One World Numeration Seminar Online, 22/11/22.

Badly Approximable Vectors and Littlewood-type Problems

Faustin ADICEAM

UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE

Faustin ADICEAM Badly Approximable Vectors and Littlewood-type Problems

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

Outline

Introduction

- 2 Multidimensional Badly Approximable Vectors
- 3 Multiplicatively badly approximable vectors
- The t-adic Littlewood conjecture

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

A wide-ranging theory

The theory of badly approximable vectors is deeply intertwined with many areas :

- Diophantine Approximation (Analytic, Algebraic and Metric Number Theory);
- Ergodic Theory;
- Dynamical Systems;
- Classical mechanics (perturbation theory and small divisor problems);
- Theory of mathematical quasicrystals (study of aperiodic order);
- Physical theory of crystal structures (e.g., structure of graphene);
- Fractal Geometry;
- Convex Geometry;
- Complexity Theory (computer science);
- Theory of Partial Differential Equations;
- Theory of Signal Processing (Information Theory);

• ...

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

A wide-ranging theory

The theory of **badly approximable vectors** is deeply intertwined with many areas :

- Diophantine Approximation (Analytic, Algebraic and Metric Number Theory);
- Ergodic Theory;
- Dynamical Systems;
- Classical mechanics (perturbation theory and small divisor problems);
- Theory of mathematical quasicrystals (study of aperiodic order);
- Physical theory of crystal structures (e.g., structure of graphene);
- Fractal Geometry;
- Convex Geometry;
- Complexity Theory (computer science);
- Theory of Partial Differential Equations;
- Theory of Signal Processing (Information Theory);

• ...

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

A basic result

Theorem (Dirichlet, 1841)

For all $x \in \mathbb{R}$ and all $Q \ge 1$, there exist integers $p, q \in \mathbb{Z}$ such that

$$\left|x-\frac{p}{q}\right| < \frac{1}{qQ}$$
 et $1 \leq q \leq Q$.

In particular, if x is irrational, then there exist infinitely many fractions p/q such that

$$\left|x-\frac{p}{q}\right| < \frac{1}{q^2}$$

Figure – Johann Peter Gustav Lejeune Dirichlet (1805 – 1859)

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

The basic definition

Definition

A real number x is badly approximable is there exists a constant c > 0 such that for all p/q,

$$\left|x-\frac{p}{q}\right| > \frac{c}{q^2}$$

• Equivalently, $x \in \mathbb{R}$ is badly approximable if

$$c := \inf_{\substack{q \ge 1 \\ p \in \mathbb{Z}}} q \cdot |qx - p| > 0$$
 i.e. si $c := \inf_{q \ge 1} q \cdot \langle qx \rangle > 0$,

where

 $\langle \cdot \rangle = \operatorname{dist}(\cdot, \mathbb{Z}).$

A characterisation through the theory of continued fractions

• The irrational *x* can be expanded as a continued fraction :

$$x = [a_0; a_1, a_2, a_3, a_4, \dots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \dots}}}}$$

with $a_0 = \lfloor x \rfloor \in \mathbb{Z}$ and $a_i \ge 1$ an integer for for $i \ge 1$.

 The property of being badly approximable admits a very simple formulation with the help of the sequence of partial quotients (a_i)_{i>1}:

$$c := \inf_{q \ge 1} q \cdot \langle qx \rangle > 0 \qquad \Longleftrightarrow \qquad M := \sup_{i \ge 1} a_i < \infty.$$

In this case,

$$M \leq c^{-1} \leq M+2.$$

A fractal structure

- Given $M \ge 1$, let F(M) be the set of badly approximable numbers $x = [0; a_1, a_2, a_3, a_4, \dots]$ in the interval [0, 1) such that $\max_{i>1} a_i \le M$.
- Illustration in the case M = 2:

Figure – Fractal construction of the set F(2)

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

A fractal structure (bis)

 The set *F*(*M*) admits a fractal structure. The set of badly approximable numbers (in [0, 1)) is ∪_{M≥1} *F*(*M*).

