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Motivating problem: Suppose a property holds for Lebesgue
almost every x ∈ R and µ is a Borel probability measure that is
defined “independently” from this property. Does this property
hold for µ almost every x?
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A simple example where we can obtain a positive answer to this
question is the following theorem.

Theorem

Let E ⊆ R be a Borel set such that L(R \ E) = 0 and µ be a
Borel probability measure. Denote by µt the pushforward of µ
by the map x → x + t . Then for Lebesgue almost every t ∈ R
we have µt (E) = 1.

Proof.

Fubini’s theorem.

The independence comes from our random choice of
translation parameter.
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In this talk we will consider this problem when the property we
are interested in is defined in terms of some sequence being
uniformly distributed, and the measures we are interested in
are fractal measures.
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Definition

A sequence (xn)∞n=1 of real numbers is said to be uniformly
distributed modulo one if for every pair of real numbers u, v with
0 ≤ u < v ≤ 1 we have

lim
N→∞

#{1 ≤ n ≤ N : xn mod 1 ∈ [u, v ]}
N

= v − u.
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Theorem (Borel’s normal number theorem)

Let b ≥ 2 be an integer. Then for Lebesgue almost every x the
sequence (bnx)∞n=1 is uniformly distributed modulo one.

Several analogues of Borel’s normal number theorem have
been established for fractal measures.
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Definition

We call a finite set of contracting similarities
Φ := {ϕi(x) = rix + ti}ki=1 an iterated function system or
IFS for short (|ri | ∈ (0,1) and ti ∈ R).

For any IFS there exists a unique non-empty compact set
X satisfying

X =
k⋃

i=1

ϕi(X ).

We call X the self-similar set of the IFS.
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Example

Let Φ = {ϕ1(x) = x
3 , ϕ2(x) = x+2

3 }. The self-similar set for this
IFS is

C :=

{ ∞∑
i=1

εi
3i : εi ∈ {0,2}

}
.

We call C the middle third Cantor set.
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Definition

Let Φ = {ϕi(x) = rix + ti}ki=1 be an IFS and p = (pi)
k
i=1 be a

probability vector. Then there exists a unique Borel probability
measure µp supported on the self-similar set of Φ such that

µp =
k∑

i=1

pi · µp ◦ ϕ−1
i .

We call µp the self-similar measure corresponding to Φ and p.
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Recall that the middle third Cantor set is equal to

C =

{ ∞∑
i=1

εi
3i : εi ∈ {0,2}

}
.

For every x ∈ C the sequence (3nx)∞n=1 is not uniformly
distributed modulo one. Because C is invariant under
x → 3x mod 1.

Therefore for any self-similar measure µp the sequence
(3nx)∞n=1 is not uniformly distributed modulo one for µp almost
every x .
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The problem here is that C and the sequence (3nx)∞n=1 are
both built using the map x → 3x mod 1. The following
metaconjecture is a reasonable response to this issue:

Metaconjecture

Suppose µp is a self-similar measure that is “independent” from
the dynamical system x → bx mod 1. Then for µp almost every
x the sequence (bnx)∞n=1 is uniformly distributed modulo one.
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This metaconjecture has been verified in certain situations.

Cassels (1959): If b is not a power of 3 then for µ(1/2,1/2)
almost every x ∈ C the sequence (bnx)∞n=1 is uniformly
distributed modulo one.
Hochman and Shmerkin (2015): Let {ϕi(x) = rix + ti}ki=1
be an IFS satisfying the open set condition. Let b ≥ 2 be
such that log |ri |

log b /∈ Q for some i , then for every self-similar
measure µp, µp almost every x is such that (bnx)∞n=1 is
uniformly distributed modulo one.
Dajan, Ganguly, and Weiss (2020): Let {ϕi(x) = x

b + ti}ki=1
be an IFS. Suppose ti − tj /∈ Q for some i , j , then for every
self-similar measure µp, µp almost every x is such that
(bnx)∞n=1 is uniformly distributed modulo one.
Other important works due to Kaufman, Queffélec and
Ramaré, and Jordan and Sahlsten.
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The motivation behind what I am discussing comes from these
results and the following theorem.

