Exercise 1 (A streaming algorithm for the second moment of the frequencies). We are given a stream of numbers \(x_1, \ldots, x_n \in \{0, \ldots, m - 1\}\) and we want to compute the sum of the squares of the frequencies of each values 0 to \(m - 1\) in this stream: if \(f_a(x) = \#\{i : x_i = a\}\), we want to compute \(F_2(x) = \sum_{a=0}^{m-1} f_a(x)^2\).

Take a random function \(h : \{1, \ldots, m\} \rightarrow \{-1, 1\}\), i.e.: for all \(a\), \(h(a)\) is chosen independently and uniformly at random in \(\{-1, 1\}\). And do the following:

Algorithm 1 Second frequency moment random algorithm

Pick a hash function \(h : \{0, \ldots, m - 1\} \rightarrow \{-1, 1\}\) uniformly at random
Compute \(Z = h(x_1) + \cdots + h(x_n)\) while reading the stream
Output \(Z^2\)

\[\begin{align*}
\text{Question 1.1} & \quad \text{Show that } \mathbb{E}[Z^2] = F_2(x) \text{ where the expectation is taken over all the possible values for } h. \quad \text{\(\triangleright\) Hint. For } a \neq b, \text{ show that } \mathbb{E}_h[h(a)h(b)] = 0 \text{ and } \mathbb{E}_h[h(a)^2] = 1. \\
\text{Answer: } \triangleright & \quad \text{First remark that, } \mathbb{E}[h(a)^2] = \mathbb{E}[1] = 1 \text{ and } \mathbb{E}[h(a)] = \frac{1}{2} \times -1 + \frac{1}{2} \times 1 = 0. \\
& \quad \text{Now, if } a \neq b, \text{ then } h(a) \text{ and } h(b) \text{ are independent and } \mathbb{E}[h(a)h(b)] = \mathbb{E}[h(a)] \mathbb{E}[h(b)] = 0. \text{ It follows:}
\end{align*}\]

\[
\mathbb{E}[Z^2] = \mathbb{E}[(h(x_1) + \cdots h(x_n))^2] = \mathbb{E} \left[\left(\sum_{a=0}^{m-1} f_a(x)h(a) \right)^2 \right] = \sum_{a=0}^{m-1} f_a(x)^2 \mathbb{E}[h(a)^2] + \sum_{a \neq b} f_a(x)f_b(x) \mathbb{E}[h(a)h(b)] = \sum_{a=0}^{m-1} f_a(x)^2 = F_2(x).
\]

\[\triangleright\]

\textbf{Question 1.2) Show that } \mathbb{V}ar(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2 = 2 \sum_{a \neq b} f_a(x)^2 f_b(x)^2 \leq 2F_2(x)^2. \\
\text{Answer: } \triangleright & \quad \text{As before, note that if } b, c, d \text{ are all different from } a, \text{ by independence of } h(a) \text{ from } h(b), h(c) \text{ and } h(d), \text{ we have: } \mathbb{E}[h(a)^2h(b)] = \mathbb{E}[h(a)h(b)] = 0 \text{ and}
\]
\[\mathbb{E}[h(a)h(b)h(c)h(d)] = \mathbb{E}[h(a)] \mathbb{E}[h(b)h(c)h(d)] = 0. \]

It follows that:

\[
\mathbb{E}[Z^4] = \mathbb{E} \left[\left(\sum_{a=0}^{m-1} f_a(x)h(a) \right)^4 \right] \\
= \sum_{a=0}^{m-1} f_a(x)^4 \mathbb{E}[h(a)^4] \\
+ 4 \sum_{a=0}^{m-1} f_a(x)^3 f_b(x) \mathbb{E}[h(a)^3 h(b)] \\
+ \frac{1}{2} \left(\sum_{a=0}^{m-1} f_a(x)^2 f_b(x)^2 \mathbb{E}[h(a)^2 h(b)] \right) + 2 \sum_{a=0}^{m-1} f_a(x)^2 f_b(x)^2 \mathbb{E}[h(a)^2 h(b) h(c)] \\
+ \sum_{a=0}^{m-1} f_a(x) f_b(x) f_c(x) f_d(x) \mathbb{E}[h(a) h(b) h(c) f(d)] \\
= \sum_{a=0}^{m-1} f_a(x)^4 + 3 \sum_{a,b \neq b} f_a(x)^2 f_b(x)^2.
\]

