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Multiplicatively badly approximable vectors
The t–adic Littlewood conjecture

A wide–ranging theory

The theory of badly approximable vectors is deeply intertwined with many
areas :

Diophantine Approximation (Analytic, Algebraic and Metric Number
Theory) ;

Ergodic Theory ;

Dynamical Systems ;

Classical mechanics (perturbation theory and small divisor problems) ;

Theory of mathematical quasicrystals (study of aperiodic order) ;

Physical theory of crystal structures (e.g., structure of graphene) ;

Fractal Geometry ;

Convex Geometry ;

Complexity Theory (computer science) ;

Theory of Partial Differential Equations ;

Theory of Signal Processing (Information Theory) ;

...
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A basic result

Theorem (Dirichlet, 1841)

For all x ∈ R and all Q ≥ 1, there exist integers p, q ∈ Z such that∣∣∣∣x − p
q

∣∣∣∣ <
1

qQ
et 1 ≤ q ≤ Q.

In particular, if x is irrational, then there exist infinitely many fractions p/q
such that ∣∣∣∣x − p

q

∣∣∣∣ <
1
q2 ·

Figure – Johann Peter Gustav Lejeune Dirichlet (1805 – 1859)

Faustin ADICEAM Badly Approximable Vectors and Littlewood-type Problems



Introduction
Multidimensional Badly Approximable Vectors

Multiplicatively badly approximable vectors
The t–adic Littlewood conjecture

The basic definition

Definition

A real number x is badly approximable is there exists a constant c > 0 such
that for all p/q, ∣∣∣∣x − p

q

∣∣∣∣ >
c
q2 ·

Equivalently, x ∈ R is badly approximable if

c := inf
q≥1
p∈Z

q · |qx − p| > 0 i.e. si c := inf
q≥1

q · ⟨qx⟩ > 0,

where
⟨ · ⟩ = dist ( · ,Z) .
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A characterisation through the theory of continued fractions

The irrational x can be expanded as a continued fraction :

x = [a0; a1, a2, a3, a4, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

with a0 = ⌊x⌋ ∈ Z and ai ≥ 1 an integer for for i ≥ 1.

The property of being badly approximable admits a very simple
formulation with the help of the sequence of partial quotients (ai)i≥1 :

c := inf
q≥1

q · ⟨qx⟩ > 0 ⇐⇒ M := sup
i≥1

ai < ∞.

In this case,
M ≤ c−1 ≤ M + 2.
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A fractal structure

Given M ≥ 1, let F (M) be the set of badly approximable numbers
x = [0; a1, a2, a3, a4, . . . ] in the interval [0, 1) such that maxi≥1 ai ≤ M.

Illustration in the case M = 2 :

Figure – Fractal construction of the set F (2)
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A fractal structure (bis)
The set F (M) admits a fractal structure. The set of badly approximable
numbers (in [0, 1)) is

⋃
M≥1 F (M).

Theorem (Jarnìk, 1928)

When M > 8,

1 − 4
M log(2)

≤ dimH (F (M)) ≤ 1 − 8
M log(M)

.

In particular, the set of badly approximable numbers has maximal Hausdorff
dimension.

Figure – Vojtech Jarnìk (1897–1970).
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Approximating a vector by a rational point
Let x = (x1, . . . , xn) ∈ [0, 1]n be a vector in dimension n ≥ 2.

If one wishes to approximate the vector x by a rational point
L = p/q ∈ Qn with p ∈ Zn and q ≥ 1...

... assuming that at least one of its coordinates is irrational, Dirichlet’s
Theorem (or Minkowski’s Convex Body Theorem ) guarantees the
existence of infinitely many rationals L = p/q ∈ Qn such that∥∥∥∥x − p

q

∥∥∥∥
∞

≤ 1
q1+1/n ;

that is,

dist∞ (x , L) ≤ H(L)−1−1/n, where H(L) = ∥(q,p)∥∞ .
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Approximating a vector by a rational hyperplane
Let x = (x1, . . . , xn) ∈ [0, 1]n be a vector in dimension n ≥ 2.

If one wishes to approximate the vector vecteur x by a rational
hyperplane L = {y ∈ Rn : q · y = p} with q ∈ Zn\{0} and p ∈ Z...

