Spectral aspects of aperiodic dynamical systems

Michael Baake

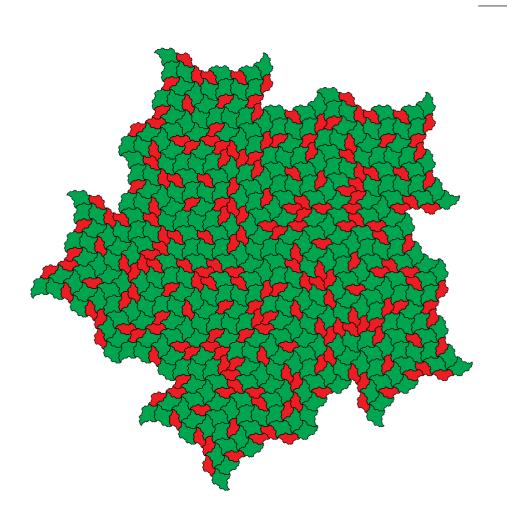
Bielefeld

(joint work with A. Bustos, F. Gähler, U. Grimm, N. Mañibo)

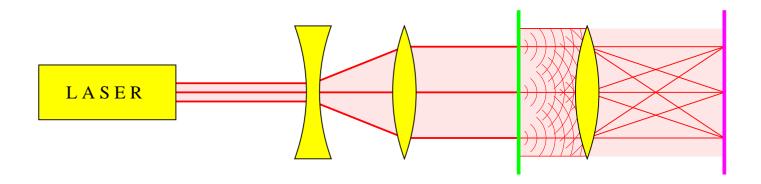
(and many others)

Menu

- Diffraction
- Pure point spectra
- Model sets, CPS
- Inflation tilings
- Renormalisation
- Visible lattice points
- Weak model sets
- Outlook

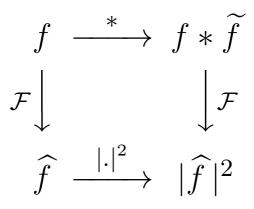


Diffraction theory



Wiener's diagram

obstacle f(x), with $\tilde{f}(x) := \overline{f(-x)}$



Diffraction theory

Structuretranslation bounded measure ω assumed 'self-amenable'(Hof 1995)

Autocorrelation $\gamma = \gamma_{\omega} = \omega \circledast \widetilde{\omega} := \lim_{R \to \infty} \frac{\omega|_R \ast \widetilde{\omega}|_R}{\operatorname{vol}(B_R)}$

$$\widehat{\gamma} = (\widehat{\gamma})_{\sf pp} + (\widehat{\gamma})_{\sf sc} + (\widehat{\gamma})_{\sf ac}$$
 (relative to $\lambda_{
m L}$)

- pp: Bragg peaks
- ac: diffuse scattering (with RN density)
- sc: whatever remains ...

Diffraction versus dynamical spectrum

Dynamical system

 $(\mathbb{X}, \mathbb{Z}, \mu)$ with $\mathbb{Z} \simeq \{T^n \mid n \in \mathbb{Z}\}$

 \frown Hilbert space $\mathcal{H} = L^2(\mathbb{X}, \mu)$

 \curvearrowright unitary operator on \mathcal{H} , $(U_T f)(x) := f(Tx)$

 $\curvearrowright\,$ Spectrum Of $\,U_T\,$ (Koopman, von Neumann, Halmos)

Extension analogous definition for other groups, e.g. \mathbb{R}^d

Spaces shifts, tilings, Delone sets, measures, ...

(Host 1986, Queffélec 1987, Pytheas Fogg 2002) (Radin/Wolff 1992, Robinson 1996, Solomyak 1997)

Diffraction versus dynamical spectrum

Theorem Let $(\mathbb{X}, \mathbb{R}^d, \mu)$ be an (ergodic) point set dynamical system with diffraction $\widehat{\gamma}$. Then, $\widehat{\gamma}$ is pure point iff $(\mathbb{X}, \mathbb{R}^d, \mu)$ has pure point dynamical spectrum. The latter then is the group generated by the support of $\widehat{\gamma}$, the so-called Fourier–Bohr spectrum of γ .

