of the approach,
followed by the technical lemmas and proofs in Sections 5.3.2 to 5.3.5. We conclude by
discussing extensions of the approach to MP for hypergeometric sequences with higher-
degree algebraic parameters in Section 5.4.

Relevant preliminaries. The preliminary sections useful for reading this chapter are
Sections 2.3.5, 2.3.6 and 2.4.1.
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5.1 Notation and initial simplifications

Recall that we say a sequence ⟨un⟩∞n=0 of rational numbers is hypergeometric if it satisfies
a recurrence of the form

p(n)un − q(n)un−1 = 0 , (5.1)

where p(x), q(x) ∈ Q[x] are polynomials. We call the roots of the polynomials p(x) and
q(x) the parameters of the sequence. If both p(x) and q(x) split completely over Q, we say
that such an induced sequence is a hypergeometric sequence with rational parameters.

When we reformulate recurrence (5.1) as

un = r(n)un−1 , (5.2)

we call r(x) = q(x)
p(x)

∈ Q(x) the shift quotient of ⟨un⟩∞n=0.

We say that t ∈ Q is a member of a sequence ⟨un⟩∞n=0 if there exists n ∈ N such that
un = t; we further refer to n as an index of t in the sequence. The Membership Problem
(MP) for hypergeometric sequences is the problem of deciding, given a hypergeometric
sequence ⟨un⟩∞n=0 (specified by a a recurrence of the form (2.3) with a given initial value u0)
and a target t ∈ Q, whether t is a member of ⟨un⟩∞n=0.

Assumption on p(x). We recall the assumption that p(x) has no non-negative integer
zeroes. This assumption on p(x) implies that the recurrence relation (5.1) uniquely defines
an infinite sequence of rational numbers once the initial value u0 ∈ Q is specified.

Assumption on u0. We will assume that in instances of MP, the initial term of the se-
quence u0 is equal to one. This assumption is without loss of generality. Indeed, given
an instance of the Membership Problem comprising a sequence ⟨un⟩∞n=0 defined by r(x)
and u0, and a target t, deciding whether t is a member of ⟨un⟩∞n=0 is equivalent to decid-
ing whether the target t′ = t

u0
is a member of the sequence ⟨u′n⟩∞n=0 defined by the shift

quotient r(x) and initial value u′0 = 1.

Assumption on q(x) and t. Wewill assume that in instances ofMP, the numerator q(x)
of the shift quotient has no non-negative integer zeros and that the target t is non-zero. The
assumption on q(x) is without loss of generality as otherwise, the sequence ⟨un⟩∞n=0 will
be ultimately always zero. Indeed, if q(x) has non-negative integer zeros, un = 0 for all
n ≥ mwherem is the smallest non-negative integer root of q(x). Consequently, the search
domain for indices of t in MP will be limited to the finite set {u0, . . . , um}. We note that
determining whether a univariate polynomial has a non-negative integer zero is clearly
decidable, as the magnitude of integer zeros of univariate polynomials are upper-bounded
by the height of the polynomial. This assumption on q(x) will exclude the membership of
zero in the sequence ⟨un⟩∞n=0 , and will allow us to further assume that t ̸= 0.
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Figure 5.1 – Asymptotic behaviour of the sequence |un| for three different cases: when r(x)
converges to a limit ℓ with |ℓ| > 1 or diverges to ±∞ in blue, when r(x) converges to a
limit ℓ with |ℓ| < 1 in teal, and when r(x) converges to ±1 as x tends to infinity in violet.

5.2 Asymptotic behaviour of hypergeometric sequences

Fundamentally, determining whether a target t appears in a sequence ⟨un⟩∞n=0 requires
us to understand how the sequence behaves asn goes to infinity. In this sectionwe study the
asymptotic behaviour of hypergeometric sequences, and explore whether the Membership
Problem could be solved using analytic techniques. We initially consider the general case
of the Membership Problem for hypergeometric sequences with complex parameters.

Recall that by Equation (5.2) we can define the seqence ⟨un⟩∞n=0 via the recurrence un =
r(n)un−1 =

∏n
k=1 r(k). and notice that the asymptotics of the sequence really depend on

the asymptotic behaviour of r(x). Furthermore, r(x) is ultimately monotonic as x tends to
infinity, and the same holds for the sequence ⟨un⟩∞n=0.

The possible behaviours of un as n→ ∞ are illustrated in Figure 5.1. Before analysing
the three cases in the figure, let us recall that an infinite product

∏∞
k=1 r(k) is said to con-

verge if the sequence of its partial products converges to a nonzero limit. In the context of
hypergeometric sequences, we thus say that the sequence ⟨un⟩∞n=0 converges if and only if∏∞

k=1 r(k) converges, and we use the two terms interchangeably.

As x → ∞ the shift quotient r(x) ∈ Q(x) either converges to a limit in Q or diverges
to ±∞. In case r(x) diverges to ±∞ or converges to some ℓ ∈ Q with |ℓ| > 1, then the
sequence ⟨un⟩∞n=0 diverges to ±∞ as well (as illustrated in blue in Figure 5.1). Thus there
exists n0 ∈ N such that

|un| =

∣∣∣∣∣
n∏

k=1

r(k)

∣∣∣∣∣ > |t| for all n ≥ n0.

In this case, it is sufficient to try all values of n up to this bound to solve the problem.
Furthermore, it is not difficult to decide whether this situation occurs and to compute a
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suitable n0.

The second case on Figure 5.1 (illustrated in green) is when r(x) = q(x)
p(x)

converges
to some ℓ with |ℓ| < 1. In this case determining whether there exists n ∈ N such that∏n

k=1
q(n)
p(n)

= t is equivalent to determining whether for some n ∈ N, we have
∏n

k=1
p(n)
q(n)

=

t−1. We can thus consider an instance ofMP comprising the inverse sequence ⟨u′n⟩∞n=0 given
by the shift quotient r′(x) = p(x)

q(x)
converging to the limit ℓ′ := ℓ−1 and target t′ := t−1 and

apply the argument given above. Henceforth we will refer to the instances of MP defined
by shift quotients converging to a limit ℓ ̸= ±1 or diverging to±∞ as the trivial instances.

The remaining case is when r(x) converges to ℓwith |ℓ| = 1 as x tends to infinity, which
is the only case when

∏∞
k=1 r(k) may converge as well. Assume that the infinite product

converges, and denote by ω its limit. Suppose furthermore that the product is eventually
strictly increasing as on Figure 5.1. In this case we can compute n0 such that un < ω for
all n > n0. If ω ≤ t then we have un ̸= t for all n > n0, and it suffices to check whether
t ∈ {u0, . . . , un0} to decide the problem. On the other hand, if ω > t, then we can find
n1 ≥ n0 such that un > t for all n > n1. Again, this leaves only a finite number of cases to
check. The case when

∏∞
k=1 r(k) is eventually strictly decreasing follows analogously.

To decide the final (non-trivial) case of MP via the asymptotic approach, we thus need
to understand how to compute the limit of

∏∞
k=1 r(k). We will now see how the latter

relates to a problem involving Gamma functions.

5.2.1 ReducingMP to a problem on Gamma functions

We have noted that the limit of the infinite product
∏∞

k=1 r(k)may converge if and only
if r(x) converges to ±1 as x tends to infinity. Observe that if r(x) converges to ±1, the
degrees of its numerator and denominator must be equal. That is, we can write

r(x) =
(x+ α1) · · · (x+ αd)

(x+ β1) · · · (x+ βd)
(5.3)

Note that α1, . . . , αd and β1, . . . , βd are complex numbers, none of which are negative in-
tegers. The latter is ensured by our initial assumptions on the roots of the polynomials
p(x), q(x) ∈ Q[x] defining our hypergeometric sequences as discussed in Section 5.1.

Now in order to understand the limit of the infinite product
∏∞

k=1 r(k), let us take a
closer look at the infinite product of a linear factor of the expression, say

∏∞
k=1(k + α) for

some α ∈ {α1, . . . , αd, β1, . . . , βd}. Notice that if α ∈ N, the product

n∏
k=1

(k + α) = (n+ α)(n− 1 + α) · · · (1 + α)

corresponds to the expression (α+n)!
α!

