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Reminder

Two natural numbers p and q are multiplicatively independent if

(pn = q
m, n,m ∈ Z) =⇒ n = m = 0 ,

or, equivalently, if log p/ log q 6∈ Q.

For instance, 2 and 10, or 2 and 3, are multiplicatively independent, but 36 and
216 are not.



A general heuristic
Le bonheur n’est pas chose aisée.

It is commonly expected that expansions of numbers in multiplicatively
independent bases should have no common structure.

However, it seems particularly difficult to confirm this naive heuristic principle
in some way or another.



Two examples

The binary Thue-Morse number τ is defined as follows. Its nth binary digit is
equal to 0 if the sum of digits in the binary expansion of n is even, and to 1
otherwise.

The binary expansion of τ is

〈τ 〉2 = 0.011 010 011 001 011 010 010 110 011 010 011 001 011 · · ·

while its decimal expansion is

〈τ 〉10 = 0.412 454 033 640 107 597 783 361 368 258 455 283 089 · · · .

The binary expansion of 261 is

〈261〉2 = 1 000 000 000 · · · 000 000

while its decimal expansion is

〈261〉10 = 2 305 843 009 213 693 952 .



Part I. Furstenberg’s conjecture and finite automata



The dynamical point of view: Furstenberg’s conjecture

Let Tq denote the map defined on R/Z by x 7→ qx .

Let Oq(x) denote the forward orbit of x under Tq , that is

Oq(x) :=
{

x ,Tq(x),T
2

q (x), . . .
}

.

Conjecture (Furstenberg, 1969)

Let p and q be two multiplicatively independent natural numbers, and let
x ∈ [0, 1) be an irrational real number. Then

dimH Op(x) + dimH Oq(x) ≥ 1.

This conjecture beautifully expresses the expected balance between the
complexity of expansions of a real number in independent bases:

If an irrational number x has low complexity in one base, then it should
have high complexity in every other independent base.



Comments on Furstenberg’s conjecture

Conjecture (Furstenberg, 1969)

Let p and q be two multiplicatively independent natural numbers, and let
x ∈ [0, 1) be an irrational real number. Then

dimH Op(x) + dimH Oq(x) ≥ 1.

• Furstenberg’s conjecture holds true generically.

• In fact, all the strength of this conjecture takes shape when x has a simple
expansion in one base, especially when x has zero entropy.

The binary Thue-Morse number τ

〈τ 〉2 = 0.011 010 011 001 011 010 010 110 011 010 011 001 011 · · ·

has zero entropy in base 2 and hence its decimal expansion

〈τ 〉10 = 0.412 454 033 640 107 597 783 361 368 258 455 283 089 · · ·

should have full entropy!



Yet another astonishing consequence
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As observed by Furstenberg, his conjecture implies that any finite block of
digits occurs in the decimal expansion of 2n, as soon as n is large enough.

A related conjecture of Erdős claims that the digit 2 occurs in the ternary
expansion of 2n for all n > 8.



The works of Shmerkin and Wu

Recently, Shmerkin and Wu proved independently the following remarkable
result (both papers are published in the same issue of the Annals of Math.).

Theorem (Shmerkin-Wu, 2019)

The set of exceptions to Furstenberg’s conjecture has Hausdorff dimension zero.

Though this contribution marks significant progress, Furstenberg’s conjecture
remains far out of reach of current methods.

Unfortunately, this theorem does not tell us anything about expansions of real
numbers with zero entropy in some base...



The computational point of view

While expansion of computable numbers can be generated by general Turing
machines, automatic real numbers are those whose expansion can be generated
by a finite automaton. From a computational point of view, this provides
another relevant notion of a number with low complexity.

Definition

A real number x is automatic in base b if there exists a finite automaton that
takes as input the expansion of n in some fixed base and produces as output
the nth digit of x in base b.



Two examples

Example 1. The binary Thue–Morse number

〈τ 〉2 = 0.011 010 011 001 011 010 010 110 011 010 011 001 011 · · ·

is automatic in base 2.

A/0 B/1

0 0

1

1

Example 2.

A/0 B/1

0, 1 0, 1

2

2

This automaton generates the binary automatic number

〈τ ′〉2 = 0.001 001 110 001 011 110 110 110 011 001 001 110 001 · · ·



Three conjectures involving automata

According to our general heuristic, we expect the following result.

Conjecture 1

Let p and q be two multiplicatively independent natural numbers, and let x be
an irrational real number. If x is automatic in base p, then it cannot be
automatic in base q.

With a more Diophantine flavour, Conjecture 1 can be strengthened as follows.

