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Infinite ergodic theory and the Farey tree

The regular continued fraction expansion of x ∈ R is

x = [a0; a1, a2, a3, . . . ] := a0 +
1

a1 + 1
a2+

1
a3+...

with a0(x) = bxc ∈ Z, and ak(x) ∈ N for k ≥ 1.

Let G : [0, 1]→ [0, 1] be the Gauss map, G(x) := 1
x −

⌊ 1
x

⌋
, and G(0) = 0
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Infinite ergodic theory and the Farey tree

Properties of the Gauss map
if x = [a1, a2, a3, a4, . . . ] then G(x) = [a2, a3, a4, . . . ];
x ∈ Q ∩ [0, 1] implies Gk(x) = 0 for some k ≥ 0, and viceversa;
x is periodic or pre-periodic if and only if x is a quadratic irrational
(Lagrange);

dµ(x) = 1
(1+x) log 2 dx is an ergodic G-invariant probability measure;

#{1 ≤ k ≤ n : ak(x) = M}/n→ log(1 + 1/M(M + 2))/ log 2
for all M ≥ 1 and a.e. x (Lévy);
(a1(x)a2(x) . . . an(x))1/n → K for a.e. x (Khintchine);

(a1(x) + a2(x) + · · ·+ an(x))/n→ +∞ for a.e. x.
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Infinite ergodic theory and the Farey tree

Let F : [0, 1]→ [0, 1] be the Farey map

F(x) :=

{
x

1−x , x ∈
[
0, 1

2

]
1
x − 1 , x ∈

[ 1
2 , 1
]
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x = [a1, a2, a3, a4, . . . ] 7−→ F(x) =

{
[a1 − 1, a2, a3, a4, . . . ], x ∈

[
0, 1

2

]
[a2, a3, a4, . . . ], x ∈

[ 1
2 , 1
]
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Infinite ergodic theory and the Farey tree

G is the jump transformation of F on C = ( 1
2 , 1], that is

G(x) = Fτ(x)(x)

where τ(x) := 1 + min{k ≥ 0 : Fk(x) ∈ C} = a1(x).
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Infinite ergodic theory and the Farey tree

G is the jump transformation of F on C = ( 1
2 , 1], that is

G(x) = Fτ(x)(x)

where τ(x) := 1 + min{k ≥ 0 : Fk(x) ∈ C} = a1(x). Then

a1(x) + a2(x) + · · ·+ an(x)

n
=

a1(x) + a1(G(x)) + · · ·+ a1(Gn−1(x))

n
=

τ(x) + τ(G(x)) + · · ·+ τ(Gn−1(x))

n
=

N∑N−1
j=0 χC(Fj(x))
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Infinite ergodic theory and the Farey tree

Properties of the Farey map
dν(x) = 1/x dx is the unique F-invariant absolutely continuous measure, is
ergodic and ν([0, 1]) = infinite;
1
N

∑N−1
j=0 h(Fj(x))→ 0 for a.e. x and all h ∈ L1(ν);

using h = χC implies (a1(x) + a2(x) + · · ·+ an(x))/n→ +∞ for a.e. x;

P(| log N
N

∑N−1
j=0 h(Fj(x))−

∫
h dν)| > ε)→ 0

for all ε > 0 and all h ∈ L1(ν);
using h = χC implies (a1(x) + a2(x) + · · ·+ an(x))/(n log2 n)→ 1 in
probability (Khinchin weak law).
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Infinite ergodic theory and the Farey tree
The Farey tree is a complete binary tree of fractions in (0, 1) generated by

the Farey sum a
c ⊕

b
d := a+b

c+d ;
the Farey map F;
matrices L and R.

F−1 =

{
0
1
,

1
1

}
, F0 =

{
0
1
,

0
1
⊕ 1

1
,

1
1

}
=

{
0
1
,

1
2
,

1
1

}
, F1 =

{
0
1
,

1
3
,

1
2
,

2
3
,

1
1

}

Ln := Fn \ Fn−1,∀n ≥ 0
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Infinite ergodic theory and the Farey tree
The Farey tree is a complete binary tree of fractions in (0, 1) generated by

the Farey sum a
c ⊕

b
d := a+b

c+d ;
the Farey map F;
matrices L and R.

