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The basic question

Is it possible for a number to have its continued fraction expansion
agree with its decimal expansion? That is,

[0;a1,a2,a;3...] =0.a1a20a3 . ..

If we require each a; € {1,2,...,9}, it is easy to see that the
answer is no.
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Trott's Constant

In 2006, M. Trott published the following example in a blog post:

1
=0.1084101. ..
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This number is now known as Trott’s constant - see OEIS
sequence A039662.
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Trott numbers

The use of the digit 0 is, of course, unnatural from a dynamical
point of view. So we slightly tweak the definition:

Definition
Let b € N>o. A number z € (0,1) is a Trott number in base b if

r = [0;0,1,@2,@3, e ] = (O.dldgfbg, . .)b,

where a; is the string of digits corresponding to the base b
representation of a;.

For example, in base 10,

[0;3,29,545,6,...] =0.3295456. ...

For which bases, if any, do Trott numbers exist? And how can we
construct them?
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Two initial observations

@ If z is a Trott number, that is,
T = [0; ai,az,as, .. ] = (0.&1d2d3 v )b,

then x is neither rational nor quadratic irrational.
o If x = [0;a1,az,as,...] is Trott in base b, then a; = |V/b].

Proof. The intervals

ﬂa1+1 and 1 i
b’ b ar +1" a;

must overlap.

This shows also that no Trott numbers exist in base b if b is a
perfect square: If b = k2, then a; = k and the two intervals
only share an endpoint.
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The main theorem: good bases

Theorem (A, Jackson, Jones & Lambert, 2021)

There exists a Trott number in base b if and only if

o
be {3pu | J{F+1,K2+2,... . K +k} =T,
k=1

Furthermore, if Ty, is nonempty, then it is uncountable.

So the first few “good” bases are 2,3,5,6,10,11,12,17,18,19,20, ...
The proof of sufficiency is rather involved. See the slides of the

talk by T. Jones on October 5, 2021 for the case b = 10. The
construction is inductive, and the key is to choose ay carefully!
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Proof of necessity

To prove necessity, suppose b ¢ I' and there is a Trott number
x =1[0;a1,a2,as,...] = (0.a1a2a3 . . . )p.
Then there is a unique £ € N, k > 2 such that
B +k<b<(k+1)>2
By our earlier observation, a; = |v/b| = k. Suppose ay = j. Then

1 1
17
k+ 1 k+ L

Case 1. If j > (b—1)/k, then

1 b—1_ k+1
> >
k+% bk — b

so x does not begin with digit k&, contradiction.
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Proof of necessity (ctd)

Recall that a1 = k, ao = 5 and

1 1
]_7

Case 2. If j < (b—1)/k, then j < b and it can be checked easily

that .
1 k741

k+§>3+ b2

so the second digit of x is at least 7 + 1. Contradiction again!
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Some other results

Let T}, denote the set of Trott numbers in base b.

Theorem (A, Jackson, Jones & Lambert, 2021)

Foreach b € T, Ty, is a complete Gs set. (That is, Ty, is G5 but not
F,.)

v

Theorem (A, Jackson, Jones & Lambert, 2021)

Let
o
T:= 71
n=2

be the set of numbers that are Trott in some base. Then T is
nowhere dense, and dimg T < 1.

(In fact we have explicit upper bounds for dimy T}, for each b, but
they are almost surely very bad!)
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dimg Ty, > 0 for all b e T
dimHTb — 0 as b — oo.
T, NT. = () whenever b # c.

We'll focus here on Conjecture 3, which says that no number is
Trott in more than one base.
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Conjecture 3:

T, NT,. = () whenever b # c.
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Exploration of Conjecture 3

Let 2 < b < ¢, and suppose
x = [0;a1,a2,...] € TpNT,.

Since a; = |Vb] = |\/c], we see at once that b and ¢ must belong
to the same interval [k2 + 1, k2 + k.

From here, we tried (with only partial success) to obtain a
contradiction by using only information about as.
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Two lemmas

Let b < c. If ag has [ digits in base b and m digits in base ¢, then

2<m<l.

Let £ >2and k2 +1 < b < k?+ k. Assume b > 6. Suppose
x =[0;a1,a2,...] € Ty and ay has [ > 2 digits in base b. Then

0 — {bl(b; k) k(bfkﬂ)—‘ 1

Proof. Follows (after some straightforward but cumbersome
algebra) from the fact that a; = k, so these intervals overlap:

k as k as + 1
g+bl+1,g+ bl+1:| and

a as +1
kas + 1" k(az+1)+1]"
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Picking the low-hanging fruit

Let ay have | digits in base b, where | > 2.
(i) fb=Fk>+1 and k > 3, then

(K> + 1) — (K2 +1)

=1
k

a9 =

(i) Ifb=k?+k and k > 2, then as = b — 2.

Proposition
No number is Trott in both base k* + 1 and k? + k.

Proof. By the Corollary, we would have

(k2 +1) — (K2 +1)

— 1=K +k™ -2
B (k" + k)

This is impossible!
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Specific base pairs: using modular arithmetic

Example. Let b=17 =42 +1, c =19 = 42 + 3 (two “good”
bases!). Let ag have [ digits in base b and m digits in base c¢. By
the Corollary and Lemma 2,

17! — 21 {319;“) if m is odd,

g = ———— =9 aigm_~ .. .
4 BT if m is even,

Thus,
12 if m is odd,

17 —3.19™ = o
14 if m is even.

