Rigid Fractal Tilings

Michael F. Barnsley

World Numeration Seminar

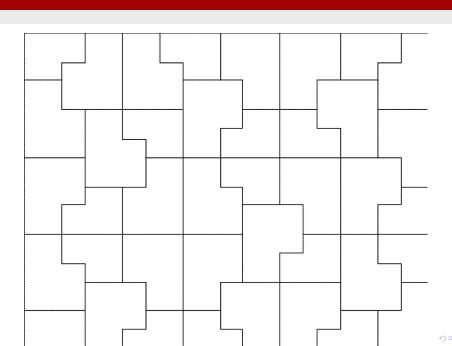
1 December 2020

■ Joint work with Louisa Barnsley, Andrew Vince

- Joint work with Louisa Barnsley, Andrew Vince
- Use graph directed iterated function systems to study generalized self similar tilings. The primary goal is to understand conjugacy properties of tiling spaces. Focus on the notion of *rigid* tilings, using two examples.

- Joint work with Louisa Barnsley, Andrew Vince
- Use graph directed iterated function systems to study generalized self similar tilings. The primary goal is to understand conjugacy properties of tiling spaces. Focus on the notion of *rigid* tilings, using two examples.
- Louisa Barnsley, M.F.B., Andrew Vince, Tiling Iterated Function Systems, arXiv:2002.03538v4

- Joint work with Louisa Barnsley, Andrew Vince
- Use graph directed iterated function systems to study generalized self similar tilings. The primary goal is to understand conjugacy properties of tiling spaces. Focus on the notion of *rigid* tilings, using two examples.
- Louisa Barnsley, M.F.B., Andrew Vince, Tiling Iterated Function Systems, arXiv:2002.03538v4
- Thanks to Christoph Bandt for advice and help.



■ Two examples

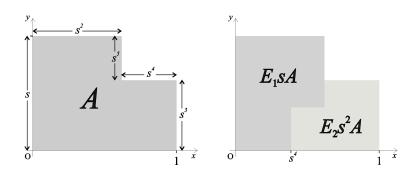
- Two examples
- Canonical tilings

- Two examples
- Canonical tilings
- Rigidity

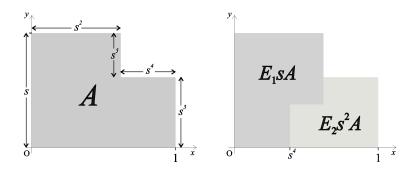
- Two examples
- Canonical tilings
- Rigidity
- Equivalence of representations

- Two examples
- Canonical tilings
- Rigidity
- Equivalence of representations
- Example of Main Theorem and Proof

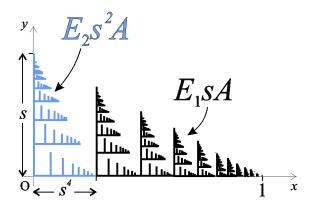
- Two examples
- Canonical tilings
- Rigidity
- Equivalence of representations
- Example of Main Theorem and Proof
- Tiling IFS, Main Theorem



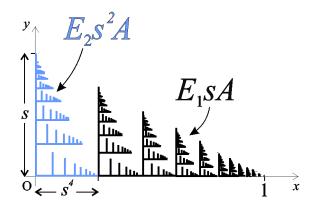
■ $A = f_1A \cup f_2A$ where $f_1 = E_1s$, $f_2 = E_2s^2$ and $s^2 + s^4 = 1$



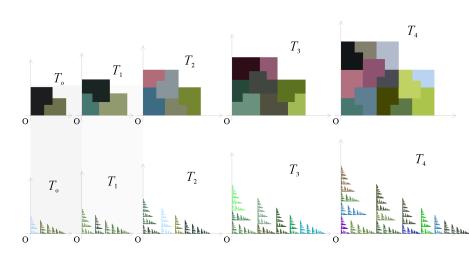
- $A = f_1A \cup f_2A$ where $f_1 = E_1s$, $f_2 = E_2s^2$ and $s^2 + s^4 = 1$
- IFS $\mathcal{F} = \{f_1, f_2\}$ obeys the OSC



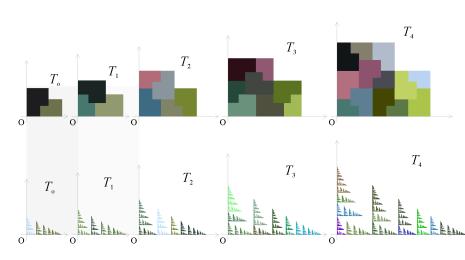
■ $A = f_1 A \cup f_2 A$ where $f_1 = E_1 s$, $f_2 = E_2 s^2$ and $s + s^4 = 1$