Ln = F−n
(

1
2

)
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Infinite ergodic theory and the Farey tree
The Farey tree is a complete binary tree of fractions in (0, 1) generated by

the Farey sum a
c ⊕

b
d := a+b

c+d ;
the Farey map F;
matrices L and R.

L =

(
1 0
1 1

)
↔ 1

2
, R =

(
1 1
0 1

)
,

p
q

=
a
c
⊕ b

d
↔
(

a b
c d

)
∈ L{L,R}∗
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Infinite ergodic theory and the Farey tree

The Farey tree is a complete binary tree of fractions in (0, 1) generated by
the Farey sum a

c ⊕
b
d := a+b

c+d ;
the Farey map F;
matrices L and R.

The Farey coding connects p
q = [a1, . . . , an], with an > 1, to the tree and the

ways it is generated. In particular

p
q

= [a1, . . . , an]↔

{
LLa1−1Ra2 · · · Lan−1 Ran−1, if n is even
LLa1−1Ra2 · · ·Ran−1 Lan−1, if n is odd
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2d continued fractions and infinite ergodic theory

Let 4 :=
{

(x, y) ∈ R2 : 0 < y ≤ x ≤ 1
}

and T : 4→ 4̄ be the Triangle map
(Garrity, 2001) given by

T(x, y) =

(
y
x
,

1− x− ky
x

)
where k =

⌊
1− x

y

⌋

4k := {(x, y) ∈ 4 : ky ≤ 1− x < (k + 1)y} gives T(4̄k) = 4̄.
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2d continued fractions and infinite ergodic theory

Let 4 :=
{

(x, y) ∈ R2 : 0 < y ≤ x ≤ 1
}

and T : 4→ 4̄ be the Triangle map
(Garrity, 2001) given by

T(x, y) =

(
y
x
,

1− x− ry
x

)
where r =

⌊
1− x

y

⌋
For (x, y) ∈ 4, its triangle sequence is {αj}j≥1 in N0 for which

Tn(x, y) ∈ 4αn+1
, ∀ n ≥ 0

Then we write

(x, y) = [α1, α2, α3, . . . ] 7−→ T(x, y) = [α2, α3, α4, . . . ]
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2d continued fractions and infinite ergodic theory

Properties of the Triangle map
(x, y) ∈ Q2 ∩4 implies Tk(x, y) ∈ {y = 0} for some k ≥ 1. The converse is
not true (Garrity, 2001);
if (x, y) has an eventually periodic triangle sequence, then x and y have
degree at most 3. If x is an irrational solution in (0, 1) of t3 + rt2 + t− 1 = 0
with r ∈ N0, then (x, x2) = [̄r] (Garrity, 2001);
the triangle sequence {αj(x, y)}j≥1 is weakly convergent for a.e. (x, y) ∈ 4
(Messaoudi-Nogueira-Schweiger, 2009) ;

dµ(x, y) = 12/(π2 x(1 + y)) dxdy is an ergodic T-invariant probability
measure (Messaoudi-Nogueira-Schweiger, 2009).
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2d continued fractions and infinite ergodic theory
The Triangle map T has a “slow” version (B.-Del Vigna-Munday, 2021). Let
S : 4̄ → 4̄ be the Slow triangle map given by

S(x, y) =


( y

x ,
1−x

x

)
, if (x, y) ∈ Γ0 = 40(

x
1−y ,

y
1−y

)
, if (x, y) ∈ Γ1 = 4̄ \ 40

(a) (b)

then S(4k) = 4k−1 for all k ≥ 1 and

(x, y) = [α1, α2, . . . ] 7−→ S(x, y) =

{
[α1 − 1, α2, . . . ] , if α1 ≥ 1

[α2, α3 . . . ] , if α1 = 0
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2d continued fractions and infinite ergodic theory

T is the jump transformation of S on Γ0 = ∆0, that is

T(x, y) = Sτ(x,y)(x, y)

where τ(x, y) := 1 + min{k ≥ 0 : Sk(x, y) ∈ Γ0} = α1(x, y) + 1.

(c) (d) (e)
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2d continued fractions and infinite ergodic theory
Properties of the Slow triangle map

dν(x, y) = 1/xy dxdy is the unique S-invariant absolutely continuous measure, is
ergodic and ν(4̄) = infinite;

{y = 0} is a set of neutral fixed points for S, and S has intermittent behaviour.