We can instantly rule out 12. This leaves us with

178 —3.19™ = 14.
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The example of 17 and 19, ctd.

Does the equation
17 —3.19™ =14

have a solution (I, m) in (Z4 x Z4)? Consider first the equation
modulo 6:
(-=1)! —=3-1™ =2 (mod 6).

This shows [ must be odd. Now consider the equation modulo 19:
(=2)! = =5 (mod 19).

Since [ is odd, this becomes 2! = 5 (mod 19). However, the odd
powers of 2 modulo 19 are

2,8,13,14,18,15,3,12,10,2,8,13,. ...

Hence, T17 N Thg = 0.
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What the lemmas tell us

Recall:

Let £ >2and k2 +1 < b < k?+ k. Assume b > 6. Suppose
x = [0;a1,as,...] € Ty and az has [ > 2 digits in base b. Then

0y — {bl(b— k) b -‘ _q

k k(b — k?)

Now let £ >3 and k2 +1 < b < ¢ < k* 4+ k. Suppose ay has |
digits in base b and m digits in base ¢. By Lemmas 1 and 2,
2<m<!and

W)l(b—k@) b -‘:[cm(c—lﬁ)_ c w

ko k(b—k2) k k(c — k2)
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Two tight inequalities

We just saw that

{bl(b—kz) b w

[cm(c— k2) c w |

k k(b — k2) k k(c— k2)
Thus,
bb—k*) b B <cm(c—k2) B c )’ 1
k k(b — k?) k k(c—k?)
Some simplification leads to
k*(c —b) k%(c —b)

—k < B (b—kY)—c™(e—k?) <

+k,

(b—k?)(c—Kk?) (b—k?)(c—k?)

and in particular,

b'(b— k%) — " (c — k?)| < K.
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Baker's theorem

Recall k2 +1 < b < ¢ < k? 4+ k. From the inequality
61(b — k%) — ™ (c — k?)| < k?
we can deduce (after minor technicalities) that
I >m > klogk.

To make further progress, we need “Baker's theorem”, really a
collection of theorems (going back to the 1970s) giving lower
bounds for expressions of the form

A= prlogag + Balogas + -+ + By logap,

provided A # 0, where aq, ..., a, are algebraic numbers and
B1, ..., By are rational integers.
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Baker's theorem for our setting

The version of Baker's theorem that we'll use (stated in simplified
form for our setting) is:

Lemma (Matveev, 2000)
Let aq,...,a, € Q, not 0or 1, and B1, ..., B, be integers. Let

A :=prlogaq + Bologag + - - - + B, log oy, # 0.

Then
|A| > exp{—Chh(a1) - h(a,)log(eB)},

where B := max{|B1|,...,|Bnl|},

Cy = min { - 30"+ *?, 20204
2 I )

and for oo = p/q in lowest terms, h(«) := log max{|p|, |q|} is the
(logarithmic) Weil height of c.
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Applying Matveev's lemma

It's not too hard to show that b'(b — k%) — ¢™(c — k?) # 0.
Assume WLOG that ¢™(c — k%) > b'(b — k2). Let

c—k?
A :=mlogc—llogb+ log <b—kQ> ,
so A > 0. Applying Matveev's lemma with a; = ¢, as = b,
a3 = (c—k*)/(b—k*), 1 =m, B2 = — and B3 = 1 we obtain

™ (c — k?)

Clem) g eA_1sA
) © T2

v

exp{—Cj3logblog clog(c — k*)log(el)}
exp{—Cs (log(k? + k))* log k log(el)}
exp{—4C3(log k)>log 1}

D Apy

V

Q
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Applying Matveev's lemma (ctd)
Recall that |b'(b — k%) — ¢™(c — k?)| < k?. Hence,

k2> M (e — k) — (b — k%) = Apb (b — k?)
> AkJ(k? + 1)l > Ak’lkm.

Thus,
k22 < A,;ll = exp{4Cs(log k)3 log1}.

Taking logs,
2(1 — 1) logk < 4C3(log k)3 log .

Since [ > m > klogk, we deduce that
k(log k)? < 2C3(log k) log(klog k),
or k < 2C3logklog(klogk). Since C3 ~ 1.39 x 10!, this yields

k< 3.44 x 10™, be < k®+k <1.185 x 10%.
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This “solves” the conjecture...

The conjecture is now reduced to pairs (b, c) of bases below
1.185 x 10?9, finitely many!

If b and ¢ are below this threshold (and hence k < 3.44 x 1014),
then the inequality

2(1 — 1) log k < 4C3(log k)3 log

gives an implicit upper bound for [, and since m < [, there are only
finitely many pairs (I, m) to try.

This reduces the verification of the conjecture to a finite number
of operations.

Waiting for quantum computers...
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Collecting our partial results

Let b,c € T withb < c. Then T, NT, = ( if at least one of the
following holds:

(i) Vo] # Vel

(ii) ged(b,c) > 1;
(i) c=b+1;
(iv) ¢ =b+ 2 and there exists k > 3 such that

[ 2k2
K2 <b<k®+ m+1—1mk2+\/2k;

(v) There exists k > 2 such that b= k* + 1 and c = k? + k;
(vi) b> 1.185 x 10%°.
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Thank you!
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