(Dworkin 1993, Hof 1995, Schlottmann 2000, Lee/Moody/Solomyak 2002, B/Lenz 2004, Lenz/Strungaru 2009, Lenz/Moody 2012)

Connection
$$\Lambda \subset \mathbb{R}^d$$
, $\mathbb{X} = \overline{\{t + \Lambda : t \in \mathbb{R}^d\}}$, $(\mathbb{X}, \mathbb{R}^d, \mu)$

FB coefficients

$$a_{\Lambda}(k) := \lim_{r \to \infty} \frac{1}{\operatorname{vol}(B_r)} \sum_{x \in \Lambda_r} e^{-2\pi i k x}$$

Eigenfunctions

$$a_{t+\Lambda}(k) = e^{-2\pi i k t} a_{\Lambda}(k) \qquad (\neq 0 \text{ for } k \in L^{\circledast})$$

Pure point spectra

Point measures
$$\delta_x$$
, $\delta_S := \sum_{x \in S} \delta_x$

Poisson's summation formula

$$\widehat{\delta_{\Gamma}} = \operatorname{dens}(\Gamma) \, \delta_{\Gamma^*}$$

for lattice $\varGamma,$ dual lattice \varGamma^*

Perfect crystals $\omega = \mu * \delta_{\Gamma}$ (μ finite, Γ maximal) \sim $\gamma = \operatorname{dens}(\Gamma) (\mu * \widetilde{\mu}) * \delta_{\Gamma}$ \sim $\widehat{\gamma} = (\operatorname{dens}(\Gamma))^2 |\widehat{\mu}|^2 \delta_{\Gamma^*}$ pure point !! \sim dynamical spectrum Γ^* , also pure point

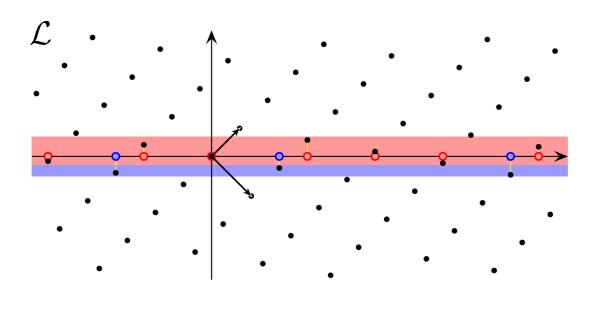
Pure point spectra

Silver mean substitution

$$\begin{array}{cccc} a & \mapsto & aba \\ b & \mapsto & a \end{array} \quad (\lambda_{\mathrm{PF}} = 1 + \sqrt{2}) \end{array}$$

Inflation point set

$$\Lambda = \left\{ x \in \mathbb{Z}[\sqrt{2}] : x^* \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right] \right\}$$
$$= \Lambda_a \cup \Lambda_b$$



Window IFS

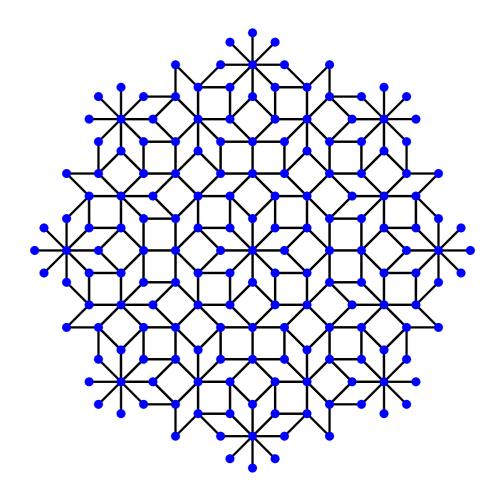
$$W_a = s (W_a \cup W_b) \cup s W_a + (1+s)$$
$$W_b = s W_a + s$$

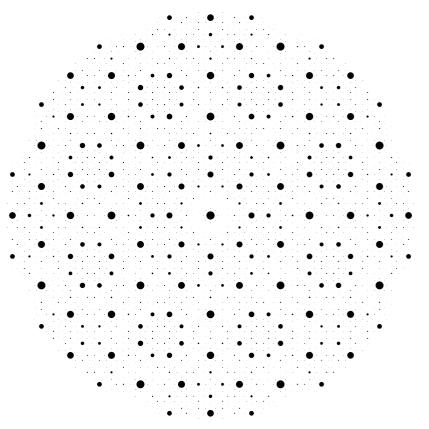
$$s = \lambda_{\rm PF}^{\star} = 1 - \sqrt{2}$$