Conjecture 2

Let p and q be two multiplicatively independent natural numbers, x1 be
automatic in base p, and x2 be automatic in base q, both irrational. Then x1

and x2 are algebraically independent over Q (the field of algebraic numbers).

It would not only show that τ cannot be automatic in base 10, but also that
this is the case for any number obtained from τ by using algebraic numbers and
algebraic operations (addition, multiplication, division, taking nth roots...).



Three conjectures involving automata

The two previous conjectures can even be generalized as follows.

Conjecture 3

Let x1, ..., xr be irrational automatic numbers with respect to some
multiplicatively independent bases b1, ..., br . Then x1, . . . , xr are algebraically
independent over Q.

Reminder. Complex numbers α1, . . . , αr are multiplicatively independent if
there is no non-zero tuple of integers (n1, . . . , nr ) such that αn1

1
· · ·αnr

r = 1.

For instance, 2, 3, and 10 are multiplicatively independent, while 2, 5, and 10
are not.



Part II. Mahler’s method



M-functions

In 1929, Mahler initiated a new method in transcendental number theory. It
aims at proving results about transcendence and algebraic independence of
values of the so–called M-functions at algebraic points.

Definition

Let q ≥ 2 be a natural number. A formal power series f (z) ∈ Q[[z]] is a
q-Mahler function if there exist p0(z), . . . , pm(z) ∈ Q[z], not all zero, such that

p0(z)f (z) + p1(z)f (z
q) + · · ·+ pd(z)f (z

qm ) = 0 .

We say that f (z) is an M-function if it is a q-Mahler function for some q ≥ 2.

The function f(z) :=
∑∞

n=0
z2

n

satisfies the inhomogeneous 2-Mahler equation

f(z2) = f(z)− z . (1)

Mahler used (1) to prove that f(α) is transcendental for all α ∈ Q, 0 < |α| < 1.



Connection between Mahler’s method and automatic numbers

The Thue-Morse sequence t := t(n) is the 2-automatic sequence defined by:
t(n) = 0 if the sum of digits in the binary expansion of n is even,
t(n) = 1 otherwise.

Hence t(2n) = t(n) while t(2n + 1) = 1 − t(n).

It follows that the generating series ft(z) :=
∑

t(n)zn satisfies

ft(z) =
∑

t(2n)z2n +
∑

t(2n + 1)z2n+1

= ft(z
2) +

z

1 − z2
− zft(z

2) ,

leading to the inhomogeneous linear 2-Mahler equation of order one:

z

1 − z2
− ft(z) + (1 − z)ft(z

2) = 0 .

We obtain that ft(z) is an M-function and that the binary Thue-Morse number
τ = ft(1/2).



Connection between Mahler’s method and automatic numbers

In 1968, Cobham noticed the following fundamental connection between
automatic numbers and M-functions.

If x = a0.a1a2 · · · is automatic in base b, then the generating series

f (z) :=
∞
∑

n=0

anz
n

is an M-function. Hence, then there exists an M-function f (z) ∈ Q[[z]]
such that x = f (1/b).

Consequence. Problems concerning transcendence and algebraic independence
of automatic numbers can be restated and extended as problems concerning
transcendence and algebraic independence of values of M-functions at algebraic
points, which is precisely the aim of Mahler’s method.



Mahler’s method and transcendence

First fundamental question. If f (z) is a transcendental M-function and
α, 0 < |α| < 1, is algebraic, can we decide whether f (α) is transcendental?

Mahler’s first results imply that the Thue–Morse number is transcendental and
in fact that ft(α) is transcendental for all algebraic α, 0 < |α| < 1.

Warning. The infinite product g(z) :=
∏

n≥0
(1 − 2z3

n

) is a transcendental
M3-function solution to

g(z) = (1 − 2z3)g(z3)

but g(α) = 0 for every α such that α3
n

= 1/2 for some n.



Transcendence of values of M-functions at algebraic points

After various works including contributions of Mahler, Kubota, Loxton and van
der Poorten, Nishioka, and Philippon, the problem of the transcendence of
values of M-functions at algebraic points has been settled recently.

Theorem (A. and Faverjon, 2017)

Let f (z) be an M-function and α ∈ Q be such that f is well-defined at α. Let
K be the number field generated by the coefficients of f (z) and α.
Then either f (α) ∈ K or f (α) is transcendental.

Furthermore, the proof is effective and provides an algorithm that is able to
settle this alternative.

The case K = Q was conjectured by Cobham in 1968.

Consequence. The base-b expansion of an algebraic irrational number, such as√
2, cannot be generated by a finite automaton.