. Following this intuition, we relate the asymptotic
behaviour of

∏∞
k=1 r(k) to the Gamma function Γ, which is a generalisation of the factorial

function to all complex numbers but non-positive integers. In particular, for every positive
integer n, we have Γ(n) = (n− 1)!.
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Let us recall that the Gamma function was first derived by David Bernoulli, who defined
it as the integral

Γ(x) =

∫ ∞

0

tx−1e−t dt.

Euler later defined the function in terms of an infinite product

Γ(x) =
1

x

∞∏
n=1

n

n+ x

(
1 +

1

n

)x

. (5.4)

There is also a third definition of the Gamma function due to Weierstrass, and the three
definitions are known to be equivalent.

Furthermore, for all x ∈ C \ Z≤0, the function satisfies the following three relations.

Γ(x+ 1)= xΓ(x) (Translation),

Γ(x)Γ(1− x)= π
sin(πx)

(Reflection),∏n−1
k=0 Γ

(
x+ k

n

)
= (2π)

n−1
2 n

1
2
−nxΓ(nx) (Multiplication)

(5.5)

For more details on the Gamma function and its relation to hypergeometric sequences,
see [135, Section 5.2].

Recall we are interested in the limit of the infinite product
∏∞

k=1 r(k). As one might
expect by examining the definitions of the function we have listed above, Euler’s infinite-
product characterisation (5.4) allows us to relate the limit of

∏∞
k=1 r(k) to an expression

involving Gamma functions. Indeed, it is standard that certain infinite products of rational
functions converge to quotients of values of the Gamma function. For a more detailed
discussion, see, e.g., [156]. The result of the cited paper which is of particular interest to us
is Theorem 1.1, which we restate below.

Proposition 5.1. Let d ≤ 1 and α1, . . . , αd and β1, . . . , βd be nonzero complex numbers,
none of which are negative integers. If α1 + . . .+ αd = β1 + . . .+ βd then

∞∏
k=1

(k + α1) · · · (k + αd)

(k + β1) · · · (k + βd)
=
β1 · · · βd
α1 · · ·αd

Γ(β1) · · ·Γ(βd)
Γ(α1) · · ·Γ(αd)

, (5.6)

otherwise the infinite product diverges.

Proof. Use Euler’s definition of the Γ function (5.4) to write

Γ(β1) · · ·Γ(βd)
Γ(α1) · · ·Γ(αd)

=
α1 · · ·αd

β1 · · · βd

∞∏
k=1

[∏d
i=1

k
k+βi∏d

i=1
k

k+αi

(
1 +

1

k

)∑d
i=1 βi−

∑d
i=1 αi

]

=
α1 · · ·αd

β1 · · · βd

∞∏
k=1

(k + α1) · · · (k + αd)

(k + β1) · · · (k + βd)

∞∏
k=1

(
1 +

1

k

)∑d
i=1 βi−

∑d
i=1 αi
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We deduce that the infinite product
∏∞

k=1
(k+α1)···(k+αd)
(k+β1)···(k+βd)

is equal to

β1 · · · βd
α1 · · ·αd

Γ(β1) · · ·Γ(βd)
Γ(α1) · · ·Γ(αd)

∞∏
n=1

(
1 +

1

n

)∑d
i=1 αi−

∑d
i=1 βi

.

Since β1···βd

α1···αd

Γ(β1)···Γ(βd)
Γ(α1)···Γ(αd)

is constant, the infinite product we are studying will converge

if and only if
∏∞

n=1

(
1 + 1

n

)∑d
i=1 αi−

∑d
i=1 βi converges. Observing that the latter converges

to 1 if
∑

i=1 αi =
∑

i=1 βi, and diverges otherwise, proves the proposition.

The result we just proved gives us a characterisation of the limit of the sequence ⟨un⟩∞n=0,
which is exactly what we required in order to show decidability of the non-trivial instances
of the Membership Problem. Indeed, let us look at an example of the decision procedure in
this case.

Example 5.1. Consider the sequence ⟨wn⟩∞n=0 defined by the shift quotient

s(x) :=
(x+ 9

2
)(x+ 7

2
)(x+ 5

2
)

(x+ 11
2
)(x+ 4)(x+ 1)

.

We study an instance of the Membership Problem for the sequence ⟨wn⟩∞n=0 and target t =
13
6
.

The rational function s(x) converges to 1 from above as x → ∞. This implies that the
sequence ⟨wn⟩∞n=0 is monotonically increasing to its limit value, that is

∞∏
k=1

(k + 9
2
)(k + 7

2
)(k + 5

2
)

(k + 11
2
)(k + 4)(k + 1)

=
11
2
· 4 · 1

9
2
· 7
2
· 5
2

Γ(11
2
)Γ(4)Γ(1)

Γ(9
2
)Γ(7

2
)Γ(5

2
)
=

29 · 11
3 · 52 · 7 · π

.

Here, we compute the limit value above using the known relations Γ(n) = (n − 1)! and
Γ(n

2
) =

√
π (n−2)!!

2
n−1
2

for n ∈ N. We recall that the double factorial n!! of a natural number n is
defined to be the product of all the positive integers up to n that have the same parity (odd or
even) as n.

Using the fact ⟨wn⟩∞n=0 is strictly increasing, it suffices to observe that w6 >
13
6
. By verify-

ing that none of w0, . . . , w5 equals 13
6
, we conclude that 13

6
is not a member of the sequence.

Let us note that such an argument is possible because wn does not converge to 13
6
.

More generally, we are able to show that deciding instances of the Membership Problem
with converging shift quotients reduces to deciding a relation among values of the Gamma
function.

Proposition 5.2. The Membership Problem for hypergeometric sequences with real parame-
ters reduces to deciding, given d ≥ 1 and α1, . . . , αd, β1, . . . , βd ∈ R \ Z<0, whether

Γ(β1) · · ·Γ(βd) = Γ(α1) · · ·Γ(αd). (5.7)
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Proof sketch. As discussed in the beginning of Section 5.2, the only case of the Membership
Problem that is not trivially decidable is when the sequence ⟨un⟩∞n=0 converges. This is
when the shift quotient r(x) ∈ Q(x) of the sequence ⟨un⟩∞n=0 converges to ±1 as x → ∞,
and by Proposition 5.1, if and only if α1+ . . .+αd = β1+ . . .+βd. We assume without loss
of generality that for the instances of the problem we reason about below, the sequence is
converging. We treat the case that the product

n∏
k=1

(k + α1) · · · (k + αd)

(k + β1) · · · (k + βd)
, (5.8)

is eventually strictly increasing. The case that it is eventually strictly decreasing follows
mutatis mutandis.

Write ω := C · Γ(β1)···Γ(βd)
Γ(α1)···Γ(αd)

for the limit (5.6) of the finite product (5.8) as n tends to ∞,
where C = β1···βd

α1···αd
. By the assumption that (5.8) is eventually strictly increasing, we can

compute n0 such that un < ω for all n > n0. If ω ≤ t then we have un ̸= t for all n > n0,
and it remains to check by exhaustive search whether t ∈ {u0, . . . , un0}. On the other
hand, if ω > t, then we can find n1 ≥ n0 such that un > t for all n > n1. Again, this leaves
only a finite number of cases to check.

We thus need only to decide whether or not ω ≤ t. First, let us note that we can
decide whether ω < t and whether ω > t by computing ω to sufficient precision. Thus the
Membership Problem for real parameters reduces to deciding whether ω = t. Now note
that Γ

(
t
C
+ 1
)
= t

C
Γ
(

t
C

)
, hence

ω = t ⇔
Γ(β1) · · ·Γ(βd)Γ

(
t
C

)
Γ(α1) · · ·Γ(αd)Γ

(
t
C
+ 1
) = 1.

The equation above is an instance of (5.7) with two extra parameters, αd+1 := t
C
+ 1 and

βd+1 :=
t
C
. This completes the reduction.

Let us remark that the reduction above applies to the Membership Problem for hyper-
geometric sequences with real parameters, as we use the total order on R in the decision
procedure.

Proposition 5.2 implies that MP can be solved simply by deciding whether (5.7) holds.
Unfortunately, the latter appears to be a difficult problem. In particular, just like the limit
of the shift quotient in Example 5.1, the values of the Gamma function (even) at rational
points may be transcendental. Unlike the special cases of values of the Gamma function
we chose in Example 5.1, in general, no simple expressions are known for the values of
the Gamma function at rational points. The following example from [156] illustrates a case
where a quotient is an integer but in which none of the values of Γ involved are known to
be algebraic

Γ( 1
14
)Γ( 9

14
)Γ(11

14
)

Γ( 3
14
)Γ( 5

14
)Γ(13

14
)
= 2.

