Exercise 1 (Better randomized algorithm for Min Cut). Consider the following recursive algorithm for Min Cut:

Procedure FastMinCut(G: an undirected multigraph)

if $n \leq 6$ then
 return an optimal min-cut obtained by exhaustive search.
else
 $t := 1 + \left\lceil \frac{n}{\sqrt{2}} \right\rceil$.
 Make two copies G_1 and G_2 of G.
 for $i = 1 \ldots 2$
 Make $n - t$ independent random edge contractions on G_i to obtain multigraph H_i with t vertices.
 return the best cut between FastMinCut(H_1) and FastMinCut(H_2).

Question 1.1 Show that its running time is $T(n) = O(n^2 \log n)$.

Question 1.2 Show that it uses at most $M(n) = O(n^2)$ memory.

Question 1.3 Show that the probability that a min cut survives $n - t$ random edge contractions is at least $\frac{1}{2}$ when $n > 6$.

Let $P(k)$ be the minimum probability that the algorithm outputs a min cut for a multi-graph that requires k levels of recursions ($k = \Theta(\log n)$ if G has n vertices).

Question 1.4 Show that $P(k) \geq p(k)$ where $p(0) = 1$ and $p(k + 1) = p(k) - \frac{p(k)^2}{4}$.

Let $q(k) = \frac{4}{p(k)} - 1$ so that $q(0) = 3$ and $q(k + 1) = q(k) + 1 + \frac{1}{q(k)}$.

Question 1.5 Show that for all $k \geq 0$, $k < q(k) \leq k + H_{k-1} + 3$, where $H_k = \sum_{i=1}^{k} \frac{1}{i}$ is the kth harmonic number.

Question 1.6 Conclude that FastMinCut computes a min cut with probability $\Omega(1/\log n)$. Propose an algorithm which increases the success probability to $1 - 1/n^2$. Compare its time complexity to the best known deterministic algorithm (based on a max flow computation), $O(mn \log(m^2/n))$.
Exercise 2 (Dumb algorithm for Max-SAT). Consider the following algorithm for Max-SAT: Let \(\tau \) be an arbitrary instantiation of the variables and \(\tau' \) the complementary instantiation (each variable is true in \(\tau' \) if and only if it is false in \(\tau \)); compute the total weight of the clauses satisfied for \(\tau \) and for \(\tau' \) and output the best of these two instantiations.

Question 2.1) Show that this algorithm is a \(\frac{1}{2} \)-approximation for Max-SAT, and exhibit a tight instances family.

Exercise 3 (Constraint-based 3-coloring randomized algorithm). Given an undirected graph \(G = (V, E) \) with a pair \(p_u \) of integers chosen in \(\{1, 2, 3\} \) on each vertex \(u \), the constrained 3-coloring problem consists in finding a valid 3-coloring \(\alpha \) of the vertices such that the color of each vertex \(u \) is chosen in \(p_u \), i.e. an \(\alpha : V \rightarrow \{1, 2, 3\} \) such that:

\[
\text{for all } uv \in E, \alpha_u \neq \alpha_v \quad \text{and} \quad \text{for all } u \in V, \alpha_u \in p_u.
\]

Question 3.1) Give a solution to the following constrained 3-coloring instance:

![Graph](attachment:image.png)

Question 3.2) Show that solving a constrained 3-coloring instance is equivalent to solve a 2-SAT instance that you are asked to describe explicitly. Give the 2-SAT instance corresponding the graph above.

We consider the following algorithm for 3-coloring an undirected graph \(G = (V, E) \).

Algorithm 1 Constraint-based 3-coloring randomized algorithm

repeat

- Choose independently for each vertex \(u \) a pair \(p_u \) of integers in \(\{1, 2, 3\} \) uniformly at random.
- Solve the corresponding constrained 3-coloring using the reduction above to a 2-SAT instance.

until a 3-coloring is found

Question 3.3) Show that if \(G \) is 3-colorable, then this algorithm will find a 3-coloring after at most \(O\left((\frac{3}{2})^n\right) \) iterations on expectation, where \(n = |V| \). Give an upper bound on the expected total computation time of this algorithm if this case.

Question 3.4) After how many iterations, should we stop the algorithm and declare the graph as "not 3-colorable" so as to be mistaken with probability at most \(\frac{1}{n^2} \)? What is the failure probability if the graph is indeed not 3-colorable?