Theorem (Jarnìk, 1928)

When M > 8,

$$1 - \frac{4}{M \log(2)} \leq \dim_H (F(M)) \leq 1 - \frac{8}{M \log(M)}$$

In particular, the set of badly approximable numbers has maximal Hausdorff dimension.

Figure – Vojtech Jarnik (1897–1970).

Introduction Multidimensional Badly Approximable Vectors

Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

Outline

2 Multidimensional Badly Approximable Vectors

3 Multiplicatively badly approximable vectors

4) The t-adic Littlewood conjecture

Approximating a vector by a rational point

Let $\mathbf{x} = (x_1, \dots, x_n) \in [0, 1]^n$ be a vector in dimension $n \ge 2$.

• If one wishes to approximate the vector **x** by a rational point $L = \mathbf{p}/q \in \mathbb{Q}^n$ with $\mathbf{p} \in \mathbb{Z}^n$ and q > 1...

• ... assuming that at least one of its coordinates is irrational, Dirichlet's Theorem (or Minkowski's Convex Body Theorem) guarantees the existence of infinitely many rationals $L = \mathbf{p}/q \in \mathbb{Q}^n$ such that

$$\left\| \boldsymbol{x} - \frac{\boldsymbol{p}}{q} \right\|_{\infty} \leq \frac{1}{q^{1+1/n}};$$

that is,

 $dist_{\infty}(\mathbf{x}, L) \leq H(L)^{-1-1/n}$, where $H(L) = ||(q, \mathbf{p})||_{\infty}$.

Approximating a vector by a rational hyperplane

Let $\mathbf{x} = (x_1, \dots, x_n) \in [0, 1]^n$ be a vector in dimension $n \ge 2$.

If one wishes to approximate the vector vecteur x by a rational hyperplane L = {y ∈ ℝⁿ : q ⋅ y = p} with q ∈ ℤⁿ \{0} and p ∈ ℤ...

• ... assuming that its coordinates are rationally independent, Minkowski's Convex Body Theorem guarantees the existence of a constant $\kappa > 0$ and of infinitely many rational hyperplanes *L* such that

$$\|\boldsymbol{q}\cdot\boldsymbol{x}-\boldsymbol{p}\|\cdot\|(\boldsymbol{q},\boldsymbol{p})\|_{\infty}^{-1} \leq \kappa\cdot\|(\boldsymbol{q},\boldsymbol{p})\|_{\infty}^{-n-1};$$

that is,

dist_{$$\infty$$} (\boldsymbol{x}, L) $\leq \kappa \cdot H(L)^{-n-1}$, where $H(L) = \|(\boldsymbol{q}, p)\|_{\infty}$.

Approximating a vector by a rational line

Let $\mathbf{x} = (x_1, \dots, x_n) \in [0, 1]^n$ be a vector in dimension $n \ge 2$.

• If one wishes to approximate the vector \mathbf{x} by a rational line $L = \{\mathbf{q}t + \mathbf{p} \in \mathbb{R}^n : t \in \mathbb{R}\}$ with $\mathbf{q} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ and $\mathbf{p} \in \mathbb{Z}^n$...

• ... assuming that at least two of its coordinates are rationally independent, Minkowski's Convex Body Theorem guarantees the existence of a constant $\kappa' > 0$ and of infinitely many rational lines *L* such that

dist_{$$\infty$$} (\boldsymbol{x}, L) $\leq \kappa' \cdot H(L)^{-1-2/(n-1)}$, where $H(L) = \|(\boldsymbol{q}, \boldsymbol{p})\|_{\infty}$.