– 101 –



Chapter 5

A standard technique for deciding equality of algebraic expressions is via numerical ap-
proximation. That is, we may try to compute approximations to the left and right hand side
of (5.7) and decide equality by comparing the approximate values. If the approximations
differ at a given digit, we know that the expressions are not equal. However, we are not
aware of any lower bound on the difference between the two terms of (5.7). This means
that we do not have a bound on the precision that suffices to decide that if the two approx-
imates are equal up until a given digit, the same must hold for the expressions involving
the Gammas, and our algorithm can terminate.

To summarise, we have just shown that the problem of deciding (5.7), and thus the
Membership Problem, is at least semi-decidable, and known techniques do not seem to
allow us to show it is decidable. However, algebraic relations among values of the Gamma
function are still an active area of research in number theory, and we are able to use the
intuitions there to obtain conditional decidability.

5.2.2 A conditional decidability result

In this section we highlight the link between the Membership Problem for hyperge-
ometric sequences and the Rohrlich-Lang conjecture, which concerns algebraic relations
among values of the Gamma function at rational points.

The question of giving a complete list of allmultiplicative relations among the values of
the Gamma function at rational points was first considered by Rohrlich, who conjectured
the following.

Conjecture 5.3 (Rohrlich). Any multiplicative relation of the form

πb/2
∏
a∈Q

Γ(a)ma ∈ Q

with b andma in Z is a consequence of the standard relations (5.5).

The conjecture was formalised by Lang in terms of “universal distributions” on Q \
Z [157], and generalised to what is now known as the Rohrlich-Lang conjecture for polyno-
mial relations in Gamma values. Intuitively speaking, the conjecture predicts that all poly-
nomial relations between Gamma values over Q come from the functional equations (5.5)
satisfied by the Gamma function. The closest result to our problem is a theorem by Koblitz
and Ogus [158] giving a sufficient condition under which a quotient of products of Gamma
values over Q is algebraic: they show that if such a quotient is an algebraic number, then
it can be evaluated by using only the reflection and multiplication formulae. The Rohrlich-
Lang conjecture remains wide open and is part of the larger work on the transcendence of
periods [159]. For more details on these conjectures, see [160, Section 24.6].

Note that the Rohrlich-Lang conjecture is only concerned with rational parameters and,
as far as we are aware, there is no analog of this conjecture for algebraic parameters. We
now observe that if the Rohrlich-Lang conjecture is true, then the Membership Problem
becomes decidable for rational parameters.
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Theorem 5.4. The Membership Problem for hypergeometric sequences with rational param-
eters is decidable if the Rohrlich-Lang conjecture is true.

Proof sketch. By Proposition 5.2 the Membership Problem reduces to the question of decid-
ing equations of the form (5.7), in which the parametersαi and βi are rational. Assuming the
Rohrlich-Lang conjecture, the latter problem is recursively enumerable: if equality holds,
then the equation has a finite derivation using the standard relations (5.5). On the other
hand, the problem is also straightforwardly co-recursively enumerable: if Equation (5.7)
does not hold, then by computing the left and right-hand sides to sufficient precision we
will eventually conclude that the two terms are not equal.

As discussed in Section 1.3, MP is not the only zero problem for recursive sequences
the decidability of which can be related to results from transcendence theory. Furthermore,
while studying Threshold Problems goes beyond the scope of this thesis, let us note that
the Threshold Problem for hypergeometric sequences with rational parameters can also
be decided subject to the Rohrlich-Lang conjecture. For more details on this, see [155,
Proposition 3 and Theorem 5] or the preprint [161, Section 3]. What is more, the Threshold
Problem and deciding the equality (5.7) are interreducible. This suggests that the Threshold
Problem is strictly more difficult than the Membership Problem. In the rest of this chapter,
we present our unconditional result on the decidability of the Membership Problem. The
techniques we use do not allow us to extend the unconditional decidability to the Threshold
Problem, again showing that, in general, threshold problems are more difficult to tackle.

5.3 Unconditional decidability

In the previous section we showed that approaching the Membership Problem for hy-
pergeometric sequences with rational parameters analytically does not seem to yield an
algorithm for deciding the problem, unless we assume the Rohrlich-Lang conjecture. In
this section we present an alternative approach to the problem, notably by studying the
prime divisors of the sequence ⟨un⟩∞n=0. As announced in the Introduction, the approach
allows us to show that the Membership Problem for hypergeometric sequences with ratio-
nal parameters is decidable (unconditionally).

To this aim we will use p-adic valuations, which we introduced in Section 2.3.5. We will
not require the full generality ofQp, but will instead work in a subringZ(p) ofQp, which we
present briefly here. We write Z(p) to denote the ring {x ∈ Q : vp(x) ≥ 0}. Alternatively,
we have Z(p) = {a

b
: a, b ∈ Z, p ∤ b}. This is a local ring, whose unique maximal ideal

is the principal ideal pZ(p). The quotient Z(p)/pZ(p) is isomorphic to the finite field Fp.
Specifically, we consider the quotient map remp : Z(p) → Fp, given by

remp

(a
b

)
:= ab−1 mod p .

Henceforth, when we say that a
b
∈ Z(p) has p as a prime divisor we refer to divisibility

in Z(p).
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5.3.1 Overview of the approach

We begin by giving a high-level overview of our unconditional decidability result. As
discussed in Section 5.2, to prove decidability of MP it remains to handle the non-trivial
instances, that is, the instances in which the shift quotient r(x) ∈ Q(x) converges to ±1
as x → ∞. In such instances, r(x) is necessarily the quotient of two polynomials of equal
degree. Throughout this section, we fix such an instance of MP, consisting of a rational
value t and a hypergeometric sequence ⟨un⟩∞n=0 with rational parameters.

We will show that we can compute a boundN such that all indices of t in ⟨un⟩∞n=0 are at
most N . This allows us to reduce deciding MP to a finite search problem in {u1, . . . , uN}.
Our strategy is to find N such that for all n > N there exists a prime p that is a prime
divisor of un but not of t. To explain this idea in more detail, rewrite the shift quotient r(x)
as

(x− α1) · · · (x− αd)

(x− β1) · · · (x− βd)
,

where the αi and the βi are inQ\Z≥0. We denote byA the multiset {α1, . . . , αd} consisting
of all the (possibly repeated) roots of the numerator and by B the multiset {β1, . . . , βd} of
the roots of the denominator. Denote by Supp(C) the underlying set of a multiset C . For
each element x ∈ Supp(C) we write mC(x) for its multiplicity in C . We write A ⊎ B for
the multiset with underlying set Supp(A) ∪ Supp(B) where the multiplicity of each of its
elements x ismA(x) +mB(x).

Given a prime p, we have that vp(un) = vp

(∏n
k=1 r(k)

)
for all n ∈ N. In particular, if

vp

( n∏
k=1

r(k)
)
̸= 0 ,

then p appears in the factorisation of either the numerator or the denominator of the re-
duced form of the product

∏n
k=1 r(k) when considered as a fraction in Q. If furthermore

vp(t) = 0, then p does not appear in the factorisation of t, and is thus a witness that un ̸= t.
Notice we can rewrite the expression vp

(∏n
k=1 r(k)

)
as

Sp(n) :=
n∑

k=1

(∑
α∈A

vp(k − α)−
∑
β∈B

vp(k − β)

)
. (5.9)

We study the behaviour of the sum Sp(n) for well-chosen primes p and increasing n and
show that there exists a bound N ∈ N such that for all n > N , we can find a prime p
witnessing that un ̸= t.