... assuming that its coordinates are rationally independent, Minkowski’s
Convex Body Theorem guarantees the existence of a constant κ > 0
and of infinitely many rational hyperplanes L such that

|q · x − p| · ∥(q, p)∥−1
∞ ≤ κ · ∥(q, p)∥−n−1

∞ ;

that is,

dist∞ (x , L) ≤ κ · H(L)−n−1, where H(L) = ∥(q, p)∥∞ .
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Approximating a vector by a rational line
Let x = (x1, . . . , xn) ∈ [0, 1]n be a vector in dimension n ≥ 2.

If one wishes to approximate the vector x by a rational line
L = {qt + p ∈ Rn : t ∈ R} with q ∈ Zn\{0} and p ∈ Zn...

... assuming that at least two of its coordinates are rationally
independent, Minkowski’s Convex Body Theorem guarantees the
existence of a constant κ′ > 0 and of infinitely many rational lines L such
that

dist∞ (x , L) ≤ κ′ · H(L)−1−2/(n−1), where H(L) = ∥(q,p)∥∞ .

Faustin ADICEAM Badly Approximable Vectors and Littlewood-type Problems



Introduction
Multidimensional Badly Approximable Vectors

Multiplicatively badly approximable vectors
The t–adic Littlewood conjecture

The general case

Proposition

Let n ≥ 2 (dimension of the Euclidian space) and 0 ≤ d ≤ n − 1(dimension of
the subspaces). For all x ∈ Rn having at least d + 1 rationally independent
coordinates, there exists a constant κ = κ(n, d , x) > 0 and infinitely many
affine rational subspaces L ⊂ Rn with dimension d such that

dist (x , L) ≤ κ · H(L)−1−ωn,d , where ωn,d =
d + 1
n − d

·

Definition

Let n ≥ 2 and 0 ≤ d ≤ n − 1 be integers. A vector x ∈ Rn is (n, d)–badly
approximable if there exists a constant γ = γ(n, d , x) > 0 such that for all
rational affine subspace L ⊂ Rn with dimension d,

dist (x , L) > γ · H(L)−1−ωn,d .
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Unifying the various concepts of multidimensional bad approximability
Extending works by Khintchine (1925), Dyson (1947), Jarnìk (1938) and
Mahler (1939) :

Theorem (Beresnevich, Guan, Marnat, Ramirez, Velani — 2021+)

Let n ≥ 2 and 0 ≤ d < d ′ ≤ n − 1 be integers. An n–dimensional vector est
(n, d)–badly approximable if, and only if, it is (n, d ′)–badly approximable.

Figure – Victor Beresnevich, Lifan Guan, Antoine Marnat, Felipe Ramirez & Sanju
Velani
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Hausdorff dimension of the badly approximable vectors

Theorem (Schmidt, 1966)

The set of badly approximable vectors in dimension n has maximal Hausdorff
dimension.

Figure – Wolfgang Schmidt (1933–)
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What is a multiplicatively badly approximable vector?
Let (α, β) ∈ R2.

From Dirichlet’s theorem applied to the vector (α, β), there exist infinitely
many integers q ≥ 1 such that max{q1/2 · ⟨qα⟩, q1/2 · ⟨qβ⟩} ≤ 1.
Consequently,

∃∞q ≥ 1 : ⟨qα⟩ · ⟨qβ⟩ ≤ 1
q

⇐⇒ inf
q≥1

q · ⟨qα⟩ · ⟨qβ⟩ ≤ 1.

Conjecture (Littlewood, c. 1930)

For all (α, β) ∈ R2,
inf
q≥1

q · ⟨qα⟩ · ⟨qβ⟩ = 0.

Figure – John Edensor Littlewood (1885 – 1977)
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What is a multiplicatively badly approximable vector? (bis)

Conjecture (Badziahin & Velani, 2011)

Given λ ≥ 0, let

Mλ =

{
(α, β) ∈ R2 : inf

q≥1
q · (log q)λ · ⟨qα⟩ · ⟨qβ⟩ > 0

}
.

Then, Mλ = ∅ if λ < 1 and dimMλ = 2 si λ ≥ 1.

Theorem (Badziahin, 2013)

dim

{
(α, β) ∈ R2 : inf

q≥1
q · (log q) · (log log q) · ⟨qα⟩ · ⟨qβ⟩ > 0

}
= 2.

