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The basic question

Question:

Is it possible for a number to have its continued fraction expansion
agree with its decimal expansion? That is,

[0; a1, a2, a3 . . . ] = 0.a1a2a3 . . .

If we require each ai ∈ {1, 2, . . . , 9}, it is easy to see that the
answer is no.
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Trott’s Constant

In 2006, M. Trott published the following example in a blog post:

1

1 +
1

0 +
1

8 +
1

4 +
1

1 +
1

0 +
1

. . .

= 0.1084101 . . .

This number is now known as Trott’s constant - see OEIS
sequence A039662.
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Trott numbers

The use of the digit 0 is, of course, unnatural from a dynamical
point of view. So we slightly tweak the definition:

Definition

Let b ∈ N≥2. A number x ∈ (0, 1) is a Trott number in base b if

x = [0; a1, a2, a3, . . . ] = (0.â1â2â3 . . . )b,

where âi is the string of digits corresponding to the base b
representation of ai.

For example, in base 10,

[0; 3, 29, 545, 6, . . . ] = 0.3 29 545 6 . . . .

Question:

For which bases, if any, do Trott numbers exist? And how can we
construct them?
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Two initial observations

If x is a Trott number, that is,

x = [0; a1, a2, a3, . . . ] = (0.â1â2â3 . . . )b,

then x is neither rational nor quadratic irrational.

If x = [0; a1, a2, a3, . . . ] is Trott in base b, then a1 = b
√
bc.

Proof. The intervals[
a1

b
,
a1 + 1

b

]
and

[
1

a1 + 1
,

1

a1

]
must overlap.

This shows also that no Trott numbers exist in base b if b is a
perfect square: If b = k2, then a1 = k and the two intervals
only share an endpoint.
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The main theorem: good bases

Theorem (A, Jackson, Jones & Lambert, 2021)

There exists a Trott number in base b if and only if

b ∈ {3} ∪
∞⋃
k=1

{k2 + 1, k2 + 2, . . . , k2 + k} =: Γ.

Furthermore, if Tb is nonempty, then it is uncountable.

So the first few “good” bases are 2,3,5,6,10,11,12,17,18,19,20, . . .

The proof of sufficiency is rather involved. See the slides of the
talk by T. Jones on October 5, 2021 for the case b = 10. The
construction is inductive, and the key is to choose a2 carefully!
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Proof of necessity

To prove necessity, suppose b 6∈ Γ and there is a Trott number

x = [0; a1, a2, a3, . . . ] = (0.â1â2â3 . . . )b.

Then there is a unique k ∈ N, k ≥ 2 such that

k2 + k < b < (k + 1)2.

By our earlier observation, a1 = b
√
bc = k. Suppose a2 = j. Then

x ∈

[
1

k + 1
j

,
1

k + 1
j+1

]
.

Case 1. If j > (b− 1)/k, then

1

k + 1
j

>
b− 1

bk
≥ k + 1

b

so x does not begin with digit k, contradiction.
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Proof of necessity (ctd)

Recall that a1 = k, a2 = j and

x ∈

[
1

k + 1
j

,
1

k + 1
j+1

]
.

Case 2. If j ≤ (b− 1)/k, then j < b and it can be checked easily
that

1

k + 1
j

>
k

b
+
j + 1

b2
,

so the second digit of x is at least j + 1. Contradiction again!
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Some other results

Let Tb denote the set of Trott numbers in base b.

Theorem (A, Jackson, Jones & Lambert, 2021)

For each b ∈ Γ, Tb is a complete Gδ set. (That is, Tb is Gδ but not
Fσ.)

Theorem (A, Jackson, Jones & Lambert, 2021)

Let

T :=

∞⋃
n=2

Tb

be the set of numbers that are Trott in some base. Then T is
nowhere dense, and dimH T < 1.

(In fact we have explicit upper bounds for dimH Tb for each b, but
they are almost surely very bad!)
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Conjectures

Conjecture 1

dimH Tb > 0 for all b ∈ Γ.

Conjecture 2

dimH Tb → 0 as b→∞.

Conjecture 3

Tb ∩ Tc = ∅ whenever b 6= c.

