On the smallest base in which a number has a unique expansion

Pieter C. Allaart

University of North Texas (allaart@unt.edu)

One World Numeration Seminar November 10, 2020

(Joint work with D. Kong)

Preprint available at arxiv.org/abs/2006.07927

• Fix $q \in (1,2]$. An expression of the form

$$x = \sum_{i=1}^{\infty} \frac{x_i}{q^i}, \qquad x_i \in \{0, 1\} \ \forall i$$

is called a *q*-expansion of *x*. We write $x = (x_1 x_2 \dots)_q$.

• Exists iff $x \in I_q := \left[0, \frac{1}{q-1}\right]$, but in general not unique!

Example

Take
$$q = (1 + \sqrt{5})/2 \approx 1.618$$
, so $q^{-1} + q^{-2} = 1$. Then
 $1 = (11)_q = (1011)_q = (101011)_q = \dots = ((10)^{\infty})_q = (01^{\infty})_q$.

Theorem (Sidorov, 2003)

Let 1 < q < 2. Then almost every $x \in I_q$ has uncountably many *q*-expansions.

Definition

• $\mathcal{U}_q := \{x \in I_q : x \text{ has a unique } q \text{-expansion}\}, \quad q \in (1, 2].$

•
$$\mathscr{U} := \{q \in (1,2] : 1 \in \mathcal{U}_q\}.$$

Connections between \mathscr{U} and the sets \mathcal{U}_q :

- \mathcal{U}_q is closed iff $q \notin \overline{\mathscr{U}}$ (De Vries & Komornik, 2009)
- The description of \mathcal{U}_q is simplest when $q \in \overline{\mathscr{U}} \setminus \mathscr{U}$.

Properties of ${\mathscr U}$

- \mathscr{U} is Lebesgue null (Erdős, Joó & Komornik, 1990)
- $\dim_H \mathscr{U} = 1$ (Daróczy and Kátai, 1995)
- $\min \mathscr{U} = q_{KL}$, where q_{KL} is the Komornik-Loreti constant, i.e. the base $q \ (\approx 1.787)$ such that

$$1 = (\tau_1 \tau_2 \dots \tau_n \dots)_q,$$

where $(\tau_i)_{i=0}^{\infty}$ is the Thue-Morse sequence:

 $(\tau_i)_{i=0}^{\infty} = 01\ 10\ 1001\ 10010110\ 10010110011001001\dots$

(Komornik & Loreti, 1998)

• $\overline{\mathscr{U}}$ is a Cantor set (Komornik & Loreti, 2007), and $\overline{\mathscr{U}} \setminus \mathscr{U}$ is countable.

Definition

$$\mathscr{U}(x) := \{ q \in (1,2] : x \in \mathcal{U}_q \}, \qquad x > 0.$$

Note that $\mathscr{U}(1) = \mathscr{U}$.

- 𝔐(x) is Lebesgue null but of full Hausdorff dimension (Lü, Tan & Wu, 2014)
- The algebraic difference $\mathscr{U}(x) \mathscr{U}(x)$ contains an interval (Dajani, Komornik, Kong & Li, 2018)
- Local dimension: for x > 0 and $q \notin \overline{\mathscr{U}}$,

 $\lim_{\delta \to 0} \dim_H \left(\mathscr{U}(x) \cap (q - \delta, q + \delta) \right) = \lim_{\delta \to 0} \dim_H \left(\mathcal{U}_q \cap (x - \delta, x + \delta) \right).$

(Kong, Li, Lü, Wang & Xu, 2020)

• Kong (2016): initiated a study of the minimum of $\mathscr{U}(x)$.

Definition

Let

$$q_{\min}(x) := \inf \mathscr{U}(x), \qquad x > 0.$$

We want to understand the function $x \mapsto q_{\min}(x)$.

- For which x is the "inf" actually a minimum?
- Algorithm for computing $q_{\min}(x)$?
- Continuity properties of $q_{\min}(x)$?
- Structure of level sets of q_{\min} ? (Finite, countable, uncountable?)

Graph of $q_{\min}(x)$. Here $q_G := \frac{\sqrt{5}+1}{2}$.

The "tail" of the graph

Easy fact: If $x \ge q_G$, then $q_{\min}(x) = 1 + \frac{1}{x} =: q_x$.