The preorder ⪯r. We begin our construction by defining a preorder on the parameters
of r. Given an integer prime p, we first define a preorder ⪯p on Z(p) by writing

a

b
⪯p

a′

b′
if and only if remp(

a

b
) ≤ remp(

a′

b′
) , (5.10)
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Figure 5.2 – Consider the sequence ⟨wn⟩∞n=0 given in Example 5.2. Observe that β1 ⪯p

α1 ⪯p α2 ⪯p α3 ⪯p β2 ⪯p β3 for all primes p ∈ {17, 23, 29}. The two families
of intervals (β1, α1) and (α2, β3) are s-unbalanced, where only the latter is s-expanding.
In particular, the distance between residues of α2 and β3 modulo 23 is greater than their
respective distance modulo 17. The same holds for their distance modulo 29 compared to
their distance modulo 23. The s-expanding s-unbalanced intervals for 17, 23 and 29 are
contiguous, which in turn ensures that for all n ∈ {5, . . . , 27} either 17 or 23 or 29 divides
wn. See Example 5.2 for a more detailed discussion.

where ≤ is the usual order on {0, . . . , p− 1}.

Denote by b the least common denominator of all fractions in A⊎B. For every prime p
in the arithmetic progression bN + 1, all elements of A ⊎ B are in Z(p). Notice that this
follows from the characterisation of Z(p) as the set of fractions {a

b
: a, b ∈ Z, p ∤ b}, which

we gave in the beginning of Section 5.3. In Proposition 5.6 we show that for all sufficiently
large primes p ∈ bN + 1 the orders ⪯p restricted to A ⊎ B are identical. We denote this
common preorder by ⪯r, where r is the shift quotient of our fixed sequence.

Unbalanced intervals. Given a prime p, let a
b
∈ Z(p) be such that gcd(a, b) = 1. Note

that vp(b) = 0, and for all k ∈ {1, . . . , p− 1} such that 0 < |kb− a| < p2 we have

vp

(
k − a

b

)
=

{
1 if remp(

a
b
) = remp(k),

0 otherwise.
(5.11)

Indeed, the condition on |kb− a| ensures that p can only appear in the factorisations of the
numerator and denominator of the reduced form of the fraction k − a

b
with exponents 0

or 1.

Recall that A ⊎ B ⊆ Q \ Z≥0, and assume that all its elements are given in a reduced
form (i.e., gcd(a, b) = 1 for all a

b
∈ A⊎B). Let p be a prime such that all elements of A⊎B

are in Z(p). Let n ∈ {1, . . . , p−1} be such that for all k ∈ {1, . . . , n}, for all a
b
∈ A⊎B, the

inequalities 0 < |kb − a| < p2 hold. In this case, by Equation (5.11), the p-adic valuations
in Equation (5.9) all take value 0 or 1. This means that Sp(n) is non-zero if and only if the
number of α ∈ A such that remp(α) ∈ {1, . . . , n} is not equal to the number of β ∈ B
such that remp(β) ∈ {1, . . . , n}. That is, by Definition (5.10), Sp(n) ̸= 0 if and only if

|{α ∈ A : α ⪯p n}| ≠ |{β ∈ B : β ⪯p n}|. (5.12)
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We say that n ∈ N is p-unbalanced if Sp(n) ̸= 0. We extend this notion to sub-intervals
of N by saying that an interval I ⊆ N is p-unbalanced if all n ∈ I are p-unbalanced.
By Equation (5.12), the maximal p-unbalanced sub-intervals of {1, . . . , p − 1} will have
endpoints that are equal or adjacent to the images remp(

a
b
) of a

b
∈ A⊎B. For more intuition

on this, see Example 5.2 and the accompanying illustration in Figure 5.2.

Let γ and γ′ be distinct elements of A ⊎ B such that γ ≺r γ
′. We denote by (γ, γ′)

the family of sub-intervals {n ∈ N : remp(γ) ≤ n < remp(γ
′)} of N indexed by primes

p ∈ bN+1whose respective orders agree with≺r (i.e., indexed by sufficiently large primes
in bN + 1). We show that for such a family of sub-intervals, indexed by primes p, either
every interval is p-unbalanced or none of the intervals is p-unbalanced. In the former case
we say that the family of intervals is r-unbalanced, where r is the shift quotient.

Expanding families and a degenerate case. Let γ, γ′ ∈ A ⊎ B such that γ ≺r γ′.
In Proposition 5.7 we prove that for a sufficiently large prime p belonging to the arithmetic
progression bN+ 1, the distance remp(γ

′)− remp(γ) between the respective residues of γ
and γ′ modulo p is a strictly increasing function of p, if and only if γ − γ′ /∈ Z. In this case
we say that the family of intervals (γ, γ′) is r-expanding.

The identification of expanding families of unbalanced intervals is a crucial element in
our proof, as it means that larger and larger primes p witness the non-equality un ̸= p for
larger sets and larger sets of indices n. We further show in Proposition 5.8 that either there
exists an r-expanding r-unbalanced family of intervals, or every hypergeometric sequence
⟨un⟩∞n=0 with shift quotient r(x) is a rational function of n.

For the case when ⟨un⟩∞n=0 is a rational function of n, we can rewrite it as un = f(n)
g(n)

with
f, g ∈ Q[x]. In order to test membership of t in ⟨un⟩∞n=0, it suffices to check whether the
polynomial f(x)−tg(x) has an integer root, which is known to be decidable, as summarised
in Corollary 5.9. Henceforth, we assume without loss of generality that there exists an r-
expanding r-unbalanced family of intervals for our fixed instance ofMP.

An infinite sequence of primes with contiguous unbalanced intervals. Fix γ, γ′ ∈
A⊎B such that (γ, γ′) is an r-expanding r-unbalanced family of intervals. Let p, q ∈ bN+1
be primes sufficiently large that their respective orders agree with ≺r. In Proposition 5.10
we show that if p < q < p(1 + 1

b
) + C with C a constant depending only on r, the

respective intervals between γ and γ′ for primes p and q are contiguous. That is, we show
that remq(γ) ≤ remp(γ

′)where≤ is the usual order on Z. By previous arguments, for all n
with remp(γ) ≤ n < remq(γ

′) either vp(un) ̸= 0 or vq(un) ̸= 0.

We use effective bounds on the density of primes in arithmetic progressions to con-
struct a sequence ⟨pi⟩∞i=0 of primes with contiguous r-unbalanced intervals. In particular,
in Proposition 5.12 we prove that given if a prime pi ∈ bN+1 is large enough there always
exists another prime pi+1 ∈ bN+ 1 where pi+1 < pi(1 +

1
b
) + C .

We have thus constructed an r-expanding r-unbalanced family of intervals that covers
{n ∈ N : n > N} for some effectively computable finite boundN . Hence in order to decide
our fixed instance of MP, it suffices to verify whether t ∈ {u1, . . . , uN}, which completes
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our unconditional decidability proof.

Let us now illustrate the approach we just presented with an example.

Example 5.2. Consider again the sequence ⟨wn⟩∞n=0 defined by w0 = 1 and the shift quotient

s(x) :=
(x+ 9

2
)(x+ 7

2
)(x+ 5

2
)

(x+ 11
2
)(x+ 4)(x+ 1)

introduced in Example 5.1.

We have already given an argument that 13
6
does not lie in the sequence by computing the

limit of r(x). We will now prove the non-membership of 13
6
in the sequence using our approach

based on prime divisors of the elements wn of the sequence ⟨wn⟩∞n=0. To this end, let

α1 :=
−9

2
α2 :=

−7

2
α3 :=

−5

2

β1 :=
−11

2
β2 := −4 β3 := −1

Considering that v13(136 ) = 1, in our approach, we use larger primes to rule out the mem-
bership of 13

6
. For the prime 17, as depicted in Figure 5.2, we have that

β1 ⪯17 α1 ⪯17 α2 ⪯17 α3 ⪯17 β2 ⪯17 β3.

The maximal 17-unbalanced intervals in our example are {3} and {5, 6, . . . , 15}. This implies
that, for n ∈ {1, . . . , 16}, S17(n) is non-zero if and only if n belongs to {3} ∪ {5, . . . , 15}.

As it turns out 17 is sufficiently large so that, for all primes p ≥ 17, the respective order≺p

agrees with≺s. Consequently, the families of intervals (β1, α1) and (α2, β3) are s-unbalanced.
Furthermore, the family (α2, β3) is s-expanding, whereas (β1, α1) is not. As shown in Fig-
ure 5.2, the intervals between α2 and β3 are contiguous for primes in {17, 23, 29}. This, in
turn, ensures that for all n ∈ {5, . . . , 27} either 17, 23, or 29 divides wn.