- $A = f_1 A \cup f_2 A$ where $f_1 = E_1 s$, $f_2 = E_2 s^2$ and $s + s^4 = 1$
- IFS $\mathcal{F} = \{f_1, f_2\}$ obeys the OSC



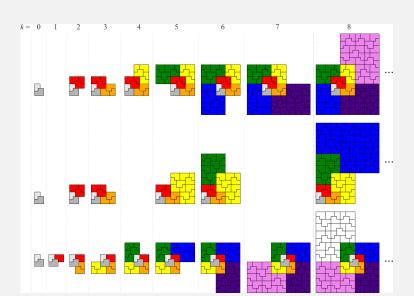
■ Repeatedly: apply s^{-1} and "split" all copies of A.

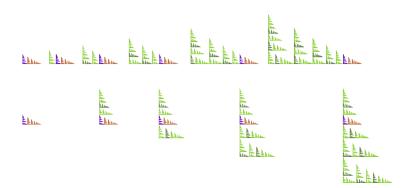


- Repeatedly: apply s^{-1} and "split" all copies of A.
- Build sequence of **canonical** tilings $\{T_n\}$

■ Use $\{T_n\}$ to find sequences of isometries $\{E_{n_k}\}$ such that $E_{n_k}T_{n_k} \subset E_{n_{k+1}}T_{n_k+1}$

- Use $\{T_n\}$ to find sequences of isometries $\{E_{n_k}\}$ such that $E_{n_k}T_{n_k} \subset E_{n_{k+1}}T_{n_k+1}$
- Define unbounded tilings $T(\{E_{n_k}\}) = \bigcup E_{n_k} T_{n_k}$





■ When does $T(\{E_{n_k}\}) = T(\{E'_{n'_{k'}}\})$?

- When does $T(\{E_{n_k}\}) = T(\{E'_{n'_{k'}}\})$?
- To answer this question we use the notion of rigidity.

- When does $T(\{E_{n_k}\}) = T(\{E'_{n'_{k'}}\})$?
- To answer this question we use the notion of rigidity.
- Rigidity implies : if ET_m meets FT_n then either $ET_m \subset FT_n$ or vice versa:

- When does $T(\{E_{n_k}\}) = T(\{E'_{n'_{k'}}\})$?
- To answer this question we use the notion of rigidity.
- Rigidity implies : if ET_m meets FT_n then either $ET_m \subset FT_n$ or vice versa:
- DEFINITION: \mathcal{F} is **rigid** w.r.t. a set of transformations \mathcal{U} if Es^kT_0 meets T_0 for $E \in \mathcal{U}$, $k \in \mathbb{Z}$ implies E = I and k = 0.

- When does $T(\{E_{n_k}\}) = T(\{E'_{n'_{k'}}\})$?
- To answer this question we use the notion of rigidity.
- Rigidity implies : if ET_m meets FT_n then either $ET_m \subset FT_n$ or vice versa:
- DEFINITION: \mathcal{F} is **rigid** w.r.t. a set of transformations \mathcal{U} if Es^kT_0 meets T_0 for $E \in \mathcal{U}$, $k \in \mathbb{Z}$ implies E = I and k = 0.
- Demonstrations:

We redefine the tilings $T(\{E_{k_n}\})$ using the language of IFS. Each example is associated with an IFS $\{f_1, f_2\}$ such that there is a fixed 0 < s < 1 so that, for all $k \in \mathbb{N} = \{1, 2, ...\}$, for all $x \in \mathbb{R}^2$, for all $(\theta_1, \theta_2, ...\theta_k) \in \{1, 2\}^k$

$$f_{\theta_1}^{-1} \circ f_{\theta_2}^{-1} \circ \dots \circ f_{\theta_k}^{-1} x = s^{-\theta_1 + \theta_2 + \dots + \theta_k} U x + t$$

where U is unitary and t is a translation.