Reason: If $1 < q \le q_G$, then $U_q = \{0, \frac{1}{q-1}\}$. (Erdős, Jóo & Komornik, 1990.) Since

$$x = \frac{1}{q-1} \qquad \Longleftrightarrow \qquad q = 1 + \frac{1}{x} = q_x,$$

it follows that $q_x \in \mathscr{U}(x)$ for all x > 1. But if $x \ge q_G$ and $q' < q_x$, then $q' < 1 + \frac{1}{q_G} = q_G$, so $\mathcal{U}_{q'} = \{0, \frac{1}{q'-1}\} \not\supseteq x$.

Some preliminaries

Definition

For $q \in (1,2]$, let $\alpha(q) = \alpha_1(q)\alpha_2(q)\ldots$ be the quasi-greedy expansion of 1 in base q; that is, the lexicographically largest expansion not ending in 0^{∞} . **Ex.** $\alpha(q_G) = (10)^{\infty}$.

Let $\sigma: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ denote the shift map.

Lemma

(i) The map q → α(q) is strictly increasing.
(ii) σⁿ(α(q)) ≤ α(q) for all n ≥ 1;
(iii) q ∈ W if and only if

$$\sigma^n(\alpha(q)) \succ \overline{\alpha(q)} \quad \forall \ n \ge 1;$$

Here $\overline{\alpha(q)}$ denotes the *reflection* of $\alpha(q)$:

$$\overline{\alpha_1\alpha_2\ldots}:=(1-\alpha_1)(1-\alpha_2)\ldots.$$

An algorithm for determining $q_{\min}(x)$

Set $q_G := (1 + \sqrt{5})/2$. For simplicity, we describe the algorithm for $x \in [q_G^{-1}, 1)$, but it extends easily to all x > 0.

Proposition

For $x \in [q_G^{-1}, 1)$, let q_1 be the root in (1, 2] of q(q - 1) = 1/x. Then

(i)
$$q_1 > q_G$$
, and $q_1 \notin \mathscr{U}(x)$;
(ii) $q_{\min}(x) \ge q_1$, with equality if and only if $q_1 \in \overline{\mathscr{U}}$.

The point of the choice of q_1 is, that

$$x = (01^{\infty})_{q_1} = \left(1 \overline{\alpha(q_1)}\right)_{q_1}.$$

The number q_1 from the Proposition is our initial lower bound. Write $\alpha(q) = \alpha_1 \alpha_2 \dots$ If $q_1\in\overline{\mathscr{U}}$, we are done: $q_{\min}(x)=q_1.$ Otherwise, there is $n\geq 1$ such that

$$\overline{\alpha_n \alpha_{n+1} \dots} \succeq \alpha(q).$$

Let n_1 be the *smallest* such n, and set $B_1 := 1\overline{\alpha_1 \dots \alpha_{n_1-2}}$. (We have $n_1 \ge 3$ because $\alpha(q)$ begins with 11 for $q > q_G$.)

Example

Let
$$x = 2/3$$
. Then $q_1 = (1 + \sqrt{7})/2 \approx 1.8228757$. Then

 $\alpha(q_1) = 1101100100101100011000\dots,$ 0010 11011010011100111\dots

so $n_1 = 6$ and $B_1 = 10010$.

Set $y := (B_1^{\infty})_{q_1}$. We can show that y > x and $y \in \mathcal{U}_{q_1}$. Hence there is a base $r_1 > q_1$ such that $x = (B_1^{\infty})_{r_1}$. This implies $x \in \mathcal{U}_{r_1}$, and so $q_{\min}(x) \le r_1$.

This is our first upper bound.

Example (ctd.)

$$\frac{2}{3} = ((10010)^{\infty})_{r_1} \implies r_1 \approx 1.8324610.$$
We now know: $1.8228757 \le q_{\min}(2/3) \le 1.8324610.$

The second lower bound

Next, let q_2 be the base such that $(B_101^{\infty})_{q_2} = x$.

By analog of the Proposition, $q_{\min}(x) \ge q_2$ with equality iff $q_2 \in \overline{\mathscr{U}}$. So if $q_2 \in \overline{\mathscr{U}}$ we are done; otherwise let

$$n_2 := \min\{n \ge 1 : \overline{\alpha_n(q_2)\alpha_{n+1}(q_2)\dots} \succeq \alpha(q_2)\}.$$

Set
$$B_2 = 1 \overline{\alpha_1(q_2) \dots \alpha_{n_2-2}(q_2)}$$
.

