Proving that project 4 is impossible

Nicolas Derumigny Emma Kerinec Yannis Gaziello
Quentin Guilmant

ENS de Lyon

20 janvier 2017
Plan

1. Introduction
2. Main Theorem
3. Extra features
4. Conclusion (you lost the game)
Problem

Find a tile assembly system such that:

- Seed tile at position $S = (0, 0)$
- $\forall h$ there is a tile at $T = (10, h)$
- Finite size
- No tiles to the right and below the cut
- Possible presence of glues on the wall (infinite)

Figure – Initial state
Different cases

- Case with no glues on the wall, more genera.
- Cases with odd or even h only.
- Succeed with probability $1 - \epsilon$
Definition (Tile Kind)

A tile kind is a quadruplet of pairs (colour, strength).

Definition (Tile)

A tile is a pair (tile kind, coordinates)
Definition (Configuration)

A configuration C is a connected set of tiles that are joint by their colours.

It is relative to some set of tile kinds T.

Definition (Wall)

A wall is a set of special tiles that occupy all the bottom-right corner of the plane.

It can have glues only in column 1. They must be lower than a given temperature τ.
Execution

Definition (Execution)

- Sequence of tiles *(added one after the other)*
- *Add a tile if its satisfies some temperature* τ
- *Build a configuration* C *over some tile kinds set* \mathcal{T}
- C *does not crash into a wall* \mathcal{W}

It is *ended* if we cannot add any new tile.

It is *finite* if the sequence is finite.

It is *valid* if it reaches $(10, h)$ (*h is the height of the wall*).
Impossibility

Theorem

There is no tile kinds set \mathcal{T}, temperature τ, seed σ, sequence of colours (c_i) and sequence of strengths (s_i) such that for any wall of any height (with respect to the sequences), any ended execution is finite and valid.
The proof within some images (1)

- h_0 arbitrary (different from 0)
- Stop the execution before posing the green tile
- $h_1 =$ height of the green tile

Figure – First growth of the tile algorithm
The proof within some images (2)

- Stop the execution before posing the green tile
- The red tiles do not need the wall
- The red tiles between the blue ones and the wall are not important
- The wall is unchanged \rightarrow the blue tiles can still be constructed

Figure – Second growth of the tile algorithm
And so?

\[(h_n)_{n \in \mathbb{N}} \text{ by recurrence} \]
And so?

\[\Rightarrow (h_n)_{n \in \mathbb{N}} \text{ by recurrence} \]

\[h_n \xrightarrow[n \to \infty]{} \infty \]
And so?

$$\Rightarrow (h_n)_{n \in \mathbb{N}} \text{ by recurrence}$$

- $h_n \xrightarrow{n \to \infty} \infty$
- Valid sequence of tiles
And so?

⇒ $(h_n)_{n \in \mathbb{N}}$ by recurrence

- $h_n \xrightarrow{n \to \infty} \infty$
- Valid sequence of tiles
- Do not need the wall
And so?

$$\Rightarrow (h_n)_{n \in \mathbb{N}} \text{ by recurrence}$$

- $h_n \underset{n \to \infty}{\to} \infty$
- Valid sequence of tiles
- Do not need the wall
- Goes to infinity
And so?

\[\Rightarrow (h_n)_{n \in \mathbb{N}} \text{ by recurrence} \]

- \[h_n \xrightarrow[n \to \infty]{} \infty \]
- Valid sequence of tiles
- Do not need the wall
- Goes to infinity

\[\Rightarrow \text{Contradiction!} \]
Some tools we need

- each non-ended execution must be "endable"
- connexity must mean that each column and row is crossed between to points that are "connected"
Solution for a wall of odd or even height

- Use the wall to climb so we can’t go up indefinitely.
- For that we go two row by two row, it limit to odd or even case.
- When above the wall we go to the right to reach the target.
- Merging impossible due to interaction.
The constraint about prefix wall is needed

Last tile of the wall could be different, we could start from it.
Conclusion (coin _o<)