Pure point spectra

C

Example: Ammann–Beenker tiling





point set

Idea Inflation (group !) $\stackrel{?!?}{\Longrightarrow}$ Exact renormalisation

Theorem Let ρ be a primitive inflation with inflation factor λ on the finite prototile set $\{\mathfrak{t}_1, \ldots, \mathfrak{t}_L\}$, with displacement matrix $T = (T_{ij})$. If $\nu_{ij}(z)$ is the pair correlation coefficient between tiles of type *i* and *j* at distance *z*, they satisfy (for all $z \in \mathbb{R}$) the identities

$$\nu_{ij}(z) = \frac{1}{\lambda} \sum_{m,n=1}^{L} \sum_{r \in T_{im}} \sum_{s \in T_{jn}} \nu_{mn} \left(\frac{z+r-s}{\lambda} \right).$$

(B/Frank/Grimm/Robinson 2017, B/Gähler/Mañibo 2019, Bufetov/Solomyak 2020)

Structure Finite self-consistency part, rest is purely recursive

Fourier transform $\Upsilon_{ij} = \sum_{z} \nu_{ij}(z) \delta_z$, measure vector Υ

 $f(z) = \lambda z$, Fourier matrix $B(k) = \widehat{\delta_T}(-k)$

$$\implies \qquad \Big| \widehat{\Upsilon} = \frac{1}{\lambda^2} \Big(B(.) \otimes \overline{B(.)} \Big) \Big(f^{-1} . \widehat{\Upsilon} \Big) \Big|$$

(separately for each spectral type)

RN density
$$(\widehat{\Upsilon}_{ij})_{ac} = h_{ij}(.)\mu_{Leb}, \quad h_{ij}(k) = \sum_{\ell} v_i^{(\ell)}(k)v_j^{(\ell)}(k)$$

$$\Rightarrow$$
 $v(k) = \frac{1}{\sqrt{\lambda}}B(k)v(\lambda k)$ and $v(\lambda k) = \sqrt{\lambda}B^{-1}(k)v(k)$

Cocycle

$$B^{(n)}(k) = B(k)B(\lambda k)\cdots B(\lambda^{n-1}k)$$

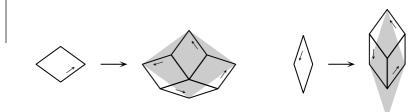
Lyapunov exponent $\chi^B(k) = \limsup_{n \to \infty} \frac{1}{n} \log \|B^{(n)}(k)\|$

Theorem Let ϱ be a primitive inflation on a finite prototile set, with inflation multiplier λ , and let B(k) be non-singular for at least one k. If, for some $\varepsilon > 0$, one has $\chi^B(k) \leq \frac{1}{2} \log(\lambda) - \varepsilon$ for μ_{Leb} -a.e. $k \in \mathbb{R}$, the ac part of $\widehat{\Upsilon}$ vanishes, and the diffraction is singular.

(B/Gähler/Mañibo 2019)

Extension Inflation tiling in \mathbb{R}^d , expansive map Q

 \sim criterion: $\chi^B(k) \leq \frac{1}{2} \log |\det(Q)| - \varepsilon$

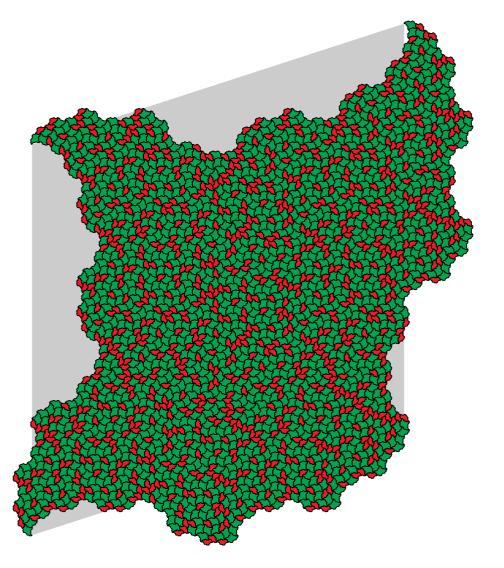


Godrèche–Lançon–Billard (GLB) inflation rule

$$\lambda = \sqrt{rac{5+\sqrt{5}}{2}}$$
 is non-PV

 \Rightarrow trivial point spectrum

Theorem Apart from the trivial Bragg peak at 0, the spectrum of the GLB tiling is purely singular continuous.



