Examples of
online social network analysis



Social networks

Huge field of research

Data: mostly small samples, surveys

N

Multiplexity

> Issue of data mining
LongltUdlnal data McPherson et al, Annu. Rev. Sociol. (2001)




New technologies

Email networks

Cellphone call networks
Real-world interactions
Online networks/ social web

QNEW (large-scale) DATASETS,
longitudinal data




New laboratories

Social network properties

— homophily

— selection vs influence

Triadic closure, preferential attachment
Social balance

Dunbar number

Experiments at large scale...



Another social science lab:

crowdsourcing, e.g. Amazon Mechanical Turk

Already have an account?
Sgninasa I

amazonmechanical turk T V— | A——
Introduction | Dashboard | Status | Account Settings
Mechanical Turk is a marketplace for work.

We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

231,948 HITs available. View them now.

Make Money =t Get Results

by working on HITs
MITs - Muman Intefigence Tasks - are Individual tasis that Ask workers 10 complete HITS - Human Inteligence Tasks - and
you work on. Find HiTs now. Qet resuits using Mechanical Turk. Register Now
As a Mechanical Turk Worker you: As a Mechanical Turk Requester you:
® Have acoess to a global, on-demand, 24 x 7 workforce

¢ Can work from home

® Choose your own work hours ® Get thousands of HITs completed in minutes

® Get paid for doing good work ® Pay only when you're satisfied with the results
rosuns

LN, @O

interesting task
\__Find HITs Now | )

Fund your Load you
account

or lgarn more about being 3 Worker

http://experimentalturk.wordpress.com/



http://experimentalturk.wordpress.com

Judgment and Decision Making, Vol. 5, No. 5, August 2010, pp. XX-XX

Running experiments on Amazon Mechanical Turk

Gabriele Paolacci®
Advanced School of Economics, Ca’ Foscari University of Venice

Jesse Chandler
Woodrow Wilson School of Public and International Affairs, Princeton University

Panagiotis G. Ipeirotis
Leonard N. Stern School of Business, New York University

Abstract

Although Mecchanical Turk has recently become popular among social scientists as a source of experimental data,
doubts may linger about the quality of data provided by subjects recruited from online labor markets. We address these
potential concerns by presenting new demographic data about the Mechanical Turk subject population, reviewing the
strengths of Mechanical Turk relative to other online and offline methods of recruiting subjects, and comparing the
magnitude of effects obtained using Mechanical Turk and traditional subject pools. We further discuss some additional
benefits such as the possibility of longitudinal, cross cultural and prescreening designs, and offer some advice on how to
best manage a common subject pool.

Keywords: experimentation, online research



New laboratories

Caveats:

 online links can differ from real social links
» population sampling biases?

* “big” data does not automatically mean
“good” data



The social web

* social networking sites

* blogs + comments + aggregators

* community-edited news sites, participatory journalism
* content-sharing sites

* discussion forums, newsgroups

* wikis, Wikipedia

* services that allow sharing of bookmarks/favorites

* ...and mashups of the above services
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Sharing and annotating

Examples:

* Flickr: sharing of photos

« Last.fm: music

* aNobii: books

* Del.icio.us: social bookmarking

* Bibsonomy: publications and bookmarks
‘ *“Social” networks

*“‘specialized” content-sharing sites
*Users expose profiles (content) and links




Case study: aNobii

(similar analysis done also for last.fm and flickr)

» User’s profile:
— Books read by user
— Wishlist of books
— Tags describing the books
— Groups of discussion
— Geographical information

» Social network (directed)
 ~100 000 users
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Activity measures

Heterogeneity of all users’ activity amounts
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Correlations

Correlation between user’s activity types:
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Mixing patterns

average activity of nearest neighbors
as a function of own activity
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Alignment of users’ profiles!?

 Measure: common books, tag usage patterns,
shared groups

« global?
* local? (between neighbors on the social network)
« dependence on distance on the social network?

measures of alignment:

e # common books of two users

e« # distinct tags shared between two users
e # groups shared

e similarity measures (normalized)




Alignment of users’ profiles

random pairs of users:

» no alignment (small average # of common tags/groups/books)
» most likely case: no shared tags/groups/books
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Alignment along the network

Average
number of
common books
- of two users

Homophily

Average

- normalized
similarity

7 measure

1 between two
users

Distance between users
on social network

Real effect, or due to assortativity?



Lexical/topical alignment:
building a null model

» conserve the structure of the social graph

» keep unchanged the statistical properties
» tag frequencies

» activity of users
» correlations between activities
» mixing patterns

* but: remove assortativity-related alignment



Alignment along the network
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0 4 6 g
Distance between users 9
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amount of activity



Origin of homophily?



Suppose that there are two friends named lan and Joey, and lan's parents
ask him the classic hypothetical of social influence: “If your friend Joey
jumped off a bridge, would you jump too?" Why might lan answer “yes™?

* because Joey’s example inspired lan (social contagion/influence)

» because Joey infected lan with a parasite which suppresses fear of falling (biological
contagion)

» because Joey and lan are friends on account of their shared fondness for jumping off
bridges (manifest homophily, on the characteristic of interest)

» because Joey and lan became friends through a thrill-seeking club, whose membership
rolls are publicly available (secondary homophily, on a different yet observed characteristic)

» because Joey and lan became friends through their shared fondness for roller-coasters,
which was caused by their common thrill-seeking propensity, which also leads them to jump
off bridges (latent homophily, on an unobserved characteristic)

» because Joey and lan both happen to be on the Tacoma Narrows Bridge in November,
1940, and jumping is safer than staying on a bridge that is tearing itself apart (common
external causation)

http://arxiv.org/abs/1004.4704


http://arxiv.org/abs/1004.4704

IS obesity contagious on Facebook

fact: obese individuals are clustered

1. because of selection effects, in which people are choosing to
form friendships with others of similar obesity status?