Our main result

Let r ≥ 1 be an integer. For every i , 1 ≤ i ≤ r , we let:

fi (z) ∈ Q[[z]] be a qi -Mahler function,

αi ∈ Q, 0 < |αi | < 1, be such that fi (z) is well-defined at αi .

K ⊂ Q be the number field generated by the coefficients of all the fi (z)
and the αi .

Main Theorem (A. and Faverjon, 2020)

Let us assume that one the two following properties hold.

(i) The numbers α1, . . . , αr are multiplicatively independent.

(ii) The numbers q1, . . . , qr are pairwise multiplicatively independent.

Then the numbers f1(α1), f2(α2), . . . , fr (αr ) are algebraically independent over
Q, unless one of them belongs to K.

The case r = 1 corresponds to the previous theorem.



Consequence of point (i) of our main theorem

Assumption. Let f1(z), . . . , fr (z) ∈ Q[[z]] be M-functions, α1, . . . , αr ∈ Q,
0 < |αi | < 1, be such that fi (z) is well-defined at αi , and K ⊂ Q be the
number field generated by the coefficients of all the fi (z) and the αi .

Main Theorem (Part (i))

Let us assume that α1, . . . , αr are multiplicatively independent. Then the
numbers f1(α1), f2(α2), . . . , fr (αr ) are algebraically independent over Q, unless
one of them belongs to K.

Proof of Conjectures 1–3. Let x1, . . . , xr be irrational automatic numbers with
respect to some multiplicatively independent bases b1, . . . , br .
Since xi is automatic in base bi , there exists an M-function fi (z) ∈ Q[[z]] such
that xi = fi (1/bi ).

Set αi := 1/bi and K = Q. By assumption, the numbers α1, . . . , αr are
multiplicatively independent and none of the numbers x1, . . . , xr belongs to K.

The theorem implies that the numbers x1 = f1(α1), . . . , xr = fr (αr ) are
algebraically independent over Q, as wanted.



Around Cobham’s theorem

As with Furstenberg’s conjecture, our theorem has also valuable consequences
about expansions of natural numbers.

A set E ⊂ N is q-automatic if there exists a finite automaton taking as input
the base-q expansion of n and that outputs 1 when n ∈ E and 0 otherwise.

A/0 B/1 C/0
1 1

0 0 0, 1

The set of powers of 2 is a typical example of a 2-automatic set.

Theorem (Cobham, 1969)

Let p and q be multiplicatively independent natural numbers. A set E ⊂ N is
both p- and q-automatic if and only if it is the union of finitely many
arithmetic progressions.

Cobham’s theorem implies that, when written in base 10, the set of powers of 2
cannot be recognized by a finite automaton.



New proof and generalizations of Cobham’s theorem

If E ⊂ N, its generating series is
∑

n∈E
zn.

Rephrasing of Cobham’s theorem in terms of generating series. Let Ep be a
p-automatic set and Eq be a q-automatic set. Assume that log p/ log q 6∈ Q.

∑

n∈Ep

z
n =

∑

n∈Eq

z
n =⇒ these series are rational functions.

In 1987, Loxton and van der Poorten conjectured the following generalizations:

(i) A power series cannot satisfy a p-Mahler equation and a q-Mahler
equation, unless it is a rational function.
(A. and Bell 2017 and Schäfke and Singer 2019)

(ii) Let f (z) be a solution to a p-Mahler equation and g(z) be a solution to a
q-Mahler equation, both irrational. Then f (z) and g(z) are algebraically
independent over Q(z).
(A., Dreyfus, Hardouin, and Wibmer, 2020)



Consequence of point (ii) of our main theorem

Theorem (A. & Faverjon, 2020)

Let r ≥ 1 be an integer. For every i , 1 ≤ i ≤ r , let fi (z) ∈ Q[[z]] be an
irrational solution to a qi -Mahler equation. Assume that q1, . . . , qr are pairwise
multiplicatively independent. Then f1(z), . . . , fr (z) are algebraically
independent over Q(z).

Proof. Let us assume that the functions f1(z), . . . , fr (z) are all irrational.
Then, they are all transcendental over Q(z).

As a consequence of a theorem of Nishioka, it is known that any transcendental
M-function takes transcendental values at all algebraic points in some suitable
punctured neighborhood of 0. Hence, there exists r > 0 such that for all
α ∈ Q, 0 < |α| < r , the numbers f1(α), . . . , fr (α) are all transcendental.

Let us pick such α. Applying Part (ii) of our main theorem with
α1 = · · · = αr = α, we obtain that the numbers f1(α), . . . , fr (α) are
algebraically independent over Q. Hence the functions f1(z), . . . , fr (z) are
algebraically independent over Q(z).