We’ll focus here on Conjecture 3, which says that no number is
Trott in more than one base.
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Conjecture 3:

Tb ∩ Tc = ∅ whenever b 6= c.
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Exploration of Conjecture 3

Let 2 ≤ b < c, and suppose

x = [0; a1, a2, . . . ] ∈ Tb ∩ Tc.

Since a1 = b
√
bc = b

√
cc, we see at once that b and c must belong

to the same interval [k2 + 1, k2 + k].

From here, we tried (with only partial success) to obtain a
contradiction by using only information about a2.
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Two lemmas

Lemma 1

Let b < c. If a2 has l digits in base b and m digits in base c, then

2 ≤ m < l.

Lemma 2

Let k ≥ 2 and k2 + 1 ≤ b ≤ k2 + k. Assume b ≥ 6. Suppose
x = [0; a1, a2, . . . ] ∈ Tb and a2 has l ≥ 2 digits in base b. Then

a2 =

⌈
bl(b− k2)

k
− b

k(b− k2)

⌉
− 1.

Proof. Follows (after some straightforward but cumbersome
algebra) from the fact that a1 = k, so these intervals overlap:[
k

b
+

a2

bl+1
,
k

b
+
a2 + 1

bl+1

]
and

[
a2

ka2 + 1
,

a2 + 1

k(a2 + 1) + 1

]
.
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Picking the low-hanging fruit

Corollary (Two special cases)

Let a2 have l digits in base b, where l ≥ 2.

(i) If b = k2 + 1 and k ≥ 3, then

a2 =
(k2 + 1)l − (k2 + 1)

k
− 1.

(ii) If b = k2 + k and k ≥ 2, then a2 = bl − 2.

Proposition

No number is Trott in both base k2 + 1 and k2 + k.

Proof. By the Corollary, we would have

(k2 + 1)l − (k2 + 1)

k
− 1 = (k2 + k)m − 2.

This is impossible!
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Specific base pairs: using modular arithmetic

Example. Let b = 17 = 42 + 1, c = 19 = 42 + 3 (two “good”
bases!). Let a2 have l digits in base b and m digits in base c. By
the Corollary and Lemma 2,

a2 =
17l − 21

4
=

{
3·19m−9

4 if m is odd,
3·19m−7

4 if m is even,

Thus,

17l − 3 · 19m =

{
12 if m is odd,

14 if m is even.

We can instantly rule out 12. This leaves us with

17l − 3 · 19m = 14.
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The example of 17 and 19, ctd.

Does the equation
17l − 3 · 19m = 14

have a solution (l,m) in (Z+ × Z+)? Consider first the equation
modulo 6:

(−1)l − 3 · 1m ≡ 2 (mod 6).

This shows l must be odd. Now consider the equation modulo 19:

(−2)l ≡ −5 (mod 19).

Since l is odd, this becomes 2l ≡ 5 (mod 19). However, the odd
powers of 2 modulo 19 are

2, 8, 13, 14, 18, 15, 3, 12, 10, 2, 8, 13, . . . .

Hence, T17 ∩ T19 = ∅.
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What the lemmas tell us

Recall:

Lemma 2

Let k ≥ 2 and k2 + 1 ≤ b ≤ k2 + k. Assume b ≥ 6. Suppose
x = [0; a1, a2, . . . ] ∈ Tb and a2 has l ≥ 2 digits in base b. Then

a2 =

⌈
bl(b− k2)

k
− b

k(b− k2)

⌉
− 1.

Now let k ≥ 3 and k2 + 1 ≤ b < c ≤ k2 + k. Suppose a2 has l
digits in base b and m digits in base c. By Lemmas 1 and 2,
2 ≤ m < l and⌈

bl(b− k2)

k
− b

k(b− k2)

⌉
=

⌈
cm(c− k2)

k
− c

k(c− k2)

⌉
.
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Two tight inequalities

We just saw that⌈
bl(b− k2)

k
− b

k(b− k2)

⌉
=

⌈
cm(c− k2)

k
− c

k(c− k2)

⌉
.

Thus,∣∣∣∣bl(b− k2)

k
− b

k(b− k2)
−
(
cm(c− k2)

k
− c

k(c− k2)

)∣∣∣∣ < 1.