The general case

Proposition

Let $n \ge 2$ (dimension of the Euclidian space) and $0 \le d \le n - 1$ (dimension of the subspaces). For all $\mathbf{x} \in \mathbb{R}^n$ having at least d + 1 rationally independent coordinates, there exists a constant $\kappa = \kappa(n, d, \mathbf{x}) > 0$ and infinitely many affine rational subspaces $L \subset \mathbb{R}^n$ with dimension d such that

dist
$$(\mathbf{x}, L) \leq \kappa \cdot H(L)^{-1-\omega_{n,d}},$$
 where $\omega_{n,d} = \frac{d+1}{n-d}$

Definition

Let $n \ge 2$ and $0 \le d \le n - 1$ be integers. A vector $\mathbf{x} \in \mathbb{R}^n$ is (n, d)-badly approximable if there exists a constant $\gamma = \gamma(n, d, \mathbf{x}) > 0$ such that for all rational affine subspace $L \subset \mathbb{R}^n$ with dimension d,

$$dist(\mathbf{x}, L) > \gamma \cdot H(L)^{-1-\omega_{n,d}}.$$

Unifying the various concepts of multidimensional bad approximability

• Extending works by Khintchine (1925), Dyson (1947), Jarnik (1938) and Mahler (1939) :

Theorem (Beresnevich, Guan, Marnat, Ramirez, Velani - 2021+)

Let $n \ge 2$ and $0 \le d < d' \le n - 1$ be integers. An *n*-dimensional vector est (n, d)-badly approximable if, and only if, it is (n, d')-badly approximable.

Figure – Victor Beresnevich, Lifan Guan, Antoine Marnat, Felipe Ramirez & Sanju Velani

Hausdorff dimension of the badly approximable vectors

Theorem (Schmidt, 1966)

The set of badly approximable vectors in dimension n has maximal Hausdorff dimension.

Figure - Wolfgang Schmidt (1933-)

Outline

- 2 Multidimensional Badly Approximable Vectors
- Multiplicatively badly approximable vectors
- 4 The t-adic Littlewood conjecture

What is a multiplicatively badly approximable vector?

Let $(\alpha, \beta) \in \mathbb{R}^2$.

From Dirichlet's theorem applied to the vector (α, β), there exist infinitely many integers q ≥ 1 such that max{q^{1/2} · ⟨qα⟩, q^{1/2} · ⟨qβ⟩} ≤ 1. Consequently,

$$\exists^{\infty} q \geq 1 \; : \; \langle q lpha
angle \cdot \langle q eta
angle \; \leq \; rac{1}{q} \qquad \Longleftrightarrow \qquad \inf_{q \geq 1} q \cdot \langle q lpha
angle \cdot \langle q eta
angle \; \leq 1.$$

Conjecture (Littlewood, c. 1930)

For all $(\alpha, \beta) \in \mathbb{R}^2$,

$$\inf_{q\geq 1} \boldsymbol{q} \cdot \langle \boldsymbol{q} \boldsymbol{\alpha} \rangle \cdot \langle \boldsymbol{q} \boldsymbol{\beta} \rangle = \mathbf{0}.$$

Figure – John Edensor Littlewood (1885 – 1977)

What is a multiplicatively badly approximable vector? (bis)

Conjecture (Badziahin & Velani, 2011)

Given $\lambda \ge 0$, let

$$M_{\lambda} = \left\{ (lpha, eta) \in \mathbb{R}^2 \ : \ \inf_{q > 1} q \cdot (\log q)^{\lambda} \cdot \langle q lpha
angle + \langle q eta
angle \ > \ 0
ight\}$$

Then, $M_{\lambda} = \emptyset$ if $\lambda < 1$ and $\dim M_{\lambda} = 2 \operatorname{si} \lambda \ge 1$.

Theorem (Badziahin, 2013)

$$\dim \left\{ (\alpha, \beta) \in \mathbb{R}^2 : \inf_{q \geq 1} q \cdot (\log q) \cdot (\log \log q) \cdot \langle q \alpha \rangle \cdot \langle q \beta \rangle > 0 \right\} = 2.$$

Figure - Sanju Velani & Dzmitri Badziahin

Faustin ADICEAM Badly Approximable Vectors and Littlewood-type Problems

The *p*-adic Littlewood Conjecture

Recall : According to the Littlewood conjecture, $\inf_{q \ge 1} q \cdot \langle q \alpha \rangle \cdot \langle q \beta \rangle = 0$ for all $(\alpha, \beta) \in \mathbb{R}^2$.