By the main theorem in [162], for all primes p ≥ 8, there exists another prime less than
p(1 + 1

2
). This, in combination with the arguments above, guarantees that for all n ≥ 5,

there exists a prime p other than 13 appearing in the factorisation of wn. This reduces the
membership test of 13

6
to the finite set {w1, . . . , w4}.

5.3.2 Constructing the preorder

Recall that the elements inA ⊆ Q\Z≥0 are the roots of the numerator, and the elements
in B ⊆ Q \ Z≥0 are the roots of the denominator of the shift quotient r(x) of the fixed
sequence ⟨un⟩∞n=0. In this section we give the proofs of the technical lemmas allowing us to
determine the order of the parametersA⊎B with respect to the preorder⪯r, and determine
which of the subintervals are r-expanding and r-unbalanced.
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Let b > 0 be the least common denominator of the fractions in A ⊎ B. Then every
element γ ∈ A ⊎ B admits a unique representation in the form γ = c − a

b
under the

conditions c ∈ Z and a ∈ {1, . . . , b}. We call this the canonical representation. Associated
with this, define a nonnegative integer

Nγ :=

 max
(
c, ⌈ bc

b−a
⌉
)

if c ≥ 1,

max
(
−c, ⌈−bc

a
⌉
)

if c ≤ 0.

Note that Nγ is well-defined, i.e., there is no division by zero. Indeed, if c ≥ 1, by the con-
vention that γ ̸∈ Z≥0, the value b− a is non-zero, whereas a ̸= 0 ensures well definedness
in the second case.

In the following proposition we give an explicit formula that allows us to compute
remp(γ) for all primes p in the arithmetic progression bN+ 1 that are greater than Nγ .

Proposition 5.5. Let γ = c − a
b
be a canonical representation. Then for all primes p > Nγ

such that p ∈ bN+ 1 we have remp(γ) = c+ (p−1)a
b

.

Proof. The assumption that p ∈ bN + 1 implies that remp

(
−1

b

)
= p−1

b
. Thus, by the

homomorphism property of remp, it only remains to verify that c+ (p−1)a
b

∈ {0, . . . , p−1}.
To this end, there are two cases, following the definition of Nγ .

The first case is that c ≥ 1. Here we clearly have c + (p−1)a
b

≥ 0. Furthermore, by the
assumption p > Nγ , we have p−1 ≥ bc

b−a
. Recall also that a ̸= b due to the assumption that

γ ̸∈ Z≥0. Thus, multiplying the previous inequality by b−a > 0, we have (b−a)(p−1) ≥ bc.
Dividing by b and rearranging terms, we conclude that c+ (p−1)a

b
≤ p− 1.

The second case is that c ≤ 0. Here, since a ≤ b, it is clear that c + (p−1)a
b

≤ p − 1.
Furthermore, by the assumption p > Nγ , we have p − 1 ≥ −bc

a
. Multiplying the latter

inequality by a
b
and rearranging terms, we get c+ (p−1)a

b
≥ 0.

Next we use Proposition 5.5 to show that, given distinct γ and γ′ in A⊎B, for all large
enough primes p in the arithmetic progression bN+1, their order respective to≺p is fixed.

Proposition 5.6. Let γ = c− a
b
and γ′ = c′ − a′

b
be canonical representations. For all primes

p > b(Nγ +Nγ′) + 1 such that p ∈ bN+ 1 we have:

γ ≺p γ
′ if and only if ((a < a′) or (a = a′ and c < c′)).

Proof. For the first direction, assume that γ ≺p γ
′. Following Proposition 5.5, since p >

Nγ +Nγ′ and p ∈ bN + 1, we can rewrite the assumption as c + (p−1)a
b

< c′ + (p−1)a′

b
. We

can rearrange the inequality to obtain

cb− c′b+ a′ − a < p(a′ − a).
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Towards a contradiction, assume that a > a′. In this case, the above yields c−c′

a′−a
b + 1 > p.

Since Nγ ≥ |c| and Nγ′ ≥ |c′|, by the assumption that p > b(Nγ + Nγ′) + 1 we have that
p > (c − c′)b + 1 > c−c′

a′−a
b + 1, a contradiction. Again, towards a contradiction, assume

that a = a′ but c ≥ c′. Since b > 0 we can multiply the inequality by b to get cb ≥ c′b, a
contradiction. The claim follows.

To show the other direction of the equivalence, we need to look at two cases depending
on a and a′. First assume that a < a′. By p > b(Nγ +Nγ′) + 1 we can write

p > (c− c′)b+ 1 ≥ c− c′

a′ − a
b+ 1 =

cb− c′b+ a′ − a

a′ − a
.

Since a′ − a > 0, we can multiply the above inequality by (a′ − a) to obtain p(a′ − a) >

cb − c′b + a′ − a. By rearranging the terms, we get (p − 1)a + cb < (p − 1)a′ + c′b. As
p > Nγ +Nγ′ and p ∈ bN+ 1 by Proposition 5.5, it follows that γ ≺p γ

′.

For the second case, assume a = a′ and c < c′. Since b > 0, we can write cb < c′b. It
follows that (p− 1)a+ cb < (p− 1)a+ c′b. Again, since p > Nγ +Nγ′ and p ∈ bN+ 1 by
Proposition 5.5, it follows that γ ≺p γ

′.

Associated to the shift quotient r(x) of the sequence ⟨un⟩∞n=0, define the nonnegative
integer

Nr := b
∑

γ∈A⊎B

Nγ + 1. (5.13)

From Proposition 5.6 it follows that for all primes p > Nr in the arithmetic progression
bN+ 1

— remp(γ), remp(γ
′) are distinct for all distinct γ, γ′ ∈ A ⊎B,

— the orders ⪯p on A ⊎B are identical.

We henceforth denote by ⪯r the common order on A ⊎ B for all primes p > Nr in the
arithmetic progression bN+1. Let γ, γ′ ∈ A⊎B. In the following proposition we show that
for larger and larger primes p ∈ bN+ 1 whose orders agree with ≺r, the distance between
remp(γ) and remp(γ

′) gets larger and larger if and only if γ − γ′ /∈ Z.

Proposition 5.7. Let p, q ∈ bN + 1 be primes with q > p > Nr. Let γ, γ′ ∈ A ⊎ B be such
that γ ≺r γ

′. Then γ − γ′ /∈ Z if and only if

remp(γ
′)− remp(γ) < remq(γ

′)− remq(γ)

where < is the total order on Z.

Proof. For the first direction, assume that γ − γ′ /∈ Z. Given the canonical representations
γ = c− a

b
and γ′ = c′ − a′

b
, this implies that a ̸= a′. Now since γ ≺r γ

′, by Proposition 5.6
we have a < a′.
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Since p < q and b > 0, we can write p−1
b

< q−1
b
. We can multiply the inequality by

(a′ − a) to obtain
p− 1

b
(a′ − a) <

q − 1

b
(a′ − a).

Now by adding (c′ − c) on both sides of the above inequality we get

c′ +
p− 1

b
a′ −

(
c+

p− 1

b
a

)
< c′ +

q − 1

b
a′ −

(
c+

q − 1

b
a

)
.

By the assumption that p, q ∈ bN+1with p, q > Nr, we can use Proposition 5.5 to conclude
that

remp(γ
′)− remp(γ) < remq(γ

′)− remq(γ).

For the other direction, assume that remp(γ
′)−remp(γ) < remq(γ

′)−remq(γ). Towards
a contradiction, assume furthermore that γ − γ′ ∈ Z. Using the canonical representations
γ = c− a

b
and γ′ = c′ − a′

b
, by Proposition 5.5 we can rewrite the inequality as:(

c′ +
p− 1

b
a′
)
−
(
c+

p− 1

b
a

)
<

(
c′ +

q − 1

b
a′
)
−
(
c+

q − 1

b
a

)
.

The inequality simplifies to

p− 1

b
(a′ − a) <

q − 1

b
(a′ − a).

The assumption γ − γ′ ∈ Z implies that a = a′, which with the above gives 0 < 0, a
contradiction.

Let us now examine in which instances of MP we can always ensure the existence of
such an r-expanding family.

5.3.3 Non-trivial sequences have unbalanced families

In this section we identify yet another trivially decidable case of instances of MP. In
particular, we prove that given r(x) ∈ Q(x) converging to ±1, either there exists an r-
expanding r-unbalanced family of intervals for the parameters of r(x), or the all instances
ofMP for the hypergeometric sequences defined by r(x) are easily decidable. We begin by
an observation that will help us to identify these instances.