Theorem (Koksma (1935))

For Lebesgue almost every x > 1 the sequence (xn)∞n=1 is
uniformly distributed modulo one.

Does an analogue of Koksma’s theorem hold for self-similar
measures?
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The following conjecture seems plausible.

Conjecture

Let µp be a non-atomic self-similar measure with support
contained in [1,∞). Then for µp almost every x the sequence
(xn)∞n=1 is uniformly distributed modulo one.

This seems reasonable because an IFS consists of affine maps
and the maps x → xn are not affine (for n ≥ 2).

In other words, the IFS and its self-similar measures are
defined “independently” from the maps x → xn.
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Definition

We say that an IFS Φ = {ϕi(x) = rix + ti}ki=1 is
equicontractive if there exists r ∈ (−1,0) ∪ (0,1) such that
ri = r for all i .

We say that an IFS Φ = {ϕi}ki=1 satisfies the convex strong
separation condition if

ϕi(conv(X )) ∩ ϕj(conv(X )) = ∅ ∀i 6= j .

The middle third Cantor set is constructed using an
equicontractive IFS satisfying the convex strong separation
condition.
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The statement of the main theorem is for a general sequence of
real valued functions (fn)∞n=1. We will require these functions to
satisfy the following four properties:

fn ∈ C3(conv(X ),R) for each n.
There exists C1,C2 > 0 such that for any m,n with m < n
we have

|f ′n(x)− f ′m(x)| ≤ C1nC2xn−1

for all x ∈ conv(X ).

Simon Baker University of Birmingham

Equidistribution results for self-similar measures.



Introduction Statement of results Outline of proof

The statement of the main theorem is for a general sequence of
real valued functions (fn)∞n=1. We will require these functions to
satisfy the following four properties:

fn ∈ C3(conv(X ),R) for each n.

There exists C1,C2 > 0 such that for any m,n with m < n
we have

|f ′n(x)− f ′m(x)| ≤ C1nC2xn−1

for all x ∈ conv(X ).

Simon Baker University of Birmingham

Equidistribution results for self-similar measures.



Introduction Statement of results Outline of proof

The statement of the main theorem is for a general sequence of
real valued functions (fn)∞n=1. We will require these functions to
satisfy the following four properties:

fn ∈ C3(conv(X ),R) for each n.
There exists C1,C2 > 0 such that for any m,n with m < n
we have

|f ′n(x)− f ′m(x)| ≤ C1nC2xn−1

for all x ∈ conv(X ).

Simon Baker University of Birmingham

Equidistribution results for self-similar measures.



Introduction Statement of results Outline of proof

There exists C3 > 0 such that for all n sufficiently large, for
any m < n we have:

|f ′′n (x)− f ′′m(x)| ≥ C3xn−2

for all x ∈ conv(X ).

For any m,n with m < n we have either

f ′′′n (x)− f ′′′m (x) ≥ 0

for all x ∈ conv(X ), or

f ′′′n (x)− f ′′′m (x) ≤ 0

for all x ∈ conv(X ).
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It is straightforward to construct sequences of functions
satisfying these four properties. For example:

fn(x) = xn

fn(x) = xn + xn−1 + · · ·+ x + 1 for all n.
We fix a polynomial g with strictly positive coefficients and
let fn(x) = g(x)xn for all n.
We fix a polynomial g with strictly positive coefficients and
let fn(x) = g(n)xn for all n.
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Theorem (B, 2020)

Let {ϕi(x) = rx + ti}ki=1 be an equicontractive iterated function
system satisfying the convex strong separation condition with
self-similar set X contained in [1,∞). Let (fn)∞n=1 be a
sequence of functions satisfying the aforementioned properties.
Moreover let p = (pi)

k
i=1 be a probability vector satisfying

1
2
<
−
∑k

i=1 pi log pi

− log |r |
.