Figure – Sanju Velani & Dzmitri Badziahin
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The p-adic Littlewood Conjecture
Recall : According to the Littlewood conjecture, infq≥1 q · ⟨qα⟩ · ⟨qβ⟩ = 0 for all

(α, β) ∈ R2.

Conjecture (De Mathan & Teulié, 2004)

For all α ∈ R and all prime number p,

inf
q≥1

q · |q|p · ⟨qα⟩ = 0,

where |q|p = p−k if q = pk n with pk+1 ∤ n. Equivalently,

inf
n≥1,k≥0

n · ⟨npkα⟩ = 0.

Recall : if x = [a0(x); a1(x), a2(x), a3(x), a4(x), . . . ], then

c(x) := inf
q≥1

q · ⟨qx⟩ > 0 ⇐⇒ M(x) := sup
i≥1

ai(x) < ∞.

Reinterpretation of the p-adic Littlewood conjecture :

∀α ∈ R, inf
k≥0

c
(

pkα
)

= 0 ⇐⇒ ∀α ∈ R, sup
k≥0

M
(

pkα
)

= ∞.
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Towards an analogous theory over function fields

Let α be a real number (e.g., α = 567.789 908 782 . . . ) :

α = b−n0 · · · b−1b0︸ ︷︷ ︸
integer part

. b1b2b3 · · ·︸ ︷︷ ︸
fractional part

=

n0∑
k=0

b−k 10k

︸ ︷︷ ︸
integer part

+
∞∑

k=1

bk

10k︸ ︷︷ ︸
fractional part

.

Let K be a finite field and let A(t) ∈ K
((

t−1)) be a Laurent series :

A(t) =

n0∑
k=0

b−k tk

︸ ︷︷ ︸
polynomial part

+
∞∑

k=1

bk

tk︸ ︷︷ ︸
fractional part

.

Real case Functional case
Z K [t ]
Q K (t)
R K

((
t−1))
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Littlewood conjectures over function fields

Definition (Norm of a Laurent series)

Given a Laurent series

A(t) = b−n0 tn0 + · · ·+ b−1t + b0 +
b1

t
+ · · ·+ bk

tk + · · · ,

set |A| = 2−k , where k ≥ −n0 is the smallest integer such that bk ̸= 0.

By abuse of notation, denote by ⟨A⟩ the fractional part of A and set
dist (A,K[t ]) = |⟨A⟩|.

Conjectures α, β ∈ R A,B ∈ K
((

t−1))
Classical Littlewood infq∈Z\{0} |q| · |⟨qα⟩| · |⟨qβ⟩| = 0 infQ∈K[t]\{0} |Q| · |⟨QA⟩| · |⟨QB⟩| = 0

p–adic Littlewood infn∈Z\{0}
k≥0

|n| ·
∣∣⟨pk nα⟩

∣∣ = 0 infN∈K[t]\{0}
k≥0

|N| ·
∣∣⟨tk NA⟩

∣∣ = 0
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The state of the art
Hausdorff dimension of the set not satisfying the conjecture :

Conjectures over R over K
((

t−1))
Classical Littlewood 0 ???

(E–Ka–L, 2006) (E–L–M, 2020)

p–adic Littlewood 0 ???
(E–Kl, 2007) (E–L–M, 2020)

E : Einsiedler, Ka : Katok, L : Lindenstrauss, Kl : Kleinbock, M : Mohammadi

Figure – Manfred Einsiedler, Anatol Katok, Dmitri Kleinbock, Elon Lindenstrauss & Amir Mohammadi
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The state of the art (bis)

Hausdorff dimension of the set not satisfying the conjecture :

Conjectures over R over K
((

t−1))
Classical Littlewood 0 ???