Proposition 5.8. Given r(x) ∈ Q(x) converging to ±1 as x→ ∞, either

1. there exists an r-expanding r-unbalanced family of intervals, or

2. otherwise, the hypergeometric sequence ⟨un⟩∞n=0 with shift quotient r(x) is a rational
function of n.
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Proof. Recall we denote by A the multiset {α1, . . . , αd} consisting of all the (possibly re-
peated) roots of the numerator and by B the multiset {β1, . . . , βd} of the roots of the de-
nominator of the shift quotient r(x). Our proof relies on the following observation: if there
exists a bijective function f : A → B such that for all α ∈ A we have α − f(α) ∈ Z, then
Item 2 holds. Otherwise, Item 1 holds.

Towards Item 2, assume that there exists a bijective function f : A → B such that for
all α ∈ A we have α − f(α) ∈ Z. Given an enumeration α1, . . . , αd on A, enumerate the
elements of B so that f(αi) = βi. Then given a pair αi, βi, write ℓi = |αi − βi| ∈ N.

Recall that given an instance of MP with a target value t ∈ Q, the problem asks to
decide whether there exists n ∈ N such that

n∏
k=1

r(k) = t. (5.14)

Observe that we can expand the left hand side of the equation above in the following way.
n∏

k=1

r(k) =
n∏

k=1

(k − α1) · · · (k − αd)

(k − β1) · · · (k − βd)

=
n∏

k=1

(k − α1)

(k − β1)
· · ·

n∏
k=1

(k − αd)

(k − βd)

Now if we look at the product
∏n

k=1
(k−αi)
(k−βi)

. If βi > αi, observe that we can write

k − αi

k − βi
=
k + (βi − αi)− βi

k − βi
=
k + ℓi − βi
k − βi

.

We can thus write
n∏

k=1

(k − αi)

(k − βi)

=
n∏

k=1

(k + ℓi − βi)

(k − βi)

=
(1 + ℓi − βi)

(1− βi)
· · · ((ℓi + 1) + ℓi − βi)

((ℓi + 1)− βi)
· · · (n+ ℓi − βi)

(n− βi)

= ((((((((1 + ℓi − βi)

1− βi)
· · · ((ℓi + 1) + ℓi − βi)

((((((((
((ℓi + 1)− βi)

· · · (n+ ℓi − βi)

(n− βi)

Note how in the last line above, we were able to simplify at least two terms. Observe
that we will be able to do so for all but ℓi terms in the numerator and all but ℓi terms in the
denominator. That is, we transform

n∏
k=1

(k − αi)

(k − βi)
=

(n+ 1− βi) · · · (n+ ℓi − βi)

(1− βi) · · · (ℓi − βi)
=
fi(n)

gi(n)
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for n > ℓi.

Similarly, observe that if αi > βi, we can write

k − αi

k − βi
=

k − αi

k + (αi − βi)− αi

=
k − αi

k + ℓi − αi

By repeating the above computation, we obtain

n∏
k=1

(k − αi)

(k − βi)
=

(1− αi) · · · (ℓi − αi)

(n+ 1− αi) · · · (n+ ℓi − αi)
=
fi(n)

gi(n)

for n > ℓi.

By applying the above transformation to all pairs αi, βi with their respective distance
ℓi, we can rewrite

∏n
k=1 r(k) as

n∏
k=1

r(k) =
f1(n)

g1(n)
. . .

fd(n)

gd(n)
=
f̂(n)

ĝ(n)

The above iswell-defined for alln > max(ℓ1, . . . , ℓd), and implies that the product
∏n

k=1 r(k)

can be decomposed as a product of a constant number of rational functions in n.

To show Item 1, assume that there is no bijective function f : A → B such that for all
α ∈ A we have α − f(α) ∈ Z. Let γ1, . . . , γ2d be a fixed permutation of the elements of
A ⊎B, such that γj ⪯r γk for all 1 ≤ j < k ≤ 2d.

We claim that there exists an index j such that (γj, γj+1) is an r-expanding r-unbalanced
family of intervals. That is, j is such that

— γj − γj+1 /∈ Z, and
— the number of αi in the block γ1 ⪯r . . . ⪯r γj is not equal to the number of βi in the

block γ1 ⪯r . . . ⪯r γj .

Indeed, if there is no such j, then we can take each block of the αi and βi with integer
distances and construct a bijection mapping from the set of αi’s to the set of βi’s appearing
in the block alone. Putting together the mappings given by the block bijections gives us a
bijection f : A→ B such that αi−f(αi) ∈ Z for all i, which would lead to a contradiction.

The proposition we have just proved has a straightforward corollary identifying the
new degenerate case ofMP.

Corollary 5.9. Given r(x) ∈ Q(x) converging to ±1 as x→ ∞, either

1. there exists an r-expanding r-unbalanced family of intervals, or

2. otherwise, the Membership Problem for the hypergeometric sequence ⟨un⟩∞n=0 with shift
quotient r(x) is trivially decidable.
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Proof. To prove the corollary it suffices to show that Item 2 of Proposition 5.8 implies Item 2
above. Indeed, assume that there exists no r-expanding r-unbalanced family of intervals.
Then by Proposition 5.8 every hypergeometric sequence ⟨un⟩∞n=0 with shift quotient r(x)
is a rational function of n. That is, there exist polynomials f, q ∈ Q[x] such that

un =
f(n)

g(n)
.

Given a target t ∈ Q, un = t for some n ∈ N if and only if there exists n ∈ N such that
f(n)−g(n)t = 0. In other words, the problem reduces to verifying whether the polynomial
F (x) = f(x)− g(x)t ∈ Q[x] has a positive integer zero. This problem is clearly decidable,
as the magnitude of all integer zeroes of a univariate polynomial is bounded by the height
of the polynomial; it suffices to check the equality for a finite number of values n.

We have thus established that all instances of MP that are not trivially decidable ad-
mit r-unbalanced families. Let us now see how we can construct the sequence of primes
witnessing decidability.

5.3.4 Constructing the prime sequence

Let γ, γ′ ∈ A⊎B be such that (γ, γ′) is an r-expanding r-unbalanced family of intervals.
For a prime p ∈ bN + 1 with p > Nr, we obtain a condition on larger primes q ∈ bN + 1
that ensures the intervals {n ∈ N : remp(γ) ≤ n < remp(γ

′)} and {n ∈ N : remq(γ) ≤
n < remq(γ

′)} are contiguous.
Proposition 5.10. Let p, q ∈ bN + 1 be primes with q > p > Nr. Let γ, γ′ ∈ A ⊎ B such
that γ − γ′ /∈ Z and γ ≺r γ

′. We have remq(γ) < remp(γ
′) if

q < p+
p− 1

b
+ C

for some effective constant C depending on γ and γ′.

Proof. Given the canonical representations γ = c − a
b
and γ′ = c′ − a′

b
, write C := c′−c

a
b.

Then the initial assumption can be rewritten as

q < p+
p− 1

b
+
c′ − c

a
b.

We can further rewrite the above inequality as

q − 1 < (p− 1)
(
1 +

1

b

)
+
c′ − c

a
b.

Note that since γ − γ′ /∈ Z, we have a ̸= a′. Now by Proposition 5.6, from γ ≺r γ
′ it

follows that a < a′. By further recalling that a < a′ ≤ b, we have a′

a
=
(
1+ a′−a

a

)
≥
(
1+ 1

b

)
.

Then from the above it follows that

q − 1 < (p− 1)
a′

a
+
c′ − c

a
b.
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Since a
b
> 0, we can multiply the inequality by a

b
to obtain

(q − 1)a

b
+ c <

(p− 1)a′

b
+ c′.

By the assumption that p, q ∈ bN + 1 with p, q > Nr, we can now use Proposition 5.5 to
conclude that remq(γ) < remp(γ

′).

We will now show that we can indeed construct a sequence of primes in the arithmetic
progression bN + 1 that are close enough to satisfy the condition we have just shown in
Proposition 5.10. To this end, we rely on an effective version of Dirichlet’s Theorem on the
density of primes in arithmetic progressions. As discussed in Section 2.3.6, there are several
effective variants of the theorem. We use the following estimates which can be found [163,
Theorem 1.3], as they give a matching upper and lower bound on πn,a(x).