Patch of the (fractal) GLB tiling

Plastic number inflation

Substitution $\varrho: a \mapsto b \mapsto c \mapsto ab$

Subst. matrix $M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $p(x) = x^3 - x - 1$

 $\label{eq:relation} {\rm Roots} \qquad \beta = \lambda_{\rm PF} \approx 1.32472 \qquad \mbox{(min. PV number)}$

 $lpha,\overline{lpha}$ (complex pair)

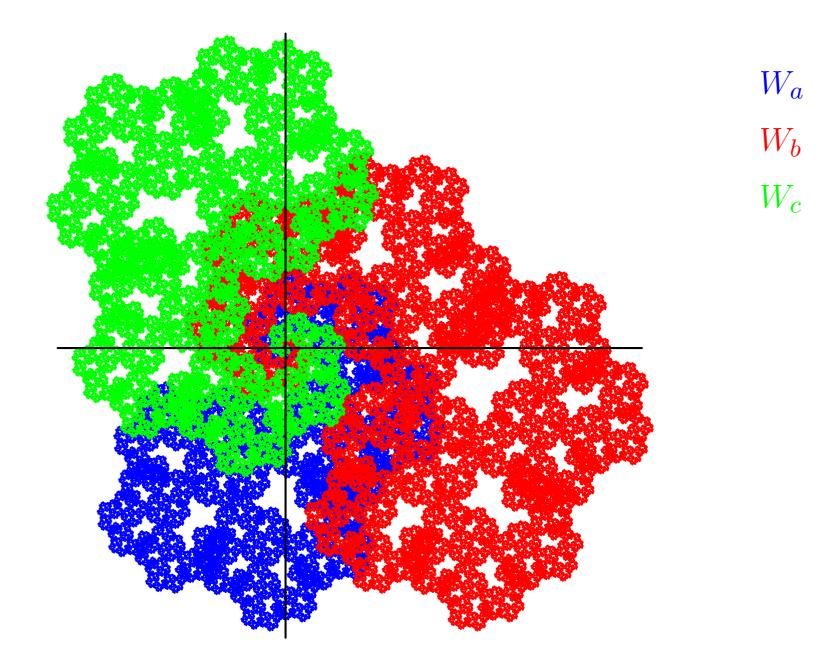
Inflation tiling tile lengths $1, \beta, \beta^2$ for a, b, c

▷ point set
$$\Lambda = \bigcup_i \Lambda_i \subset \left[L = \mathbb{Z}[\beta] = \langle 1, \beta, \beta^2 \rangle_{\mathbb{Z}} \right]$$

→ model set for CPS $(\mathbb{R}, \mathbb{R}^2, \mathcal{L})$, with \star -map: $\beta \mapsto \alpha$

pure point spectrum (diffraction and dynamical)

Complex windows



Spectrum and Fourier matrix

Fourier module
$$L^{\circledast} = \frac{5-6\beta+4\beta^2}{23}L$$
 (point spectrum)

Question How to calculate $f_i(y) := \widetilde{1}_{W_i}(y)$?

Fourier matrix
$$B(y) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & e^{2\pi i y_1} \\ 0 & 1 & 0 \end{pmatrix}$$
, $y = (y_1, y_2)$, $B(0) = M$

Internal scaling
$$Q = \begin{pmatrix} \operatorname{Re}(\alpha) & -\operatorname{Im}(\alpha) \\ \operatorname{Im}(\alpha) & \operatorname{Re}(\alpha) \end{pmatrix}$$
, $R = Q^T$, $\det(Q) = \beta^{-1}$

Lemma

$$|f(y)\rangle \,=\, \beta^{-1}\,B(y)\,|f(Ry)\rangle$$

Fourier transform of Rauzy fractals

Cocycle

$$\left| B^{(n)}(y) = B(y)B(Ry)\cdots B(R^{n-1}y) \right| \quad (n \in \mathbb{N}$$