(E–Ka–L, 2006) (E–L–M, 2020)

p–adic Littlewood 0 ???
(E–Kl, 2007) (E–L–M, 2020)

E : Einsiedler, Ka : Katok, L : Lindenstrauss, Kl : Kleinbock, M : Mohammadi

Validity of the conjectures :

Conjectures over R over K
((

t−1))
Classical Littlewood ??? ???

p–adic Littlewood ??? false when
char(K)=3
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Statement of the main result

Theorem (A., Lunnon, Nesharim, 2021)

Let (pn)n≥1 ∈ {0, 1}N be the paper folding sequence. Then, the Laurent
series

Π =
∞∑

n=1

pn

tn ∈ F3

((
t−1

))
is a counterexample to the t–adic Littlewood conjecture over K = F3 :

inf
N∈K[t]\{0}

k≥0

|N| ·
∣∣∣⟨tk NΠ⟩

∣∣∣ = 2−4 > 0.

Figure – Erez Nesharim & Fred Lunnon
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The paper folding sequence

The paper folding sequence (pn)n≥1 can be obtained as follows : begin
with the terms 11 and apply the substitution rule
11 → 1101, 01 → 1001, 10 → 1100, 00 → 1000 :

11 → 1101 → 11011001 → 1101100111001001

→ 11011001110010011101100011001001

→ . . .
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Reduction of the problem to the existence of singular matrices

Let A =
∑∞

n=1 bnt−n be a Laurent series and let
N = θhth + · · ·+ θ1t + θ0 be a polynomial with degree h ≥ 1
(i.e. |N| = 2h).

Given l ≥ 1, asking that |N| ·
∣∣⟨tk NA⟩

∣∣ < 2−l , i.e.
∣∣⟨tk NA⟩

∣∣ < 2−(l+h),
amounts to imposing that a certain number of the coefficients of the
Laurent series tk NA should vanish. Explicitly, one requires that HAθ = 0,
where HA = HA(k , l, h) is a (h + l)× (h + 1) Hankel matrix formed from
the coefficients of A, and where θ = (θh, . . . , θ1, θ0)

T ∈ Kh+1\{0}.
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Reduction of the problem to the existence of singular matrices (bis)

From properties of Hankel matrices, the condition |N| ·
∣∣⟨tk NA⟩

∣∣ < 2−l

amounts to asking that there should exist l nested singular submatrices
inside the infinite Hankel matrix of the sequence (bn)n≥1.
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The Number Wall of a sequence

Definition

The Number Wall of the sequence B = (bn)n≥1 ∈ KN is an infinite matrix
W (B) = (wmn(B))m≥0,n∈Z whose (m, n)th coefficient is (up to the sign) the
Hankel determinant

wmn(B) = (−1)m(m−1)/2 ·

∣∣∣∣∣∣∣∣∣∣∣∣

bn−m · · · bk · · · bn
... . .

.
. .
. ...

bk bn bl
... . .

.
. .
. ...

bn · · · bl · · · bn+m

∣∣∣∣∣∣∣∣∣∣∣∣
.

(In particular, when m = 0, w0,n(B) = bn for all n ∈ Z.)
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The Number Wall of the paper folding sequence over F3

Figure – The Number Wall of the paper folding sequence over F3. In yellow (resp. in
blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

From the so–called Desnanot–Jacobi determinental identity, the zero
coefficients in this Number Wall can only appear inside squares.
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The Number Wall of the paper folding sequence over F3 (bis)

Figure – The Number Wall of the paper folding sequence over F3. In yellow (resp. in
blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

Reformulation of the problem :

inf
N∈K[t]\{0}

k≥0

|N| ·
∣∣∣⟨tk NΠ⟩

∣∣∣ = 2−4 ⇐⇒

{
there exists no 4 × 4 zero square
and there exists one such 3 × 3 square.
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Strategy 1/2

Figure – Left : the Number Wall of the paper folding sequence over F3. Right :
schematic illustration of the coding of the Number Wall.

Step 1 : To show that a sufficiently large portion of the Number Wall can be
obtained as a the image under a coding and a substitution rule of a
2-dimensional tiling.
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Strategy 2/2

Figure – Left : the Number Wall of the paper folding sequence over F3. Right :
schematic illustration of the coding of the Number Wall.

Step 2 : To consider the (infinite) tiling of the plane obtained from the above
coding and substitution rule. Working locally, to show that :
2.a. it is the Number Wall of a sequence (the tiling must satisfy the

Desnanots–Jacobi determinental rules) and that the coding and the
substitution rules do not generate 4 × 4 zero–squares.

2.b. the restriction of the coding and the substitution rule to the first row
generates the paper folding sequence.
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The end
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