Theorem 5.11. Given n ≥ 3 and a ∈ N coprime to n, there exist explicit positive constants c
and x0 depending on n such that∣∣∣∣πn,a(x)− Li(x)

φ(n)

∣∣∣∣ < c
x

(log x)2
for all x > x0.

Note that in the above theorem Li(x) denotes the offset logarithmic integral function,
which is defined as

Li(x) =

∫ x

2

dt

log t
. (5.15)

Asymptotically, the function behaves as the prime number counting function π(x), that is,
as O

(
x

log x

)
.

Proposition 5.12. Let b ∈ N andC ∈ Z. There exist an effectively computable boundM ∈ N
such that for all primes p ∈ bN + 1 greater than M , there exists a prime q ∈ bN + 1 with
p < q < p+ p−1

b
+ C .

Proof. Let x ∈ bN+1, and denote by y = x(1+ 1
b
). We would like to show that there exists

a bound M ∈ N such that πb,1(y) − πb,1(x) > 0 for all x > M . Using Theorem 5.11 to
estimate πb,1(y) and πb,1(x), it suffices to show that

Li(y)

φ(b)
− c

y

(log y)2
>
Li(x)

φ(b)
+ c′

x

(log x)2
.

The above then simplifies to

Li(y)− Li(x)

φ(b)
> 2c

y

(log y)2
. (5.16)

Now write y = x(1 + ϵ) with ϵ = 1
b
, and observe that following (5.15)

Li(y)− Li(x) =

∫ y

x

dt

log t
=

y

log y
− x

log x
∼ ϵx

log x
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where ∼ denotes asymptotic equivalence. As for the right hand side of (5.16), note that

y

(log y)2
∼ x

(log x)2
.

It remains to note that x
log x

≫ x
(log x)2

.

The above proposition ensures that we can construct an infinite sequence of primes
⟨pi⟩∞i=0 in bN+1 such that for all pi its successor pi+1 is between pi and pi+ pi−1

b
+C . Propo-

sition 5.10 then implies that if we choose p0 > max(M,Nr), for every γ, γ′ ∈ A ⊎ B
such that (γ, γ′) is an r-expanding r-unbalanced family of intervals, for all i, the intervals
{n ∈ N : rempi(γ) ≤ n < rempi(γ

′)} and {n ∈ N : rempi+1
(γ) ≤ n < rempi+1

(γ′)} are
contiguous.

The sequence ⟨pi⟩∞i=0 is the last part of our construction, allowing us to prove our main
result.

5.3.5 Putting everything together

In this section we combine all the lemmas we have just proved to prove our uncondi-
tional decidability result for for the Membership Problem.

Theorem 5.13. The Membership Problem for hypergeometric sequences with rational param-
eters is decidable.

Proof. As discussed in Section 5.2, the only case ofMP that is not trivially decidable is when
the shift quotient r(x) ∈ Q(x) of the sequence ⟨un⟩∞n=0 converges to ±1 as x→ ∞. Given
such an instance of MP, we write r(x) as

(x− α1) · · · (x− αd)

(x− β1) · · · (x− βd)
.

We denote by A the multiset {α1, . . . , αd} consisting of all the (possibly repeated) roots
of the numerator and by B the multiset {β1, . . . , βd} of the roots of the denominator. As
discussed in Section 5.1, all elements in A ⊎B are in Q \ Z≥0.

We now show that there exists a bound N ∈ N such that for all n > N , there exists a
prime p appearing in the factorisation of un but not in the factorisation of t. This implies
that it suffices to check whether un = t for all n ∈ {1, . . . , N} to decideMP. In particular,
we show that for all n > N , we can find a prime p with vp(t) = 0 such that Sp(n), as
defined in Equation (5.9), is non-zero.

Write t = v
w
. Now define

N ′ = max(|v|, |w|, Nr)

where Nr is defined as in Equation (5.13). Note that none of the primes p > N ′ divide the
target t.
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Following Corollary 5.9, we can assume without loss of generality that there exists an
r-expanding r-unbalanced family of intervals (γ, γ′) for some γ, γ′ ∈ A⊎B. LetM be the
bound computed in Proposition 5.12. Let p0 ∈ bN + 1 be a prime with p0 > max(M,N ′).
Observe that for all n in

{k ∈ N : remp0(γ) ≤ k < remp0(γ
′)},

the sum Sp0(n) defined in Equation (5.9) is indeed non-zero.

Following Proposition 5.12, we can construct an infinite sequence of primes ⟨pi⟩∞i=0 with
initial element p0 such that for every prime pi in the sequence, its successor pi+1 is between
pi and pi + pi−1

b
in the arithmetic progression bN+ 1. By Proposition 5.10, for all i, the in-

tervals {k ∈ N : rempi(γ) ≤ k < rempi(γ
′)} and {k ∈ N : rempi+1

(γ) ≤ k < rempi+1
(γ′)}

are contiguous. Therefore we can cover all n > remp0(γ), which concludes our proof.

5.4 Discussion and perspectives

In this chapter we studied the Membership Problem for hypergeometric sequences with
rational parameters. We recalled that the asymptotic behaviour of a product of rational
functions can be related to the Gamma function, implying that the decidability of the
problem can be established using the asymptotic approach under the assumption of the
Rohrlich-Lang conjecture.

Our main contribution was an unconditional decidability result. We approached decid-
ing the Membership Problem from a different angle–specifically, by considering the prime
divisors of un. Our strategy is to show that (except in some degenerate cases) for all suf-
ficiently large n, un has a prime divisor p that is not also a prime divisor of the target t.
This allows us to compute a bound N such that un ̸= t for all n > N . We studied p-adic
valuations, and, given an element un of our sequence, determined conditions on primes p
such that p appears in the factorisation of un (in terms of valuations, vp(un) ̸= 0), whereas
it does not divide the target t (i.e., vp(t) = 0). One of the conditions in question is that p
belongs to a well-chosen arithmetic progression. Actually, given a prime p from the pro-
gression, we computed a set of values n such that vp(un) ̸= 0. Using classical results on
the distribution of primes in arithmetic progressions, we were then able to construct an
infinite sequence of primes ⟨pi⟩∞i=0, and show the existence of a bound N such that the set
of indices n for which vpi(un) ̸= 0 as i goes to infinity covers all n > N . That is, the pi
witness that un ̸= t for all n > N .

In our work, we analysed divisibility of the sequence ⟨un⟩∞n=0 for well-chosen primes p.
Let us note that studying the p-valuation of sequences is not a novel idea. The works [164,
165], for example, consider sequences of the form ⟨vp(q(n))⟩∞n=0, where q is a polynomial
with rational coefficients. The paper [166] is closer to the sequences we consider, as it
studies the asymptotic behaviour of sequences of the form vp(un), where vp is the p-adic

– 116 –



The Membership Problem for hypergeometric sequences

valuation and ⟨un⟩∞n=0 is a sequence of integers satisfying a recurrence un = q(n)un−1, i.e.,
an order-1 polynomial recurrence whose leading coefficient is constant.

p-adic techniques have also been used to study integrality of hypergeometric sequences.
The work [167], in particular, formal power series whose coefficients are given by the terms
of a hypergeometric sequence with rational parameters. Given two tuples of parameters
α := (α1, . . . , αr) and β := (β1, . . . , βs) in Q \ Z≤0, the authors study generalised hyper-
geometric series, which they define as

Fα,β(z) :=
∞∑
n=0

(α1)n · · · (αs)n
(β1)n · · · (βs)n

zn.

Here, (x)n denotes the Pochhammer symbol (x)n = x(x + 1) · · · (x + n − 1) if n ≥ 1
and (x)0 = 1 otherwise. Notice that Fα,β(z) is essentially just a formal power series in the
variable z whose coefficients are given by the hypergeometric sequence defined by the shift
quotient with parameters α and β. Through analysing the p-adic valuation of Fα,β, they
obtain results on when Fα,β(z) ∈ ZJzK, and what is the minimal constant C ∈ Q≥0 such
that Fα,β(C ·z) ∈ ZJzK. In contrast to our work, the authors here analyse p-adic valuations
of the series for arbitrary primes p, whereas in order to decide the Membership Problem,
we carefully select our primes ensuring that the valuations we consider have simple closed
forms (i.e. take value 0 or 1 for linear factors of our sequence).