Define partial tilings in terms of canonical tilings by

$$\Pi(\theta_1\theta_2...\theta_k) = f_{\theta_1}^{-1} \circ f_{\theta_2}^{-1} \circ ... \circ f_{\theta_k}^{-1} s^{\theta_1 + \theta_2 + ... + \theta_k} T_{\theta_1 + \theta_2 + ... + \theta_k}$$

It is a remarkable and beautiful fact that

$$\Pi(\theta_1) \subset \Pi(\theta_1\theta_2) \subset \subset \Pi(\theta_1\theta_2...\theta_k)$$

so that for all $\theta_1\theta_2\theta_3$...

$$\Pi(\theta_1\theta_2\theta_3...) := \bigcup \Pi(\theta_1\theta_2...\theta_k)$$

is a well-defined unbounded tiling of (possibly a subset of) \mathbb{R}^2 .

■ Rigidity implies that there is an equivalence, for rigid systems, between representations of tilings in the form $T(\{E_{k_n}\})$ and in the form $\Pi(\theta_1\theta_2\theta_3...)$.

- Rigidity implies that there is an equivalence, for rigid systems, between representations of tilings in the form $T(\{E_{k_n}\})$ and in the form $\Pi(\theta_1\theta_2\theta_3...)$.
- Our question "When does $T({E_{k_n}}) = ET({E'_{k'_n}})$?" becomes: "When does $\Pi(\theta_1\theta_2\theta_3...) = E\Pi(\psi_1\psi_2\psi_3...)$?".

THEOREM:

Let
$$\mathcal{F} = \{f_1, f_2\}$$
 be as in Example 1.

(i) If
$$\theta = \theta_1 \theta_2 ..., \psi = \psi_1 \psi_2 ... \in \{1, 2\}^{\infty}$$
, $S^p \theta = S^q \psi$, $E = f_{-\theta|p} (f_{-\psi|q})^{-1}$, and $\theta_1 + \theta_2 + ... + \theta_p = \theta_1 + \theta_2 + ... + \theta_q$, then

$$\Pi(\theta) = E\Pi(\psi)$$
 where E is an isometry.

(ii) If $\Pi(\theta) = E\Pi(\psi)$ where E is an isometry, for some pair of addresses $\theta, \psi \in \{1,2\}^{\infty}$. Then there are $p,q \in N$ such that

$$S^p \theta = S^q \psi$$
, $E = f_{-(\theta|p)} (f_{-(\psi|q)})^{-1}$, and $\theta_1 + \theta_2 + \dots + \theta_v = \theta_1 + \theta_2 + \dots + \theta_q$.

PROOF:

■ If *E* is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)

PROOF:

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^p\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^P\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc
- \blacksquare $\Pi(S^p\theta) = \Pi(S^q\psi)$, i.e. $\bigcup \Pi(S^p\theta|k) = \bigcup \Pi(S^q\psi|k)$

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^P\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc
- $\blacksquare \Pi(S^p\theta) = \Pi(S^q\psi)$, i.e. $\bigcup \Pi(S^p\theta|k) = \bigcup \Pi(S^q\psi|k)$
- $\qquad \qquad \blacksquare \bigcup f_{-S^p\theta|k} s^{\xi(S^P\theta|k)} T_{\xi(S^P\theta|k)} = \bigcup f_{-S^q\psi|k} s^{\xi(S^q\theta|k)} T_{\xi(S^q\theta|k)}$

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^P\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc
- $\blacksquare \Pi(S^p\theta) = \Pi(S^q\psi)$, i.e. $\bigcup \Pi(S^p\theta|k) = \bigcup \Pi(S^q\psi|k)$
- $\qquad \qquad \bigcup f_{-S^p\theta|k} s^{\xi(S^P\theta|k)} T_{\xi(S^P\theta|k)} = \bigcup f_{-S^q\psi|k} s^{\xi(S^q\theta|k)} T_{\xi(S^q\theta|k)}$
- apply $\alpha^{-\xi(\theta|p)} = \alpha^{-\xi(\psi|q)}$, justify term-by-term

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^P\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc
- $\Pi(S^p\theta) = \Pi(S^q\psi)$, i.e. $\bigcup \Pi(S^p\theta|k) = \bigcup \Pi(S^q\psi|k)$
- $\qquad \bigcup f_{-S^p\theta|k} s^{\xi(S^P\theta|k)} T_{\xi(S^P\theta|k)} = \bigcup f_{-S^q\psi|k} s^{\xi(S^q\theta|k)} T_{\xi(S^q\theta|k)}$
- apply $\alpha^{-\xi(\theta|p)} = \alpha^{-\xi(\psi|q)}$, justify term-by-term
- $\qquad \qquad \square \alpha^{-\xi(\theta|p)} f_{-S^p\theta|k} s^{\xi(S^p\theta|k)} T_{\xi(S^p\theta|k)} = \\ \qquad \qquad \square \alpha^{-\xi(\psi|q)} f_{-S^q\psi|k} s^{\xi(S^q\theta|k)} T_{\xi(S^q\theta|k)}$