Some simplification leads to

k2(c− b)
(b− k2)(c− k2)

−k < bl(b−k2)−cm(c−k2) <
k2(c− b)

(b− k2)(c− k2)
+k,

and in particular, ∣∣bl(b− k2)− cm(c− k2)
∣∣ < k2.
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Baker’s theorem

Recall k2 + 1 ≤ b < c ≤ k2 + k. From the inequality∣∣bl(b− k2)− cm(c− k2)
∣∣ < k2

we can deduce (after minor technicalities) that

l > m > k log k.

To make further progress, we need “Baker’s theorem”, really a
collection of theorems (going back to the 1970s) giving lower
bounds for expressions of the form

Λ := β1 logα1 + β2 logα2 + · · ·+ βn logαn

provided Λ 6= 0, where α1, . . . , αn are algebraic numbers and
β1, . . . , βn are rational integers.
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Baker’s theorem for our setting

The version of Baker’s theorem that we’ll use (stated in simplified
form for our setting) is:

Lemma (Matveev, 2000)

Let α1, . . . , αn ∈ Q, not 0 or 1, and β1, . . . , βn be integers. Let

Λ := β1 logα1 + β2 logα2 + · · ·+ βn logαn 6= 0.

Then
|Λ| ≥ exp{−Cnh(α1) · · ·h(αn) log(eB)},

where B := max{|β1|, . . . , |βn|},

Cn := min
{e

2
· 30n+3n4.5, 26n+20

}
,

and for α = p/q in lowest terms, h(α) := log max{|p|, |q|} is the
(logarithmic) Weil height of α.
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Applying Matveev’s lemma

It’s not too hard to show that bl(b− k2)− cm(c− k2) 6= 0.
Assume WLOG that cm(c− k2) > bl(b− k2). Let

Λ := m log c− l log b+ log

(
c− k2

b− k2

)
,

so Λ > 0. Applying Matveev’s lemma with α1 = c, α2 = b,
α3 = (c− k2)/(b− k2), β1 = m, β2 = −l and β3 = 1 we obtain

cm(c− k2)

bl(b− k2)
− 1 = eΛ − 1 > Λ

≥ exp{−C3 log b log c log(c− k2) log(el)}

≥ exp{−C3

(
log(k2 + k)

)2
log k log(el)}

≈ exp{−4C3(log k)3 log l}
=: Ak,l.
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Applying Matveev’s lemma (ctd)

Recall that
∣∣bl(b− k2)− cm(c− k2)

∣∣ < k2. Hence,

k2 > cm(c− k2)− bl(b− k2) & Ak,lb
l(b− k2)

≥ Ak,l(k2 + 1)l > Ak,lk
2l.

Thus,
k2l−2 . A−1

k,l = exp{4C3(log k)3 log l}.

Taking logs,
2(l − 1) log k . 4C3(log k)3 log l.

Since l > m > k log k, we deduce that

k(log k)2 . 2C3(log k)3 log(k log k),

or k . 2C3 log k log(k log k). Since C3 ≈ 1.39× 1011, this yields

k . 3.44× 1014, b, c ≤ k2 + k . 1.185× 1029.
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This “solves” the conjecture...

The conjecture is now reduced to pairs (b, c) of bases below
1.185× 1029, finitely many!

If b and c are below this threshold (and hence k ≤ 3.44× 1014),
then the inequality

2(l − 1) log k . 4C3(log k)3 log l

gives an implicit upper bound for l, and since m < l, there are only
finitely many pairs (l,m) to try.

This reduces the verification of the conjecture to a finite number
of operations.

Waiting for quantum computers...
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Collecting our partial results

Theorem

Let b, c ∈ Γ with b < c. Then Tb ∩ Tc = ∅ if at least one of the
following holds:

(i) b
√
bc 6= b

√
cc;

(ii) gcd(b, c) > 1;

(iii) c = b+ 1;

(iv) c = b+ 2 and there exists k ≥ 3 such that

k2 < b ≤ k2 +

√
2k2

k − 2
+ 1− 1 ≈ k2 +

√
2k;

(v) There exists k ≥ 2 such that b = k2 + 1 and c = k2 + k;

(vi) b > 1.185× 1029.
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Thank you!
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