The next natural step in the study of the Membership Problem would be to extend our
approach to more general instances of the problem, that is, to sequences specified with
polynomial coefficients with algebraic roots of degree greater than one. A continuation of
the work in that direction, which is beyond the scope of this thesis, appears in [168]. The
paper establishes decidability of the Membership Problems for two cases: for sequences de-
fined by shift quotients where the numerator and the denominator (1) have distinct splitting
fields, and (2) both split over the ring of integers of a quadratic field.

The proofs of both results again follow by analysing the prime divisors of the hyperge-
ometric sequence. In the case (1), it is shown that one can find a single prime p ∈ Z that
does not divide the target t but divides all members of the sequence un for n > N . Here
the reason why a single prime suffices as witness of non-equality comes from the observa-
tion that the valuations vp(f(k)) and vp(g(k)) for k ∈ N depend on the splitting pattern of
the prime p in their respective splitting fields. The Chebotarev density theorem asserts that
given distinct number fieldsK andL, there are infinitely many primes that split completely
in one, but not in the other, ensuring the existence of the bound N .

In the case (2), the construction is similar in spirit to the approach we take for hyperge-
ometric sequences with rational parameters. That is, it is shown that for all n > N , there
exists a prime p (that may depend on n) dividing un, but not t. Here the proof follows from
a generalisation of a result of [169] concerning primitive prime divisors of the values of
a quadratic polynomial. We recall that given a sequence ⟨un⟩∞n=0, a primitive divisor of a
term un is a divisor of un that is coprime to every nonzero term um withm < n. A natural
question that arises is whether this approach can be generalised to shift quotients with pa-
rameters from higher-degree number fields. This does not seem easily feasible, as it would
require new results on large prime divisors on the values of such polynomials, which is an
active area of research in number theory; see, e.g., [170].
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A parallel result in the same direction is given in the recent paper by Kenison [171].
Decidability of both theMembership and Threshold problems for sequences defined by shift
quotients where the numerator and the denominator both split over the ring of integers of
a quadratic field K are established. The approach in the paper relies on transcendence
theory for the Gamma function and the decidability results are unconditional when K is
imaginary decidable unconditionally, whereas for the case when K is real, decidability is
conditioned to the assumption of Schanuel’s conjecture.

Open questions. As discussed above, the first result of [168] is that the Membership
Problem is decidable for sequences defined by shift quotients where the numerator and
the denominator have distinct splitting fields, and the decidability is witnessed by a single
prime. Our decidability proof for the Membership Problem for hypergeometric sequences
with rational parameters, on the other hand, uses an infinite sequence of primes. The vari-
ant we solve can hence be seen as the easiest sub-case of the Membership Problem not
known to belong to the class that can be decided using a single prime. We thus ask: could
a single prime suffice to establish decidability for our case as well? Or could one show that
one prime is not enough?

We pointed out above that the techniques we introduce do not seem to generalise easily
to sequences with parameters of degree higher than 2. However, could similar techniques
be used for zero testing problems for higher-order P-finite sequences with low-degree al-
gebraic parameters?

Finally, in the world of C-finite sequences, the problem of determining the complexity
of zero testing has also been considered. While the Skolem problem is not known to be
decidable in general, it has been shown to be NP-hard [172]. Most known decidability re-
sults for the problem for low order recurrences, such as [12, 13, 112, 113, 114, 115], do not
include complexity upper bounds, but there are some exceptions. The authors of [29], for
example, identify a large subclass of sequences such that the Skolem problem is decidable in
NPRP; this complexity bound is tight up to randomisation. Similar complexity results are
obtained for a subclass of the Orbit problem in [28], which is closely related to the Skolem
problem as well. What can be said about the complexity of the Membership Problem for
hypergeometric sequences? Are there subclasses of the Membership Problem for hyperge-
ometric sequences, such as, e.g. sequences given by shift quotients with linear numerator
and denominator, that have better complexity than the general case?
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Conclusion and outlook

In this thesis we studied a family of zero problems for polynomial models encompass-
ing both identity testing and root finding. We developed algorithms relying on algebraic
and number-theoretic results in order to decide subproblems of both the existential the-
ory of real closed fields as well as the existential theory of algebraically closed fields. The
overarching idea behind our algorithms is to perform the evaluation modulo a well-chosen
(prime) ideal. While our work focuses on specific subproblems of elimination theory, we
believe that the techniques we developed can be generalised to other related problems, and
that there are many connections between these problems yet to be explored.

We began the thesis by considering a subproblem of the existential theory of real closed
fields, namely the Radical Identity Testing problem, which asks whether a polynomial rep-
resented by an algebraic circuit vanishes on a given real radical input. We improved on the
existing PSPACE bound and completed some of the gaps in the understanding of identity
testing in radical field extensions, drawing parallels to the better-studied cyclotomic set-
ting. As noted in the Introduction, many of the existing techniques are limited to algebraic
inputs having degree polynomial in the problem description, such as polynomial factori-
sation, which can be used for identity testing of sparse expressions in polynomial-degree
number fields. Our approach, on the other hand, allows us to handle identity testing in
number fields of exponential degree and can be seen as a first step towards many gener-
alisations. A first one would be to adapt the techniques to verify whether a given sparse
polynomial admits exponential-degree irreducible factors. Or, at least whether it admits
linear factors in cyclotomic or radical field extensions of exponential degree. An orthog-
onal direction would be to adapt these techniques to study the complexity of factoring
algebraic circuits in number fields, starting with the case where the degree of the number
field is polynomial in the problem description. Besides identity testing for nested radical
inputs as mentioned in Section 1.1, one could also consider, e.g., identity testing for real
algebraic numbers given by the minimal polynomial and the interval where the root of in-
terest appears, or the minimal polynomial and a rational approximation of the root. As in
the Radical Identity Testing problem, testing identities in these settings can be encoded in
the existential theory of reals, however, the exact complexity of the problems remains open.

We also exhibited a reduction from theRIT problem to the Hilbert Nullstellensatz prob-
lem over C, which, in turn, belongs to the existential theory of algebraically closed fields.
We further studied a variant of the HN problem in Chapter 4, focusing on parametric so-
lutions, again reducing HNQ(x) to HNC, using similar number-theoretic arguments as in
Chapter 3, and suggested some of the possible generalisations. While constructing a sys-
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tem of polynomial equations encoding the constraints given by an algebraic circuit is rel-
atively well-understood, we believe that it would be interesting to explore the relation in
the opposite direction, that is, try to leverage identity testing techniques (over circuits) to
decide satisfiability of systems of equations over subfields of algebraically closed fields. An
example of such a relation yet to be explored is studying HN over real radical extensions.
As the input polynomials to HN are assumed to be given in the sparse representation, they
admit polynomial-size circuits. For example, if one could guess small circuits for the input
solutions, then deciding HN over Q(

d1
√
a1, . . . ,

dn√an) would non-deterministically reduce
to RIT, placing the radical variant of HN in the polynomial hierarchy. (As discussed in
Section 3.6, the complexity bound we showed for RIT is also the best we can do for gen-
eral sparse radical expressions). Another tie between the two problems to be explored is to
look at parametric variants of identity testing problems. Following the intuition of Kayal
and Saha who studied the Sum of Square Roots problem for polynomial integers [88], we
believe that studying parametric identities could give insights on the complexity of the
problem over other number fields, or, maybe even unify some of the existing results.

In the final part of this thesis we revisited the idea of studying algebraic objects modulo
prime ideals, and applied it to the problem of deciding whether a polynomially recursive
sequence has a zero term. We focused, in particular, on the problem for the case of se-
quences arising as sums of two hypergeometric sequences, which in turn, reduces to de-
ciding whether a given rational value appears in a hypergeometric sequence. We showed
decidability of the problem for the case where the defining polynomials of the hypergeo-
metric sequence split over Q, which, as mentioned in Section 5.4 was later generalised to
sequences defined by polynomials splitting over quadratic fields. While the technique we
developedwould require new advances in number theory in order to be generalised to num-
ber fields of degree more than two directly, our work has shown that the general approach
is a good framework for studying reachability problems as well. Despite the most natural
generalisation seeming to be out of reach for now, many interesting related problems, such
as its variant for sequences arising as sums of more than two hypergeometric sequences,
or, say, the complexity of the variants we now know are decidable, remain to be explored.
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