Theorem (B.-Del Vigna-Munday, 2021)
There exists a sequence (aN)N≥0 which satisfies aN � N/ log2 N and such that, if it is
regularly varying of index 1, for all ε > 0 and all h ∈ L1(4̄, ν)

lim
N→∞

P

∣∣∣ 1
aN

N−1∑
j=0

h(Sj(x, y))−
∫
4̄

h dν
∣∣∣ > ε

 = 0.

Moreover, under the same assumption, there exists a sequence (bn)n≥0 with
bn � n log2 n, such that for all ε > 0

lim
n→∞

P

∣∣∣∣∣∣ 1
bn

n−1∑
j=0

αj(x, y)− 1

∣∣∣∣∣∣ > ε

 = 0.
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Sketch of the proof.

Lemma (Nakada-Natsui, 2003)
Let A ⊂ Rd and V : A→ A measurable. If (A,V) is a fibred system def-fs then
it admits an invariant probability measure with respect to which the system is
continued fraction mixing def-cfm .

Lemma (see Aaronson, 1997)
If there exists A ⊂ 4̄ with ν(A) ∈ (0,∞) such that the induced system
(A, SA, νA) is continued fraction mixing, then (4̄, S, ν) is pointwise dual ergodic

def-pde with sequence (aN)N≥0 given by

aN �
N∑N−1

k=0 ν(A ∩ {ϕ > k})

being ϕ(x, y) = min{n ≥ 1 : Sn(x, y) ∈ A}.

Darling-Kac Theorem and the fact that the Mittag-Leffler distribution of order 1
is constant imply the result.

Claudio Bonanno Infinite ergodic theory and a tree of rational pairs



A complete tree of rational pairs in 4̄: the Triangle tree
The Farey sum for rational pairs ( a

c ,
b
d )⊕ ( a′

c′ ,
b′
d′ ) = ( a+a′

c+c′ ,
b+b′
d+d′ ). Let

S−1 := {v0 = (0, 0), v1 = (1, 0), v2 = (1, 1)}

and P0 the partition of 4̄ with vertices in S−1.
The level S0 is given by the Farey sums of pairs in S−1 close along sides in P0,
that is

S0 :=

{
(0, 0),

(
1
2
, 0
)
, (1, 0),

(
1,

1
2

)
, (1, 1),

(
1
2
,

1
2

)}
and P1 is the partition obtained by joining v0, v1, v2 and v0 ⊕ v2 from S−1 and by
relabelling.
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A complete tree of rational pairs in 4̄: the Triangle tree
The Farey sum for rational pairs ( a

c ,
b
d )⊕ ( a′

c′ ,
b′
d′ ) = ( a+a′

c+c′ ,
b+b′
d+d′ ). Let

S−1 := {v0 = (0, 0), v1 = (1, 0), v2 = (1, 1)}

and P0 the partition of 4̄ with vertices in S−1.
The level S0 is given by the Farey sums of pairs in S−1 close along sides in P0,
that is

S0 :=

{
(0, 0),

(
1
2
, 0
)
, (1, 0),

(
1,

1
2

)
, (1, 1),

(
1
2
,

1
2

)}
and P1 is the partition obtained by joining v0, v1, v2 and v0 ⊕ v2 from S−1 and by
relabelling.
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Letting T−1 := S−1 and Tn := Sn \ Sn−1 for all n ≥ 0

� : points of T−1
4 : points of T0
? : points of T1
◦ : points of T2
• : points of T3

� �

�

(0, 0) (1, 0)

(1, 1)
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44

? ?
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•
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•
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A complete tree of rational pairs in 4̄: the Triangle tree

Consider a modified Slow triangle map S̃ : 4̄ → 4̄

S̃(x, y) =


( y

x ,
1−x

x

)
, if (x, y) ∈ Γ0 = 40(

x
1−y ,

y
1−y

)
, if (x, y) ∈ Γ1 \ {y = 0}

(x , x) , if (x, y) ∈ {y = 0}

with local inverses

φ0 : 4̄ \ {x = y} → Γ0, φ1 : 4̄ \ {y = 0} → Γ1 \ {y = 0},

φ2 : 4̄ ∩ {x = y} → 4̄ ∩ {y = 0}
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A complete tree of rational pairs in 4̄: the Triangle tree
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A complete tree of rational pairs in 4̄: the Triangle tree
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A complete tree of rational pairs in 4̄: the Triangle tree

Theorem (B.-Del Vigna-Munday, 2021)
The two methods generates the same sets (Tn)n≥0.
The Triangle tree T = ∪Tn contains all pairs (x, y) ∈ Q2 ∩ 4̄, and each pair
appears exactly once.