Conjecture (De Mathan & Teulié, 2004)

For all $\alpha \in \mathbb{R}$ and all prime number p,

 $\inf_{q\geq 1} \boldsymbol{q} \cdot |\boldsymbol{q}|_{p} \cdot \langle \boldsymbol{q} \boldsymbol{\alpha} \rangle = \mathbf{0},$

where $|q|_p = p^{-k}$ if $q = p^k n$ with $p^{k+1} \nmid n$. Equivalently,

 $\inf_{n\geq 1,k\geq 0}n\cdot \langle np^k\alpha\rangle = 0.$

Recall : if $x = [a_0(x); a_1(x), a_2(x), a_3(x), a_4(x), \dots]$, then $c(x) := \inf_{q \ge 1} q \cdot \langle qx \rangle > 0 \qquad \Longleftrightarrow \qquad M(x) := \sup_{i \ge 1} a_i(x) < \infty.$

• Reinterpretation of the *p*-adic Littlewood conjecture :

$$\forall \alpha \in \mathbb{R}, \quad \inf_{k \ge 0} c\left(p^k \alpha\right) = 0 \qquad \Longleftrightarrow \qquad \forall \alpha \in \mathbb{R}, \quad \sup_{k \ge 0} M\left(p^k \alpha\right) = \infty.$$

Towards an analogous theory over function fields

• Let α be a real number (e.g., $\alpha = 567.789908782...$) :

• Let \mathbb{K} be a finite field and let $A(t) \in \mathbb{K}((t^{-1}))$ be a Laurent series :

$$A(t) = \sum_{\substack{k=0 \ \text{polynomial part}}}^{n_0} b_{-k} t^k + \sum_{\substack{k=1 \ t^k}}^{\infty} \frac{b_k}{t^k}$$

Real case	Functional case
Z	$\mathbb{K}[t]$
Q	$\mathbb{K}(t)$
\mathbb{R}	$\mathbb{K}\left(\left(t^{-1}\right)\right)$

Littlewood conjectures over function fields

Definition (Norm of a Laurent series)

Given a Laurent series

$$A(t) = b_{-n_0}t^{n_0} + \dots + b_{-1}t + b_0 + \frac{b_1}{t} + \dots + \frac{b_k}{t^k} + \dots$$

set $|A| = 2^{-k}$, where $k \ge -n_0$ is the smallest integer such that $b_k \ne 0$.

 By abuse of notation, denote by ⟨A⟩ the fractional part of A and set dist (A, K[t]) = |⟨A⟩|.

Conjectures	$\alpha,\beta\in\mathbb{R}$	$A, B \in \mathbb{K}\left(\left(t^{-1} ight) ight)$		
Classical Littlewood	$\inf_{q\in\mathbb{Z}\setminus\{0\}} q \cdot \langle qlpha angle \cdot \langle qeta angle =0$	$\inf_{Q \in \mathbb{K}[t] \setminus \{0\}} Q \cdot \langle QA \rangle \cdot \langle QB \rangle = 0$		
<i>p</i> -adic Littlewood	$\inf_{\substack{n \in \mathbb{Z} \setminus \{0\}\\k \ge 0}} n \cdot \langle p^k n \alpha \rangle = 0$	$\inf_{\substack{N \in \mathbb{K}[t] \setminus \{0\} \\ k \ge 0}} N \cdot \left \langle t^k N A \rangle \right = 0$		

The state of the art

• Hausdorff dimension of the set not satisfying the conjecture :