Thus, \(\text{Var}[Z^2] = \mathbb{E}[Z^4] - \mathbb{E}[Z^2] = \sum_{a=0}^{m-1} f_a(x)^4 + 3 \sum_{a,b \neq b} f_a(x)^2 f_b(x)^2 - \left(\sum_{a=0}^{m-1} f_a(x)^2 \right)^2 \]
\[
= 2 \sum_{a,b \neq b} f_a(x)^2 f_b(x)^2 \leq 2 \left(\sum_{a=0}^{m-1} f_a(x)^2 \right)^2 = 2F_2(x)^2.
\]

\(<\)

Remark that this algorithm requires a lot of memory to store \(h; O(m \log m) \) bits, almost as much as counting the frequencies independently (\(O(m \log n) \) bits). But remark that we only need the values of \(h \) to be \(4 \)-wise independent to obtain the results above. Let us thus use the following construction for \(h \) that will require much less memory.

Consider the field \(\mathbb{F}_{2^k} \) where \(k = \lceil \log_2 m \rceil \) such that \(2^{k-1} < m \leq 2^k \). Let us identify the elements of \(\mathbb{F}_{2^k} \) as a string of \(k \) bits and as numbers from 0 to \(2^k - 1 \) as well. Let \(\pi: \mathbb{F}_{2^k} \to \{-1, 1\} \) be the function that associates to any number \(a \in \mathbb{F}_{2^k} \) the value \(-1\) if the first bit of \(a \) is 0 and the value \(+1\) otherwise.

For all 4-tuple \((u, v, w, t) \in (\mathbb{F}_{2^k})^4\), let \(P_{uvwt} : \mathbb{F}_{2^k} \to \mathbb{F}_{2^k} \) be the polynomial:

\[
P_{uvwt}(a) = ua^3 + va^2 + wa + t,
\]

and set \(h_{uvwt}(a) = \pi(P_{uvwt}(a)) \).

Question 1.3) Show that if \(u, v, w, t \) are chosen independently and uniformly at random in \(\mathbb{F}_{2^k} \), then for all fixed distinct values \(a, b, c, d \in \mathbb{F}_{2^k} \), the random 4-tuple \((P_{uvwt}(a), P_{uvwt}(b), P_{uvwt}(c), P_{uvwt}(d)) \) is uniform in \((\mathbb{F}_{2^k})^4\).
Conclude that when for the event least \(\text{dom} \) \(v \) \(w \) \(t \) \(f \) \(u \) \(v \) \(w \) \(t \) \(f \) \(f \), indeed, the solution \((u, v, w, t) \) is unique since the matrix is a van der Mond matrix which is inversible as soon as \(a, b, c \) and \(d \) distinct. It follows that all the values in \((F_{2k})^4 \) are equally probable for the \(4 \)-tuple \(F_{\text{uwvt}}(a), F_{\text{uwvt}}(b), F_{\text{uwvt}}(c), F_{\text{uwvt}}(d) \), it is thus uniform. \(\Box \)

Question 1.4 Conclude that when \(u, v, w, t \) are chosen independently and uniformly at random in \(F_{2k} \), the values \(h_{\text{uwvt}}(0), \ldots, h_{\text{uwvt}}(m - 1) \) are \(4 \)-wise independent uniform random variables with values in \(\{-1, 1\} \).