(f) (g)
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Representation of pairs
We introduce a two-part representation (2d continued fraction expansion) of
(x, y) ∈ 4̄ (B.-Del Vigna, 2021).

Infinite triangle sequence. (x, y) = [α1, α2, . . . ], αj ∈ N0.

rep(x, y) :=
(

[α1, α2, . . . ], [2]
)

since: in the convergent case

(x, y) = lim
n→∞

φα1
1 φ0φ

α2
1 φ0 . . . φ

αn
1 φ0φ2

(
1
2
,

1
2

)
;

in the non-convergent case (x, y) lies on a line [P,Q] of points for which

P = lim
n→∞

φ
α1
1 φ0φ

α2
1 φ0 . . . φ

α2n
1 φ0φ2

(
1
2
,

1
2

)

Q = lim
n→∞

φ
α1
1 φ0φ

α2
1 φ0 . . . φ

α2n+1
1 φ0φ2

(
1
2
,

1
2

)
.
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Representation of pairs

We introduce a two-part representation (2d continued fraction expansion) of
(x, y) ∈ 4̄ (B.-Del Vigna, 2021).

Finite triangle sequence. (x, y) = [α1, α2, . . . , αk], αj ∈ N0.

If (x, y) is in the interior of 4̄ then there exists a unique ξ = [a1, a2, . . . ] ∈ (0, 1)
such that

(x, y) = φα1
1 φ0φ

α2
1 φ0 . . . φ

αk
1 φ0φ2 (ξ, ξ)

with ξ ∈ Q if and only if (x, y) ∈ Q2, then

rep(x, y) :=
(

[α1, α2, . . . , αk], [a1, a2, . . . ]
)

If (x, y) is in the boundary of 4̄ an analogous argument works.
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The Triangular coding for rational pairs on T

Let (x, y) ∈ Q2 be in the interior of 4̄ with

rep(x, y) =
(

[α1, α2, . . . , αk], [a1, a2, . . . , an]
)

Then
(x, y) ∈ φα1

1 φ0φ
α2
1 φ0 . . . φ

αk
1 φ0φ2

(
{x = y} ∩ 4̄

)
=: L

How to reach (x, y) by motions on the Triangular tree on 4̄?
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The Triangular coding for rational pairs on T

How to reach (x, y) by motions on the Triangular tree on 4̄?

1) We start from ( 1
2 ,

1
2 ) and reach

(α, β) := φα1
1 φ0φ

α2
1 φ0 . . . φ

αk
1 φ0φ2

(1
2
,

1
2

)

2) We move on L from (α, β) as in the Farey coding.
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The Triangular coding for rational pairs on T

Let us introduce the following motions:

Motion L. It means moving on an oriented line by taking the Farey sum of
a pair and its left parent.

Motion R. It means moving on an oriented line by taking the Farey sum of
a pair and its right parent.

Motion I. It means taking the Farey sum of a pair φω( 1
2 ,

1
2 ) and φω(1, 0) (it

means moving to another line).
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The Triangular coding for rational pairs on T

Theorem (B.-Del Vigna, 2021)
Let (x, y) ∈ Q2 be in the interior of 4̄ with

rep(x, y) =
(

[α1, α2, . . . , αk], [a1, a2, . . . , an]
)

then

(x, y) =


(

1
2 ,

1
2

)
Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 · · · Lan−1 Ran−1 , if n is even(

1
2 ,

1
2

)
Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 · · ·Ran−1 Lan−1 , if n is odd

Claudio Bonanno Infinite ergodic theory and a tree of rational pairs



The Triangular coding for rational pairs on T

(x, y) =


(

1
2 ,

1
2

)
Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 · · · Lan−1 Ran−1 , if n is even(