2. because of the confounding effects of homophily according to
other characteristics, in which the network structure indicates
existing patterns of similarity in other dimensions that correlate
with obesity status?

3. because changes in the obesity status of a person’s friends

was exerting a (presumably behavioral) influence that affected his
or her future obesity status?

N. A. Christakis et al., N. Engl. J. Med. 2007; 357:370-37



Origin of homophily?

selection vs Influence

Need to observe temporal evolution



aNoblii, dynamics

Successive snapshots at intervals of 15 days
 New nodes
* New links from new to old nodes

Every 2 weeks:

— 2000 to 3000 new users

— 20000 to 30000 new links

However: all statistical properties remain stationary

. N | .
» New links between old nodes | Mieasure: homophily
because of

» Evolution of users’ profiles [ «Selection?

) eInfluence?




Dynamics: new nodes, new links
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Dynamics: selection or influence?

<N~ O, <an> o
A’Elrlm:t,\cli o 1(9502) | 0.02 | 112 (0.61) 0.05 New links
uy between
Simple closure already
(u->v with 18.2 (0.09) | 0.04 1.81 (0.45) 0.1 present users
d,=2)
Double closure u \Y
(U <-> v with 005 | 2.2(0.36) 0.12 '\._/‘
d,=2)
Selection

Larger average similarity at t for pairs which become linked between t and t+1
(and smaller proba to have 0 similarity)



Dynamics: selection or influence?
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Influence
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Summary and related work

« Similar results for other networks: Last.fm, flickr
« Possibility to predict existence of links

« “Laboratories” for social network analysis and testing of
sociological theories, see also e.qg.
— Crandall et al., Proc of Knowledge discovery and Data Mining 2008
— Leskovec, Huttenlocher, Kleinberg, arxiv:1003.2424, 1003.2429
— Szell, Lambiotte, Thurner, arxiv:1003.5137 (PNAS 2010)
— Goncgalves, Perra, Vespignani, arxiv:1105.5170

* Prediction of creation of links
« Recommendations
« Study of adoption mechanisms (book, author)

R. Schifanella et al., Proc. of Web Search and Data Mining (WSDM) 2010 , arxiv:1003.2281
L. Azello et al., Proc. of Socialcom 2010, arxiv:1006.4966



a controlled experiment

E. Bakshy et al., The Role of Social Networks in
Information Diffusion, WWW2012



sharing links on Facelbook

Observable Unobservable

/Facebook Feed\ e External Correlation \

Regular visitation to web sites )
Story 1

Story 2 ( E-Mail ) cee Clnstant Messaging)
\. J

v \ \/
Story

linking to Q User visits page X )

page X ) S l

C User shares page X on Facebook )




experimental design
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pbalancing the demographics

Demographic Feature feed no feed
(% of subjects)

Gender

FEMALE 51.6% 51.4%
MALE 46.7% 47.0%
UNSPECIFIED 1.5% 1.5%
Age

17 OR YOUNGER 12.8% 13.1%
18-25 36.4% 36.1%
26-35 27.2% 26.9%
36-45 13.0% 12.9%
46 OR OLDER 10.6% 10.9%
Country (top 10 & other)

UNITED STATES 28.9% 29.1%
TURKEY 6.1% 5.8%
GREAT BRITAIN 5.1%  5.2%
ITALY 4.2% 4.1%
FRANCE 3.8% 3.9%
CANADA 3.7%  3.8%
INDONESIA 3.7%  3.5%
PHILIPPINES 2.1% 2.3%
GERMANY 2.3% 2.3%
MEXICO 2.0% 2.1%
226 OTHERS 37.5% 37.7%

Table 1: Summary of demographic features of sub-
jects assigned to the feed (N = 160,688,092) and no
feed (N = 218,743,932) condition. Some subjects may
appear in both columns.



timing of shares
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effect of multiple sharing friends
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the impact of tie strength
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the impact of tie strength
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http://arxiv.org/abs/1201.4145


http://arxiv.org/abs/1006.4966

The case of facebook

facebook

The Anatomy of the Facebook Social Graph, arXiv:1111.4503
Four Degrees of Separation, arxiv:11.4570
The Role of Social Networks in Information Diffusion, arxiv:1201.4145



Degree distribution of the
facebook network
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Number of components
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A small-world network
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Clustering spectrum
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Neighbor's average degree
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Geographic homophlly
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Influence in facebook

The Role of Social Networks in Information Diffusion, arxiv:1201.4145



Assume the following scenario:

1. user U exposes a web page X on facebook
2. userV, friend of U, exposes at a later time X on facebook

Question: was V influenced by U?



Why is that not obvious?

confounding factors

Observable Unobservable

/

\

Facebook Feed External Correlation

Regular visitation to web sites )
Story 1

s
C
Story 2 C E-Mail ) Clnstant Messaging)

/
v v \

User visits page X

Story
linking to

page X l

( User shares page X on Facebook

— \/




Controlled experiment:
e suppress the exposure to X on facebook at random
e compare probability for V to share X

e when exposed on facebook

e when not exposed on facebook

Observable Unobservable
C Facebook Feed @ External Correlation
C Regular visitation to web sites

Story 1

Story 2 C E-Mail ) cee Clnstant Messaging
> \ \ \

l XC User visits page X
( User shares page X on Facebook

) U )




experimental design
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Results
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probabiluty of sharing
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tie strength
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It’'s complicated
(but interesting!)