Answer. Remark that \(\pi \) maps half the elements in \(F_{2k} \) to \(-1\) and the other half to \(1\). Thus, the image by \(\pi \) of a uniform random variable in \(F_{2k} \) is a uniform random variable in \(\{-1, 1\} \). Formally, for all \((\alpha, \beta, \gamma, \delta) \in \{-1, 1\}^4 \) and distincts \(a, b, c, d \in F_{2k} \),

\[
\Pr_{u,v,w,t} \{ (\pi(F_{\text{uwvt}}(a)), \pi(F_{\text{uwvt}}(b)), \pi(F_{\text{uwvt}}(c)), \pi(F_{\text{uwvt}}(d))) = (\alpha, \beta, \gamma, \delta) \} = \frac{1}{(2k)^4}.
\]

which implies that \(\pi(F_{\text{uwvt}}(0)), \ldots, \pi(F_{\text{uwvt}}(m - 1)) \) are \(4 \)-wise independent uniform random variables in \(\{-1, 1\} \). \(\Box \)

Question 1.5 Conclude that there is a \((\varepsilon, \delta) \)-estimator computing \(F_2(x) \) using \(O(\log m + \log n) \) bits of memory. Describe it and explain the bound on the memory needed as a function of \(\delta \) and \(\varepsilon \).

Answer. Consider the following algorithm and let us prove that it is a \((\varepsilon, \delta) \)-estimator:

Recall that \(\text{Var}(\mu_i) = \text{Var}(Z)/B \leq 2F_2(x)^2/B \). By Chebychev inequality, for all \(i = 1, \ldots, A \),

\[
\Pr[|\mu_i - F_2(x)| \geq \varepsilon F_2(x)] \leq \frac{\text{Var}(\mu_i)}{\varepsilon^2 F_2(x)^2} \leq \frac{2}{B \varepsilon^2} \leq \frac{1}{4}.
\]

Furthermore, if the median of the values \(\mu_1, \ldots, \mu_A \) lies outside \((1 \pm \varepsilon)F_2(x) \), then at least \(A/2 \) of the values lie outside as well. Then, if \(Y_1 \) denotes the indicator random variable for the event \(\mu_i \not\in (1 \pm \varepsilon)F_2(x) \) (note that \(E[Y_1] \leq 1/4 \)), then by Hoeffding inequality,

\[
\Pr[|\text{output} - F_2(x)| \geq \varepsilon F_2(x)] \leq \Pr[Y_1 + \cdots + Y_A \geq A/2] \\
\leq \Pr[Y_1 + \cdots + Y_A - E[Y_1 + \cdots + Y_A] \geq A/4] \\
\leq \exp \left(-\frac{2(A/4)^2}{A} \right) \leq \delta.
\]
Algorithm 2 Memory efficient second frequency moment \((\varepsilon, \delta)\)-estimator

Let \(k = \lceil \log_2 m \rceil\), \(A = \lceil 8 \ln(1/\delta) \rceil\) and \(B = \lceil 8/\varepsilon^2 \rceil\)

for \(i = 1..A\) and \(j = 1..B\)

- Pick \(u_{ij}, v_{ij}, w_{ij}, t_{ij}\) independently and uniformly at random in the field \(\mathbb{F}_{2^k}\)
- Let \(h_{ij}\) be the hash function: \(h_{ij}(a) = \pi(u_{ij}a^3 + v_{ij}a^2 + w_{ij}a + t_{ij})\)
- Compute \(Z_{ij} = h_{ij}(x_1) + \cdots + h_{ij}(x_n)\) for all \(i = 1..A\) and \(j = 1..B\) simultaneously while reading the stream

for \(i = 1..A\)

- Compute the average \(\mu_i = \frac{(Z_{i1})^2 + \cdots + (Z_{iB})^2}{B}\)

return the median of the values \(\mu_1, \ldots, \mu_A\)

Now, the algorithm is memory efficient since it uses: \(4AB\) variables of \(k\) bits each (the \(u_{ij}, v_{ij}, w_{ij}, t_{ij}\)) and \(AB + A\) variables of at most \(2 \log n\) bits (the \(Z_{ij}\) and \(\mu_i\)).

The total number of bits of memory used by the \((\varepsilon, \delta)\)-estimator for \(F_2(x)\) is thus: \(O\left(\frac{\ln(1/\delta)}{\varepsilon^2}(\log m + \log n)\right)\).