$$|f(y)\rangle = \beta^{-n} B^{(n)}(y) |f(R^n y)\rangle$$

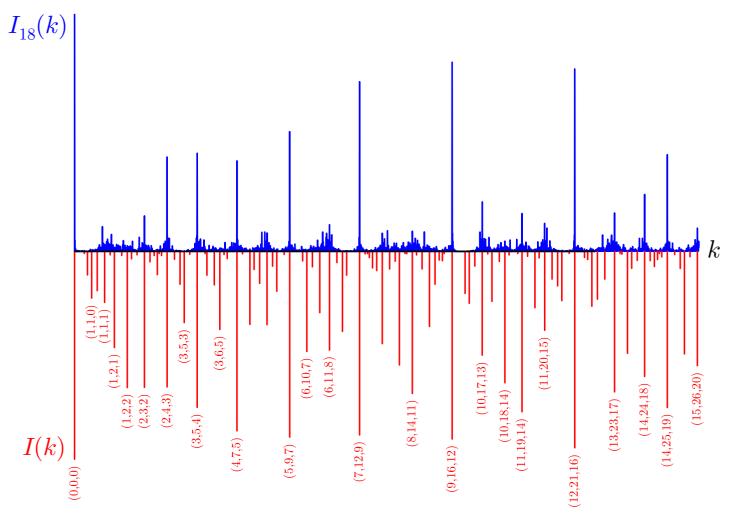
 $\begin{array}{ll} \text{Theorem} & \left(\beta^{-n}B^{(n)}(y)\right)_{n\in\mathbb{N}} \text{ is compactly converging on } \mathbb{R}^2.\\ \text{Thus, the matrix function } & C(y) := \lim_{n\to\infty} \beta^{-n}B^{(n)}(y) \text{ exists and is continuous. Moreover, } & C(y) = |c(y)\rangle\langle u| \text{ with } |c(y)\rangle = C(y)|v\rangle, \text{ where } & \langle u|v\rangle = 1, \, |v\rangle = |2 - \beta^2, \beta^2 - \beta, \beta - 1\rangle \text{ and } & C(0) = |v\rangle\langle u|. \text{ This also gives } |f(y)\rangle = \overline{\ell} \, |c(y)\rangle \text{ with } \overline{\ell} = 4 + 2\beta - 4\beta^2. \quad \text{(B/Grimm 2020)} \end{array}$

Diffraction $\widehat{\gamma} = \sum_{k \in L^{\circledast}} \left| \sum_{i} h_{i} A_{i}(k) \right|^{2} \delta_{k}$

Amplitudes $A_i(k) = \operatorname{dens}(\Lambda)c_i(k^{\star})$ $(k \in L^{\circledast}, i \in \{a, b, c\})$

Diffraction intensities

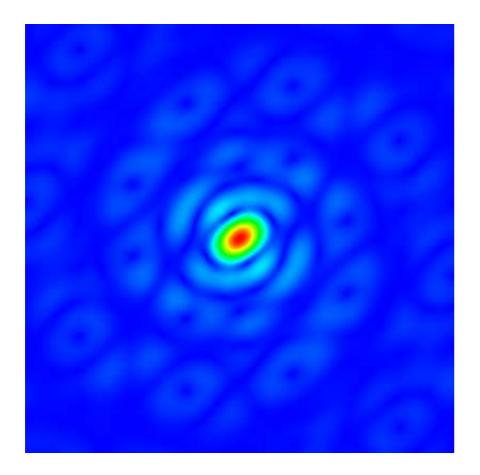
From finite system $\rho^{18}(a)$

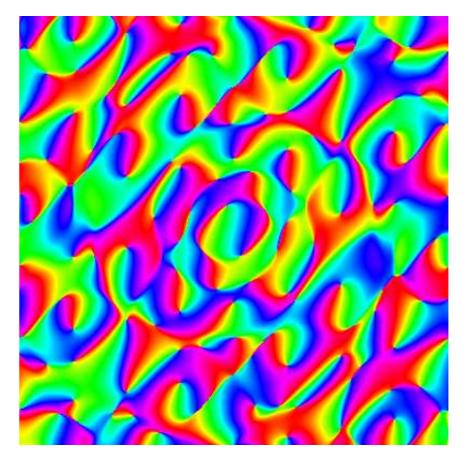


From cocycle approach

Fourier transform

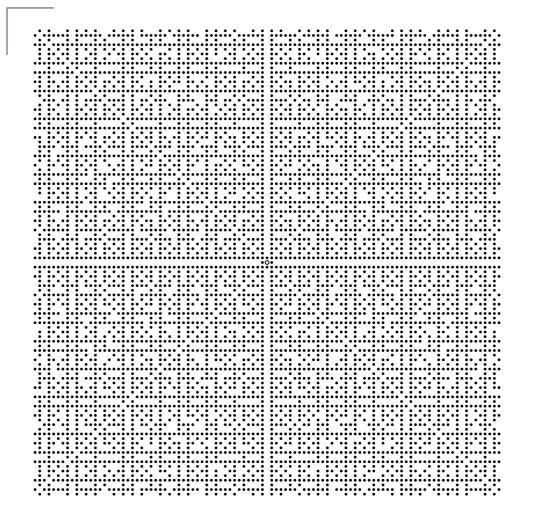
Inverse Fourier transform of the window W_b