Example (ctd.)

Setting $(10010\,01^\infty)_{q_2}=2/3$ gives $q_2\approx 1.83161197.$ Then

 $\alpha(q_2) = 11011010011010011010001001\dots,$ 00100101100101100101 1110110\dots

so $n_2 = 22$ and $B_2 = 100100101100101100101$. We now know: $1.83161197 \le q_{\min}(2/3) \le 1.8324610$.

The second upper bound

Next, let r_2 be the base such that

$$(B_1 B_2^\infty)_{r_2} = x.$$

We can show that $r_2 \leq r_1$ and $x \in \mathcal{U}_{r_2}$, so $q_{\min}(x) \leq r_2$.

Example (ctd.)

Setting

```
(10010(100100101100101100101)^{\infty})_{r_2} = 2/3
```

gives $r_2 \approx 1.83161199$.

We now know: $1.83161197 \le q_{\min}(2/3) \le 1.83161199$.

(In fact, we'll see later that $q_{\min}(2/3)$ is exactly $r_{2.}$)

Keep iterating...

At the kth stage, let q_k be the base such that

$$(B_1 \cdots B_{k-1} 0 1^\infty)_{q_k} = x.$$

If $q_k \in \overline{\mathscr{U}}$, we are done and $q_{\min}(x) = q_k$ (but "inf" not attained). Otherwise, let

$$n_k := \min\{n \ge 1 : \overline{\alpha_n(q_k)\alpha_{n+1}(q_k)\dots} \succeq \alpha(q_k)\},\$$

and set $B_k := 1 \overline{\alpha_1(q_k) \dots \alpha_{n_k-2}(q_k)}$. Then let r_k be the base such that

$$(B_1 \dots B_{k-1} B_k^\infty)_{r_k} = x.$$

We can show:

(i)
$$q_1 < q_2 < ...$$
 and $r_1 \ge r_2 \ge ...$;
(ii) $q_k \le q_{\min}(x) \le r_k$ for each k;
(iii) $r_k - q_k \to 0$. So $\lim q_k = \lim r_k = q_{\min}(x)$.

It gets even better!

Recall

$$n_k := \min\{n \ge 1 : \overline{\alpha_n(q_k)\alpha_{n+1}(q_k)\dots} \succeq \alpha(q_k)\}.$$

Now define also

$$m_k := \inf\{m > n_k : \overline{\alpha_{n_k} \dots \alpha_m(q_k)} \succ \alpha_1(q_k) \dots \alpha_{m-n_k+1}(q_k)\}$$

(possibly $m_k = \infty$). If at any point it so happens that

$$\alpha_1(q_k) \dots \alpha_{m_k}(q_k) = \alpha_1(r_k) \dots \alpha_{m_k}(r_k) \quad \text{with} \quad m_k < \infty,$$

then the first m_k digits of $\alpha(q)$ must match this block for all $q \in (q_k, r_k)$, so we have $B_j = B_k$ for all $j \ge k$.

This implies $q_{\min}(x) = r_k = \min \mathscr{U}(x)$, and the smallest unique expansion of x is $B_1 \dots B_{k-1} B_k^{\infty}$.

Example

Back to our example with x = 2/3: we saw

$$\alpha(q_1) = 1101100100101100011000\dots,$$

1101101

so $n_1 = 6$ and $m_1 = 12$. With $((10010)^{\infty})_{r_1} = 2/3$, we have $\alpha(r_1) = 1101101010001101100101000\dots$

Note $\alpha_7(r_1) \neq \alpha_7(q_1)$. At the next step,

 $\alpha(q_2) = 1101101001101001101000 | 1001...,$

so $n_2=22$ and $m_2=24$. With $(B_1B_2^\infty)_{r_2}=2/3$, we have

 $\alpha(r_2) = 1101101001101001101000 | 1010...$

Now $\alpha_1(q_2) \dots \alpha_{m_2}(q_2) = \alpha_1(r_2) \dots \alpha_{m_2}(r_2)$, so $q_{\min}(2/3) = r_2$.

