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m Two examples

m Canonical tilings

m Rigidity

m Equivalence of representations

m Example of Main Theorem and Proof
m Tiling IFS, Main Theorem
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m Use {T,} to find sequences of isometries {E,, } such that
Ep Ty C E”k+1 Tﬂk+1
m Define unbounded tilings T ({E,, }) = UEy, Tn,
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When does T ({E,, }) = T ({E;L/})?

To answer this question we use the notion of rigidity.
Rigidity implies : if ET,, meets FT), then either ET,, C FT,
or vice versa:

DEFINITION: F is rigid w.r.t. a set of transformations I/ if
Es*Ty meets Ty for E € U, k € Z implies E = [ and k = 0.

m Demonstrations:
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We redefine the tilings T({E, } ) using the language of IFS. Each
example is associated with an IFS {fj,f,} such that there is a
fixed 0 < s < 1so that, forallk € N ={1,2,...}, for all x € R?,
for all (61,6,,..6¢) € {1,2}*

folofetoofy lx = TR0 Ux 4t

where U is unitary and ¢ is a translation.
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Define partial tilings in terms of canonical tilings by
T1(6165..6¢) = fy, ' ofy 0.0 f9;1591+92+~~+9kT91+92+m+9k
It is a remarkable and beautiful fact that
I1(01) C I1(6163) C .... C T1(616,...6¢)
so that for all 6160,05...
I1(616,65...) := | JT1(616,...6;)

is a well-defined unbounded tiling of (possibly a subset of) R2.
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m Rigidity implies that there is an equivalence, for rigid
systems, between representations of tilings in the form
T({Ek,}) and in the form IT(616,05...).

m Our question "When does T({Ey, }) = ET({E}, })?”
becomes: "When does I1(616,05...) = ELL(119hp3...) 2"
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THEOREM:

Let F = {f1,f2} be as in Example 1.

(i) If 0= 9192...,1/) = s € {1, 2}00, SPO = Sql/J,
E=f_gp(foyg) " and 61+ 6+ ...+ 6, = 01 + 62 + ... + 6, then
I1(0) = EIL(y) where E is an isometry.

(ii) If T1(0) = EII(v) where E is an isometry, for some pair of
addresses 0,1 € {1,2}. Then there are p,q € N such that

SPO = Sﬁl) E = f 6p) (f 1/’“7)) 1,Eli’ld

h+0,+..+0, =01+ 0+ ..+ 0,



Rigid Fractal Tilings

PROOF:

m If E is known: « and a~! well defined by
a 'ET, = s 'EsTy,q and aETyq = sEs~!T (inflation and
deflation)



Rigid Fractal Tilings

PROOF:
m If E is known: a and a~! well defined by
a~'ET, = s 'EsTy,1 and aETy;; = sEs~ Ty (inflation and
deflation)
m Let {(0]k) = 61+ 62 + ... + 6, &(STOlk) =
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PROOF:

m If E is known: a and a~! well defined by
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« U (Fop) 10K = (Fgy) TR
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CONVERSE:
= T1(6) = ETI(y)
m Choose any L so that I1(@) = Ty C ETI(y|L)
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CONVERSE:
= T1(0) = ETI(y)
m Choose any L so that I1(@) = Ty C ETI(y|L)
m Choose K so that IT(6|K) C EII(y|L) C TI(6|K + 1) by
rigidity
m Apply af1 7040 times:
fokTo C Ef_ypshtrie—btbobdt KTy | oo

m—E :ffﬁ‘Kf—m...tT‘,‘ (f_lp‘L)il some o
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CONVERSE:

m [1(0) = ET1(9)

m Choose any L so that I1(@) = Ty C ETI(y|L)

m Choose K so that TT(6|K) C ETI(y|L) C I1(0|K+ 1) by
rigidity

m Apply af1 7040 times:
fooikTo C Ef sVt toefrtote Ty 046,40

n = E=f gxf0..0, (f_lHL)*1 some o

m Similarly, apply a¥1t¥27-F¥L to second containment to
obtain E :ffa\K+1f—Ff]...[7m (f,wL)fl
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CONVERSE:

m [1(0) = ET1(9)

m Choose any L so that I1(@) = Ty C ETI(y|L)

m Choose K so that TT(6|K) C ETI(y|L) C I1(0|K+ 1) by
rigidity

m Apply af1 7040 times:
fooikTo C Ef sVt toefrtote Ty 046,40

n = E=f gxf-0.0, (f_lHL)*1 some o

m Similarly, apply a¥1T¥2F¥L to second containment to
obtain E = f_gjx11f-5,..0, (f_l/,‘L)*l

® fo.., = fofe which, by OSC, is only possible if either E =
foif—piL or E=f gici1f gL

m true for all large L implies the theorem



Rigid Fractal Tilings




Rigid Fractal Tilings




Rigid Fractal Tilings

S@)=z f@)=Vez+ ik
J@)=e €8 (z-i)-Y(3-N30)  fi(2)=s € ¥ (2)-Ya(3-i(4+V3))
S iyt ABH3D) - f(2)=1 X HAGH(4H3)
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Rigid Tiling Theorem Let (F,G) be a tiling IFS.

()IF 0,9 € XL, 576 = ST, E = o, (F )%, (6p)" = (40",
and ¢ (0|p) = & (Y|q), then T1(0) = EII(y) where E is an isometry.
(ii) Let (F,G) be rigid, and let T1(0) = EI1(p) where E € U is an
isometry, for some pair of addresses 0,9 € LI. Then there are

p,q € N such that SP0 = STy,

E=f(op)(F-pp) " 6lp)" = (9la)", and & (6lp) = & (1q)-
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Summary
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Thank you for your attention.