 $\arg\bigl(\widetilde{\mathbf{1}_{W_b}}(y_1, y_2)\bigr)$

Visible lattice points



 $V = \{ x \in \mathbb{Z}^2 \mid \gcd(x) = 1 \}$

Properties

- dens(V) = $6/\pi^2$
- V not Delone

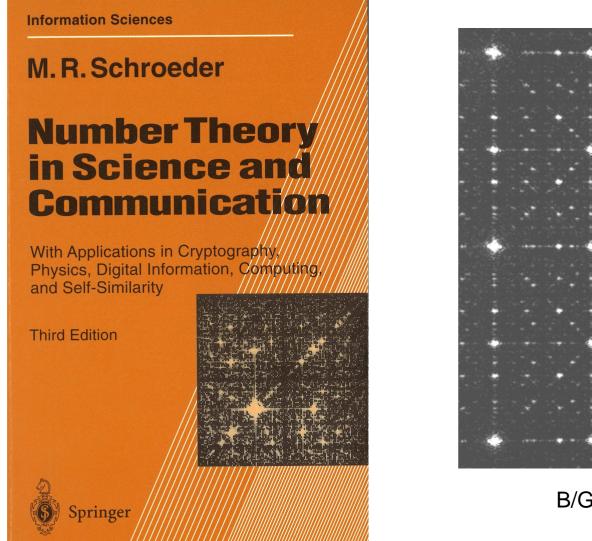
•
$$V - V = \mathbb{Z}^2$$

- pure point diffraction
- weak model set

 $h_{top}(V) > h_{m}(V) = 0$

Theorem PP dynamical spectrum, trivial top. point spectrum

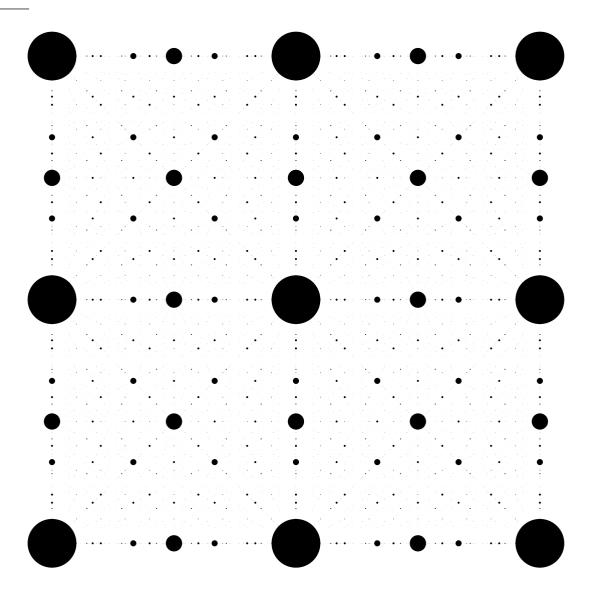
Visible lattice points



B/Grimm/Warrington 1994

Schroeder 1982, Mosseri 1992, B/Moody/Pleasants 2000, B/Huck 2013

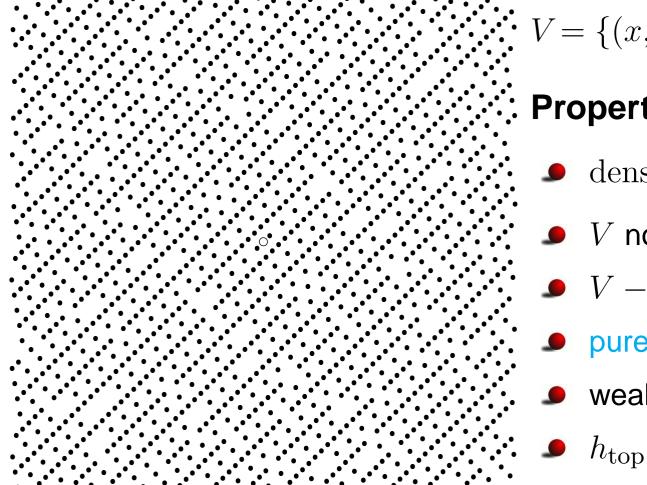
Visible lattice points



Properties

- \checkmark \mathbb{Z}^2 -periodic
- D_4 -symmetric
- $GL(2,\mathbb{Z})$ -invariant
- support of $\widehat{\gamma}$: $S = \{k \in \mathbb{Q}^2 \text{ with } den(k) \text{ square-free}\}:$ FB spectrum
- intensity for $k \in S$ with den(k) = q $\left(\frac{6}{\pi^2}\right)^2 \prod_{p|q} \frac{1}{(p^2-1)^2}$