Then for µp almost every x the sequence (fn(x))∞n=1 is uniformly
distributed modulo one.
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The following corollaries follow from this theorem:

Corollary (B)

Let {ϕi(x) = rx + ti}ki=1 be an equicontractive iterated function
system satisfying the convex strong separation condition with
self-similar set X contained in [1,∞). Moreover let p = (pi)

k
i=1

be a probability vector satisfying

1
2
<
−
∑k

i=1 pi log pi

− log |r |
.

Then for µp almost every x the sequence (xn)∞n=1 is uniformly
distributed modulo one.
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Corollary (B, 2020)

Let C be the middle third Cantor set. Then for any t ≥ 1, with
respect to the Cantor-Lebesgue measure on C + t , for almost
every x the sequence (xn)∞n=1 is uniformly distributed modulo
one.

Here we use that the Cantor-Lebesgue measure coincides with
µ(1/2,1/2).
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The proof differs significantly from earlier works on the
sequence (bnx).

We do not use the Fourier transform of the self-similar
measure. (Cassels)

We do not rely on techniques from Ergodic Theory. (Hochman
and Shmerkin, Dajan, Ganguly, and Weiss).

Our proof exploits the fact that our sequence of functions
(fn)∞n=1 are not affine maps.

Simon Baker University of Birmingham
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Combining Weyl’s criterion for uniform distribution with a result
of Davenport, Erdős, and LeVeque we have the following useful
proposition.

Proposition

Let µ be a Borel probability measure on R and (fn)∞n=1 be a
sequence of continuous real valued functions. If for any
l ∈ Z \ {0} the series

∞∑
N=1

1
N

∫ ∣∣∣∣∣ 1
N

N∑
n=1

e2πilfn(x)

∣∣∣∣∣
2

dµ

converges, then for µ almost every x the sequence (fn(x))∞n=1 is
uniformly distributed modulo one.
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As such our proof reduces to now showing that for any
l ∈ Z \ {0} we have

∞∑
N=1

1
N

∫ ∣∣∣∣∣ 1
N

N∑
n=1

e2πilfn(x)

∣∣∣∣∣
2

dµ <∞.
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The first part of the proof of the theorem involves bounding
certain integrals that are defined with respect to the
self-similar measure from above in terms of the L2 norm of
functions that are integrated with respect to the Lebesgue
measure. This argument is an adaptation of one given by
Jordan and Sahlsten.

The second part is where we use our assumptions on (fn).
It involves some careful analysis and an application of the
van der Corput lemma. This is where the non-affineness of
the sequence (fn) is used.

Simon Baker University of Birmingham
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In what follows we restrict our attention to the IFS
{ϕ0(x) = x+2

3 , ϕ1(x) = x+4
3 } and the uniform (1/2,1/2)

self-similar measure. For this IFS the attractor is C + 1.

For any a ∈ {0,1}M we let

ϕa := ϕa1 ◦ · · · ◦ ϕaM .

We also let Ca = ϕa(C + 1).

Simon Baker University of Birmingham
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To successfully apply the criteria of Davenport, Erdős, and
LeVeque we are naturally led to consider:∫

exp(l(fn(x)− fm(x))) dµ

for n > m and l is fixed. Here exp(x) = e2πix .
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Using the self-similarity of µ we have∫
exp(l(fn(x)− fm(x))) dµ =

∫
WM(x) dµ

where

WM(x) =
∑

a∈{0,1}M

exp(l(fn(ϕa(x))− fm(ϕa(x))))

2M .

M is a parameter that is chosen carefully during our proof.
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Fix δ > 0 to be some small real number. Let

RM :=

{
a ∈ {0,1}M : sup

x∈Ca

|WM(x)| ≥ 2 · 3−δn
}
.