Conjectures	over ℝ	over $\mathbb{K}\left(\left(t^{-1}\right)\right)$		
Classical Littlewood	0 (E–Ka–L, 2006)	<mark>???</mark> (E–L–M, 2020)		
<i>p</i> -adic Littlewood	0 (E–KI, 2007)	<mark>???</mark> (E–L–M, 2020)		

E : Einsiedler, Ka : Katok, L : Lindenstrauss, Kl : Kleinbock, M : Mohammadi

Figure - Manfred Einsiedler, Anatol Katok, Dmitri Kleinbock, Elon Lindenstrauss & Amir Mohammadi

The state of the art (bis)

• Hausdorff dimension of the set not satisfying the conjecture :

Conjectures	over ℝ	over $\mathbb{K}\left(\left(t^{-1} ight) ight)$		
Classical Littlewood	0 (E–Ka–L, 2006)	<mark>???</mark> (E–L–M, 2020)		
<i>p</i> -adic Littlewood	0 (E–KI, 2007)	<mark>???</mark> (E–L–M, 2020)		

E : Einsiedler, Ka : Katok, L : Lindenstrauss, KI : Kleinbock, M : Mohammadi

• Validity of the conjectures :

Conjectures	over ℝ	over $\mathbb{K}\left(\left(t^{-1}\right)\right)$		
Classical Littlewood	???	???		
<i>p</i> -adic Littlewood	???	false when char(账)=3		

Outline

- 2 Multidimensional Badly Approximable Vectors
- 3 Multiplicatively badly approximable vectors
- 4 The t-adic Littlewood conjecture

Statement of the main result

Theorem (A., Lunnon, Nesharim, 2021)

Let $(p_n)_{n\geq 1}\in\{0,1\}^{\mathbb{N}}$ be the paper folding sequence. Then, the Laurent series

$$\Pi = \sum_{n=1}^{\infty} \frac{p_n}{t^n} \in \mathbb{F}_3\left(\left(t^{-1}\right)\right)$$

is a counterexample to the t–adic Littlewood conjecture over $\mathbb{K}=\mathbb{F}_3$:

$$\inf_{\substack{N \in \mathbb{K}[t] \setminus \{0\} \\ k > 0}} |N| \cdot \left| \langle t^k N \Pi \rangle \right| = 2^{-4} > 0.$$

Figure – Erez Nesharim & Fred Lunnon

The paper folding sequence

• The paper folding sequence $(p_n)_{n\geq 1}$ can be obtained as follows : begin with the terms 11 and apply the substitution rule $11 \rightarrow 1101, 01 \rightarrow 1001, 10 \rightarrow 1100, 00 \rightarrow 1000$:

 $11 \to 1101 \to 11011001 \to 1101100111001001$

 $\rightarrow 11011001110010011101100011001001$

 $\rightarrow \dots$

Reduction of the problem to the existence of singular matrices

- Let $A = \sum_{n=1}^{\infty} b_n t^{-n}$ be a Laurent series and let $N = \theta^h t^h + \dots + \theta_1 t + \theta_0$ be a polynomial with degree $h \ge 1$ (i.e. $|N| = 2^h$).
- Given $l \ge 1$, asking that $|N| \cdot |\langle t^k NA \rangle| < 2^{-l}$, i.e. $|\langle t^k NA \rangle| < 2^{-(l+h)}$, amounts to imposing that a certain number of the coefficients of the Laurent series $t^k NA$ should vanish. Explicitly, one requires that $H_A \theta = \mathbf{0}$, where $H_A = H_A(k, l, h)$ is a $(h + l) \times (h + 1)$ Hankel matrix formed from the coefficients of A, and where $\theta = (\theta_h, \dots, \theta_1, \theta_0)^T \in \mathbb{K}^{h+1} \setminus \{\mathbf{0}\}$.