Squarefree integers in $\mathbb{Z}[\sqrt{2}]$



 $V = \{(x, x') \mid x \text{ sq.-free}\}$

Properties

- $\operatorname{dens}(V) = \frac{24}{\pi^4} = \frac{\operatorname{dens}(\mathcal{L})}{\zeta_{\kappa}(2)}$
- V not Delone

•
$$V - V = \langle V \rangle = \mathcal{L}$$

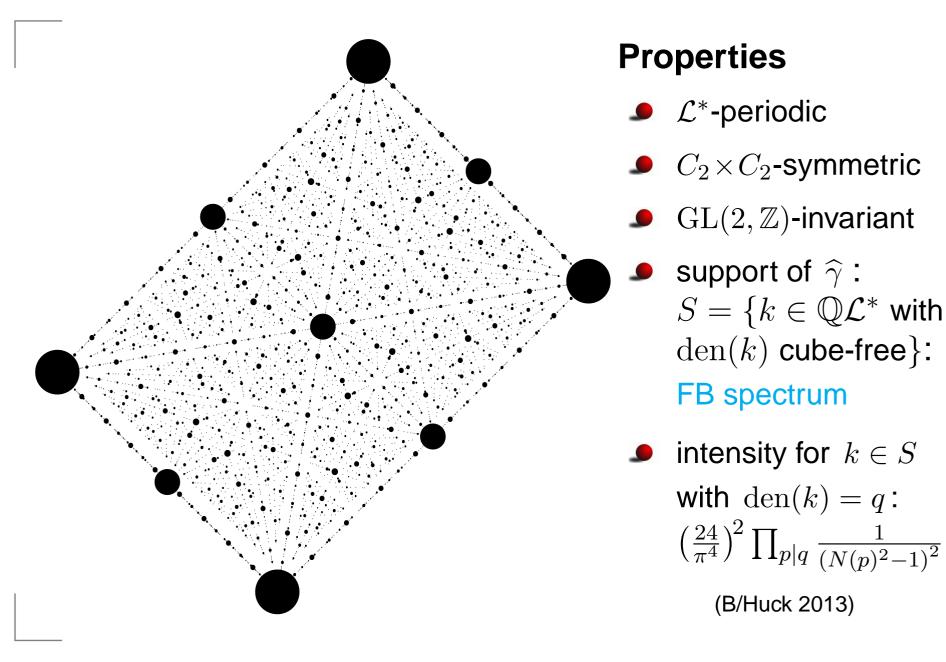
- pure point diffraction
- weak model set

•
$$h_{\text{top}}(V) > h_{\text{m}}(V) = 0$$

Theorem PP dynamical spectrum, trivial top. point spectrum

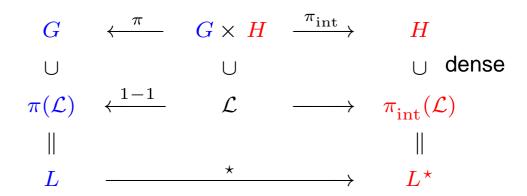
(Cellarosi/Vinogradov 2013, B/Huck 2013)

Squarefree integers in $\mathbb{Z}[\sqrt{2}]$



(B/Huck 2013)

Weak model sets



G: σ -compact H: comp. gen. \mathcal{A} : van Hove in G

WMS

$$\Lambda = \{ x \in L \mid x^\star \in W \}$$

with $W \subset H$ compact, $\theta_H(W) > 0$

max. density: $dens(A) = dens(\mathcal{L}) \theta_H(W)$

$$\gamma_{\!\Lambda} := \lim_{n \to \infty} \frac{\delta_{\!\Lambda \cap A_n} * \delta_{-(\Lambda \cap A_n)}}{\theta_G(A_n)} \qquad \text{(exists !!)}$$

(B/Huck/Strungaru 2015, Lenz/Spindeler/Strungaru 2020)