Classification of points

The algorithm yields three possibilities for any point x:

- Type I: $q_k \in \overline{\mathscr{U}}$ for some k. Then $q_{\min}(x) = q_k \notin \mathscr{U}(x)$.
- Type II: $q_k \notin \overline{\mathscr{U}}$ for all k, and

$$\alpha_1(q_k)\dots\alpha_{m_k}(q_k) = \alpha_1(r_k)\dots\alpha_{m_k}(r_k)$$
(1)

for some k. Then $q_{\min}(x) = r_k \in \mathscr{U}(x)$.

• Type III: $q_k \notin \overline{\mathscr{U}}$ for all k, and (1) does not hold for any k. Then $q_{\min}(x) = \lim_{k \to \infty} q_k = \lim_{k \to \infty} r_k$. We can show that in this case, too, $q_{\min}(x) \in \mathscr{U}(x)$.

Let X_I, X_{II}, X_{III} be the sets of points of types I, II and III, respectively. We can show:

 $\dim_H X_I \approx .8546, \qquad \lambda(X_{II}) > 0, \qquad \operatorname{card}(X_{III}) \ge \aleph_0.$

Conjecture: *X*_{*II*} has full Lebesgue measure.

Theorem (A. & Kong, 2020)

- The function $x \mapsto q_{\min}(x)$:
 - (i) is right-continuous;
- (ii) has a left-hand limit at every point;
- (iii) and has no downward jumps.
- As a result, q_{\min} has only countably many discontinuities.

Note

 $q_{\rm min}$ has path properties similar to a spectrally positive Lévy process.

The proof is technical, but relies in part on the Algorithm presented earlier.

Definition

Let

$$L(q) := \{x > 0 : q_{\min}(x) = q\}, \qquad q \in (1, 2]$$

Theorem (A. & Kong, 2020)

(i) L(q) is finite whenever $q \notin \overline{\mathscr{U}}$. Thus, L(q) is finite for Lebesgue-almost every q.

(ii) L(q) is infinite for infinitely many $q \in \overline{\mathscr{U}}$, including $q = q_{KL}$.

(iii) $L(q_{KL})$ contains infinitely many left- and infinitely many right accumulation points.

The level set $L(q_{KL})$

We can describe an infinite subset of $L(q_{KL})$ as follows. Recall

 $\alpha(q_{KL}) = (\tau_i)_{i=1}^{\infty} = 11010011001011010010110010110011\dots$

Set

$$x_n := (\tau_n \tau_{n+1} \dots)_{q_{KL}}.$$

So $x_1 = 1$, $x_2 = q_{KL} - 1$, etc. Define a set $S \subset \mathbb{N}$ recursively by (a) $2, 3, 4 \in S$; (b) For each $k \ge 2$ and $2^k < n \le 2^{k+1}$, $n \in S$ if and only if $n > 3 \cdot 2^{k-1}$ and $n - 3 \cdot 2^{k-1} \in S$.

Thus, $S = \{2, 3, 4, 8, 14, 15, 16, 26, 27, 28, 32, \dots \}.$

Theorem (A. & Kong, 2020)

 $q_{\min}(x_n) = q_{KL}$ if and only if $n \in S \cup \{1\}$.

Graph of $q_{\min}(x)$. Here $q_G := \frac{\sqrt{5}+1}{2}$.

Theorem (A. & Kong, 2020)

The maximum value of q_{\min} is attained at $x = 1/q_G$, and

$$\max_{x>0} q_{\min}(x) = q_{\min}(1/q_G) \approx 1.888453328$$

is the unique base q such that

$$(1(0010001100011)^{\infty})_q = \frac{1}{q_G} = \frac{\sqrt{5}-1}{2}.$$

(It is an algebraic integer of degree 26.)

Question 1

Does $L(q_{KL})$ have any *two*-sided accumulation points? (If the answer is no, then it follows that $L(q_{KL})$ is countable.) More generally, are all level sets of q_{\min} countable?

Question 2

Is $L(q_{KL})$ closed? More generally, are all level sets of q_{\min} closed? (We do know each level set has a smallest and a largest element.)

Question 3

Is $q_{\min}(x)$ algebraic over $\mathbb{Q}(x)$ for every x > 0? (This is true for all points of type I or II, and also for the points $x_n = (\tau_n \tau_{n+1} \dots)_{q_{KL}}$, which are of type III. We don't know if it's true for *all* points of type III.)

THANK YOU!