Reduction of the problem to the existence of singular matrices (bis)

 From properties of Hankel matrices, the condition |N| · |⟨t^kNA⟩| < 2⁻¹ amounts to asking that there should exist / nested singular submatrices inside the infinite Hankel matrix of the sequence (b_n)_{n>1}.

b_1	b_2	b_3	b_4	b_5	b_6	b_7	ℓ^{b_8}	b_9	b_{10}	\rightarrow
b_2	b_3	b_4	b_5	b_6	b_7	< b ₈	b_9	b_{10}	b_{11}	· · ·
b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	· · ·
b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	· · ·
b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	· · ·
b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	· · ·
b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}	· · ·
b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}	b_{17}	· · ·
b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}	b_{17}	b_{18}	· · ·
b_{10}	b_{11}	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}	b_{17}	b_{18}	b_{19}	· · ·
\downarrow		.·*	. · [·]	. · ·	.·'	.· [.]		. · [·]	.·*	\mathbf{a}

The Number Wall of a sequence

Definition

The Number Wall of the sequence $\mathcal{B} = (b_n)_{n \ge 1} \in \mathbb{K}^{\mathbb{N}}$ is an infinite matrix $W(\mathcal{B}) = (w_{mn}(\mathcal{B}))_{m \ge 0, n \in \mathbb{Z}}$ whose $(m, n)^{th}$ coefficient is (up to the sign) the Hankel determinant

$$w_{mn}(\mathcal{B}) = (-1)^{m(m-1)/2} \cdot \begin{vmatrix} b_{n-m} & \cdots & b_k & \cdots & b_n \\ \vdots & \ddots & \ddots & \vdots \\ b_k & b_n & b_l \\ \vdots & \ddots & \ddots & \vdots \\ b_n & \cdots & b_l & \cdots & b_{n+m} \end{vmatrix}$$

(In particular, when m = 0, $w_{0,n}(B) = b_n$ for all $n \in \mathbb{Z}$.)

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

The Number Wall of the paper folding sequence over \mathbb{F}_3

Figure – The Number Wall of the paper folding sequence over \mathbb{F}_3 . In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

• From the so-called Desnanot–Jacobi determinental identity, the zero coefficients in this Number Wall can only appear inside squares.

Multidimensional Badly Approximable Vectors

Multiplicatively badly approximable vectors

The t-adic Littlewood conjecture

The Number Wall of the paper folding sequence over \mathbb{F}_3 (bis)

Figure – The Number Wall of the paper folding sequence over $\mathbb{F}_3.$ In yellow (resp. in blue, in pink) the determinants equal to 0 (resp. to 1, to 2).

• Reformulation of the problem :

$$\inf_{\substack{N \in \mathbb{K}[t] \setminus \{0\} \\ k \ge 0}} |N| \cdot \left| \langle t^k N \Pi \rangle \right| = 2^{-4} \iff$$

there exists no 4×4 zero square and there exists one such 3×3 square.

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

Strategy 1/2

Figure – Left : the Number Wall of the paper folding sequence over \mathbb{F}_3 . Right : schematic illustration of the coding of the Number Wall.

Step 1 : To show that a sufficiently large portion of the Number Wall can be obtained as a the image under a coding and a substitution rule of a 2-dimensional tiling.

Multidimensional Badly Approximable Vectors Multiplicatively badly approximable vectors The *t*-adic Littlewood conjecture

Strategy 2/2

 $\label{eq:Figure-Left} \begin{array}{l} \mbox{Figure} - \mbox{Left}: \mbox{the Number Wall of the paper folding sequence over } \mathbb{F}_3. \mbox{ Right}: \mbox{schematic illustration of the coding of the Number Wall.} \end{array}$

- Step 2 : To consider the (infinite) tiling of the plane obtained from the above coding and substitution rule. Working locally, to show that :
 - 2.a. it is the Number Wall of a sequence (the tiling must satisfy the Desnanots–Jacobi determinental rules) and that the coding and the substitution rules do not generate 4×4 zero–squares.
 - 2.b. the restriction of the coding and the substitution rule to the first row generates the paper folding sequence.