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^P\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc
- $\blacksquare \Pi(S^p\theta) = \Pi(S^q\psi)$, i.e. $\bigcup \Pi(S^p\theta|k) = \bigcup \Pi(S^q\psi|k)$
- $\qquad \bigcup f_{-S^p\theta|k} s^{\xi(S^P\theta|k)} T_{\xi(S^P\theta|k)} = \bigcup f_{-S^q\psi|k} s^{\xi(S^q\theta|k)} T_{\xi(S^q\theta|k)}$
- apply $\alpha^{-\xi(\theta|p)} = \alpha^{-\xi(\psi|q)}$, justify term-by-term
-

- If E is known: α and α^{-1} well defined by $\alpha^{-1}ET_k = s^{-1}EsT_{k+1}$ and $\alpha ET_{k+1} = sEs^{-1}T_k$ (inflation and deflation)
- Let $\xi(\theta|k) = \theta_1 + \theta_2 + ... + \theta_p$, $\xi(S^P\theta|k) = \theta_{p+1} + \theta_{p+2} + ... + \theta_{p+k}$, $f_{-S^P\theta|k} = f_{\theta_{p+1}}^{-1} ... f_{\theta_{p+k}}^{-1}$ etc
- $\blacksquare \Pi(S^p\theta) = \Pi(S^q\psi)$, i.e. $\bigcup \Pi(S^p\theta|k) = \bigcup \Pi(S^q\psi|k)$
- apply $\alpha^{-\xi(\theta|p)} = \alpha^{-\xi(\psi|q)}$, justify term-by-term
- **.....**
- $\blacksquare \bigcup \left(f_{-\theta|p} \right)^{-1} \Pi(\theta|k) = \bigcup \left(f_{-\psi|q} \right)^{-1} \Pi(\psi|k)$

$$\blacksquare \ \Pi(\theta) = E\Pi(\psi)$$

- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any *L* so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$

- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any *L* so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$
- Choose *K* so that $\Pi(\theta|K) \subset E\Pi(\psi|L) \subset \Pi(\theta|K+1)$ by rigidity

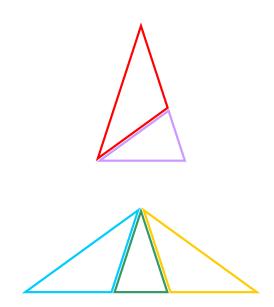
- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any L so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$
- Choose *K* so that $\Pi(\theta|K) \subset E\Pi(\psi|L) \subset \Pi(\theta|K+1)$ by rigidity
- Apply $\alpha^{\theta_1+\theta_2+...+\theta_K}$ times: $f_{-\theta|K}T_0 \subset Ef_{-\psi|L}s^{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}T_{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}$

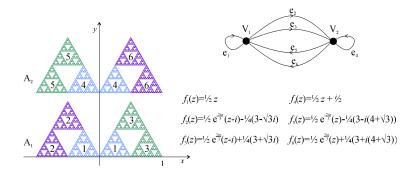
- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any L so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$
- Choose *K* so that $\Pi(\theta|K) \subset E\Pi(\psi|L) \subset \Pi(\theta|K+1)$ by rigidity
- Apply $\alpha^{\theta_1+\theta_2+...+\theta_K}$ times: $f_{-\theta|K}T_0 \subset Ef_{-\psi|L}s^{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}T_{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}$
- $\blacksquare \implies E = f_{-\theta|K} f_{-\sigma_1...\sigma_{|\sigma|}} (f_{-\psi|L})^{-1} \text{ some } \sigma$

- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any L so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$
- Choose *K* so that $\Pi(\theta|K) \subset E\Pi(\psi|L) \subset \Pi(\theta|K+1)$ by rigidity
- Apply $\alpha^{\theta_1+\theta_2+...+\theta_K}$ times: $f_{-\theta|K}T_0 \subset Ef_{-\psi|L}s^{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}T_{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}$
- $\blacksquare \implies E = f_{-\theta|K} f_{-\sigma_1 \dots \sigma_{|\sigma|}} (f_{-\psi|L})^{-1} \text{ some } \sigma$
- Similarly, apply $\alpha^{\psi_1+\psi_2+...+\psi_L}$ to second containment to obtain $E = f_{-\theta|K+1}f_{-\tilde{\sigma}_1...\tilde{\sigma}_{|\tilde{\sigma}|}}(f_{-\psi|L})^{-1}$

- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any L so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$
- Choose *K* so that $\Pi(\theta|K) \subset E\Pi(\psi|L) \subset \Pi(\theta|K+1)$ by rigidity
- Apply $\alpha^{\theta_1+\theta_2+...+\theta_K}$ times: $f_{-\theta|K}T_0 \subset Ef_{-\psi|L}s^{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}T_{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}$
- $\blacksquare \implies E = f_{-\theta|K} f_{-\sigma_1 \dots \sigma_{|\sigma|}} (f_{-\psi|L})^{-1} \text{ some } \sigma$
- Similarly, apply $\alpha^{\psi_1+\psi_2+...+\psi_L}$ to second containment to obtain $E = f_{-\theta|K+1}f_{-\tilde{\sigma}_1...\tilde{\sigma}_{|\tilde{\sigma}|}}(f_{-\psi|L})^{-1}$
- $f_{\theta_{K+1}} = f_{\tilde{\sigma}}f_{\sigma}$ which, by OSC, is only possible if either $E = f_{-\theta|K}f_{-\psi|L}$ or $E = f_{-\theta|K+1}f_{-\psi|L}$

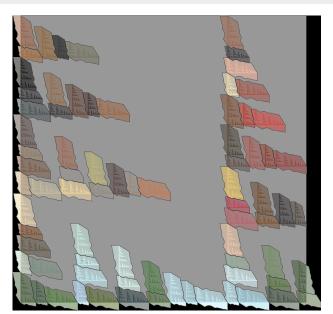
- $\blacksquare \Pi(\theta) = E\Pi(\psi)$
- Choose any L so that $\Pi(\emptyset) = T_0 \subset E\Pi(\psi|L)$
- Choose *K* so that $\Pi(\theta|K) \subset E\Pi(\psi|L) \subset \Pi(\theta|K+1)$ by rigidity
- Apply $\alpha^{\theta_1+\theta_2+...+\theta_K}$ times: $f_{-\theta|K}T_0 \subset Ef_{-\psi|L}s^{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}T_{\psi_1+...+\psi_L-\theta_1+\theta_2+...+\theta_K}$
- $\blacksquare \implies E = f_{-\theta|K} f_{-\sigma_1 \dots \sigma_{|\sigma|}} (f_{-\psi|L})^{-1} \text{ some } \sigma$
- Similarly, apply $\alpha^{\psi_1+\psi_2+...+\psi_L}$ to second containment to obtain $E=f_{-\theta|K+1}f_{-\tilde{\sigma}_1...\tilde{\sigma}_{|\tilde{\sigma}|}}(f_{-\psi|L})^{-1}$
- $f_{\theta_{K+1}} = f_{\tilde{\sigma}}f_{\sigma}$ which, by OSC, is only possible if either $E = f_{-\theta|K}f_{-\psi|L}$ or $E = f_{-\theta|K+1}f_{-\psi|L}$
- true for all large *L* implies the theorem





Rigid Tiling Theorem *Let* $(\mathcal{F}, \mathcal{G})$ *be a tiling IFS.*

(i) If
$$\theta, \psi \in \Sigma_{\infty}^+$$
, $S^p\theta = S^q\psi$, $E = f_{-\theta|p}(f_{-\psi|q})^{-1}$, $(\theta|p)^+ = (\psi|q)^+$, and $\xi(\theta|p) = \xi(\psi|q)$, then $\Pi(\theta) = E\Pi(\psi)$ where E is an isometry. (ii) Let $(\mathcal{F}, \mathcal{G})$ be rigid, and let $\Pi(\theta) = E\Pi(\psi)$ where $E \in \mathcal{U}$ is an isometry, for some pair of addresses $\theta, \psi \in \Sigma_{\infty}^+$. Then there are $p, q \in N$ such that $S^p\theta = S^q\psi$, $E = f_{-(\theta|p)}(f_{-(\psi|q)})^{-1}$, $(\theta|p)^+ = (\psi|q)^+$, and $\xi(\theta|p) = \xi(\psi|q)$.



Summary

Thank you for your attention.