Weak model sets

Diffraction

$$\widehat{\gamma} = \sum_{k \in L^0} |A(k)|^2 \, \delta_k$$
 pure point !! ($\omega = \delta_A$)

with $L^0 = \pi(\mathcal{L}^0)$ (annihilator of \mathcal{L} in dual CPS) amplitude $A(k) = \frac{\operatorname{dens}(A)}{\theta_{H}(W)} \widehat{1}_{W}(-k^*)$

Hull

$$\mathbb{X}_{\Lambda} = \overline{G + \Lambda}$$

with patch frequency measure $\boldsymbol{\mu}$

 μ is ergodic, $~\Lambda$ is generic for μ

Theorem (X_A, G, μ) has pure point dynamical spectrum: L^0

(Keller/Richard 2015, B/Huck/Strungaru 2015)

Topological conjugacy

• • \bullet \cap \bullet • • • • \bullet \bullet \circ \bullet $\odot \quad \bullet \quad \bigcirc \quad \odot \quad \odot \quad \odot \quad \bullet \quad \odot$ \odot \odot \bigcirc \odot \odot \bullet \bullet \bullet \odot \bigcirc \odot \odot $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$ $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ (\bullet) • • \bullet \circ \bullet $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$ • • • • • • 0 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 0 0 0 0 0 0 0 0 0 0 . $\overline{\bullet}$ ۲ ۲ 0• • • ۲ ۲ • • \bullet \circ \bullet • • \bullet \bullet \bullet \bullet $\odot \quad \odot \quad \odot \quad \odot \quad \odot \quad \odot \quad \odot$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \bullet \bullet • • • $\bullet \quad \bullet \quad \circ \quad \bullet \quad \bullet$ $\odot \quad \odot \quad \circ \quad \bullet \quad \bullet \quad \circ \quad \odot \quad \odot$ \bullet \bullet \circ \bullet \bullet • •

Visible lattice points (red dots) versus square-free Gaussian integers (circles)

Topological conjugacy

Theorem $S_V = S_G = \mathbb{Z}^2$ together with $\mathcal{R}_G = \mathbb{Z}^2 \rtimes D_4$ and $\mathcal{R}_V = \mathbb{Z}^2 \rtimes GL(2,\mathbb{Z})$

Question General structure ?

Topological conjugacy

System $(\mathbb{X}, \mathbb{Z}^2)$ with $\mathbb{X} = \overline{\mathbb{Z}^2 + V_2}$ and

 $V_2 = \{m + n\sqrt{2} \text{ is } k \text{-free } \mid m, n \in \mathbb{Z}\}$ any $k \leq 2$

Theorem

$$\mathcal{S}=\mathbb{Z}^2$$
 and $\mathcal{R}=\mathcal{S}\rtimes\mathcal{H}$ with

$$\mathcal{H} \simeq \mathcal{O}^{\times} \rtimes \operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) \simeq C_2 \times D_{\infty}$$

(B/Bustos/Huck/Lemańczyk/Nickel 2020)

Extensions

Same type of result for all quadratic fields

(B/Bustos/Nickel 2021)

Outlook

- Higher-dimensional inflation tilings
- Eigenfunctions under Rauzy fractals
- Connections with almost periodicity
- Systems with mixed spectrum
- Non-minimal systems from number theory
- Efficient topological invariants
- Quadratic and cyclotomic fields
- General \mathcal{B} -free systems for d > 1

References

- M. B., U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, CUP (2013).
- D. Lenz, T. Spindeler, N. Strungaru, Pure point spectrum for dynamical systems and mean almost periodicity, preprint, arXiv: 2006.10825.
- R.V. Moody, Model sets: A survey, arXiv:math.MG/0002020.
- N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, LNM 1794, Springer, Berlin (2002).
- M. B., A. Bustos, C. Huck, M. Lemańczyk, A. Nickel, Number-theoretic positive entropy shifts with small centraliser and large normaliser, *ETDS*, in pr.; arXiv:1910.13876.
- M. B., F. Gähler, N. Mañibo, Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction, *Commun. Math. Phys.* 370 (2019) 591–635; arXiv:1805.09650.
- M. B., U. Grimm, Fourier transform of Rauzy fractals and point spectrum of 1D inflation tilings, Doc. Math. 25 (2020) 2303–2337; arXiv:1907.11012.
- M. B., C. Huck, N. Strungaru, On weak model sets of extremal density, Indag. Math.
 28 (2017) 3–31; arXiv:1512.07129.
- M. B., D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, ETDS 24 (2004) 1867–1893; arXiv:0302061.