We have the inequality∣∣∣∣∣∣
∑

a∈Rc
M

∫
Ca

WM(x) dµ

∣∣∣∣∣∣ ≤ 2 · 3−δn.
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Fact: For the right choice of M, if a ∈ RM then |WM(x)| ≥ 3−δn

for all x ∈ ϕa([1,2]).
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Using this fact we have the following∣∣∣∣∣∣
∑

a∈RM

∫
Ca

WM(x) dµ

∣∣∣∣∣∣ ≤
∑

a∈RM

1
2M

=
3M

2M · 3−2δn

∑
a∈RM

3−2δn

3M

≤ 3M

2M · 3−2δn

∑
a∈RM

∫
ϕa([1,2])

|WM(x)|2 dx

≤ 3M

2M · 3−2δn

∫ 2

1
|WM(x)|2 dx .
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Combining the above we’ve shown that

|
∫

exp(l(fn(x)−fm(x))) dµ| ≤ 3M

2M · 3−2δn

∫ 2

1
|WM(x)|2 dx+2·3−δn.
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The 3M

2M ·3−2δn term at the front of the integral is an unfortunate
obstacle that arises because of the inefficiencies in the above
argument.

To overcome it we need the lower bound

1
2
<
−
∑k

i=1 pi log pi

− log |r |

appearing in the assumptions of the theorem.
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To complete our proof it remains to obtain good upper bounds
for the integral ∫ 2

1
|WM(x)|2 dx .
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Recall that

WM(x) =
∑

a∈{0,1}M

exp(l(fn(ϕa(x))− fm(ϕa(x))))

2M .

It should not be surprising that to obtain good bounds for∫ 2
1 |WM(x)|2 dx it suffices to bound integrals of the form∫ 2

1
exp(l(fn(ϕa(x))− fm(ϕa(x))− fn(ϕb(x)) + fm(ϕb(x))) dx

for distinct a,b ∈ {0,1}M .
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To bound these integrals we use the following lemma due to
van der Corput.

Lemma (van der Corput lemma)

Let φ : [a,b]→ R be differentiable. Assume that |φ′(x)| ≥ γ for
all x ∈ [a,b], and φ′ is monotonic on [a,b]. Then∣∣∣∣∣

∫ b

a
e2πiφ(x) dx

∣∣∣∣∣ ≤ γ−1.

This is the part of our proof which uses the fact our functions
(fn) are not affine and that our IFS is equicontractive.
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Where does the proof break down for fn(x) = 3nx?

Observe that if fn(x) = 3nx and

φ(x) = l(fn(ϕa(x))− fm(ϕa(x))− fn(ϕb(x)) + fm(ϕb(x))

then
φ′(x) = l(3n−M − 3m−M − 3n−M + 3m−M) = 0.

So we cannot use van der Corput’s lemma
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To finish I’d like to emphasise one feature of this argument that
is specific to self-similar measures.

Simon Baker University of Birmingham

Equidistribution results for self-similar measures.



Introduction Statement of results Outline of proof

Suppose we want to bound the integral∣∣∣∣∫ exp(l(fn(x)− fm(x))) dµ
∣∣∣∣ .

Taking the absolute value inside the integral provides a trivial
upper bound which is not very useful.
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For self-similar measures we may use their defining property
then take the absolute value inside:∣∣∣∣∫ exp(l(fn(x)− fm(x))) dµ

∣∣∣∣
=

∣∣∣∣∣∣
∫ ∑

a∈{0,1}M

exp(l(fn(ϕa(x))− fm(ϕa(x))))

2M dµ

∣∣∣∣∣∣
≤
∫ ∣∣∣∣∣∣

∑
a∈{0,1}M

exp(l(fn(ϕa(x))− fm(ϕa(x))))

2M

∣∣∣∣∣∣ dµ.
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It is reasonable to expect that∣∣∣∣∣∣
∑

a∈{0,1}M

exp(l(fn(ϕa(x))− fm(ϕa(x))))

2M

∣∣∣∣∣∣
will be small.
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Thank you for listening.
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