1
2 ,

1
2

)
Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 · · ·Ran−1 Lan−1 , if n is odd

Ex. rep( 19
54 ,

14
54 ) = ([2, 0, 1, 1], [2, 2]) then(

19
54
,

14
54

)
=
(1

2
,

1
2

)
L L I I L I I L R
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The Triangular coding for rational pairs on T(
19
54
,

14
54

)
=
(1

2
,

1
2

)
L L I I L I I L R
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The Triangular coding for rational pairs on T

(
19
54
,

14
54

)
=
(1

2
,

1
2

)
L L I I L I I L R
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The Triangular coding for rational pairs on T

Matrices in L, R, and I.

L :=

1 0 0
1 1 0
0 0 1

↔ (1
2
,

1
2

)
, R :=

1 1 0
0 1 0
0 0 1

 , I :=

1 0 1
1 0 0
0 1 0

 .

Let rep(x, y) = ([α1, α2, . . . , αk], [a1, a2, . . . , an]), then

(x, y) =



1 0 0
1 1 0
0 0 1

Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 · · · Lan−1 Ran−1 , if n is even

1 0 0
1 1 0
0 0 1

Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 · · ·Ran−1 Lan−1 , if n is odd
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The Triangular coding for rational pairs on T

(
19
54
,

14
54

)
=

1 0 0
1 1 0
0 0 1

L L I I L I I L R =

23 31 11
8 11 4
6 8 3


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Approximation of non-rational pairs

The representation of (x, y) ∈ 4̄ \Q2 induces the definition of an infinite word

W(x, y) =

{
Lα1 I · · · Lαk−1 ILαk−1I La1−1Ra2 La3 . . . , finite triangle seq.

Lα1 I Lα2 I Lα3 I . . . , infinite triangle seq.

Approximations can be constructed by the finite sub-words ofW(x, y).
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Approximation of non-rational pairs
Ex.: finite triangle sequence.

Let (x, y) = ( 1
2 ,
√

2− 1). Then rep(x, y) = ([1, 1], [ ¯4, 1]) andW(x, y) = L I I L L L ¯RL4.
Then ( 1

2 ,
1
2

)
W(0) = ε ([1], [2])( 1

3 ,
1
3

)
W(1) = L ([2], [3])( 2

4 ,
1
4

)
W(2) = LI ([2], [2])( 3

6 ,
2
6

)
W(3) = LII ([1, 1], [2])( 4

8 ,
3
8

)
W(4) = LIIL ([1, 1], [3])( 5

10 ,
4

10

)
W(5) = LIILL ([1, 1], [4])( 6

12 ,
5

12

)
W(6) = LIILLL ([1, 1], [5])( 11

22 ,
9

22

)
W(7) = LIILLLR ([1, 1], [4, 2])( 17

34 ,
14
34

)
W(8) = LIILLLRL ([1, 1], [4, 1, 2])( 23

46 ,
19
46

)
W(9) = LIILLLRLL ([1, 1], [4, 1, 3])

...
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Approximation of non-rational pairs

Rem.: infinite non-convergent triangle sequence.

Let (x, y) ∈ 4̄ with rep(x, y) = ([α1, α2, . . . ], [2]) and (x, y) ∈ [P,Q]. Let

(ξj, ηj) := T j(x, y) ∈ 4αj ⇒ ηj −→
j→∞

0

Then using ξj = [a1(j), a2(j), . . . ] we construct the approximations (
pj

rj
,

qj

rj
) for

which

rep
(

pj

rj
,

qj

rj

)
=
(

[α1, α2, . . . , αj], [a1(j), a2(j), . . . , aj(j)]
)
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Future directions of research

The Slow triangle map in higher dimensions;

properties of the Triangle tree and other trees (?);

connections with statistical properties of dynamical systems with two
parameters;

connections with other number theoretic problems (e..g. integer
partitions, see B.-Del Vigna-Garrity-Isola, arxiv).
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Thank you!
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A fibred system V : A→ A

(h1) There exists a finite or countable measurable partition C = {Ci}i∈I of A such that
the restriction of V to Ci is injective for all i ∈ I.

(h2) The map V is differentiable and non-singular.

(h3) There exists a sequence (σ(n))n≥0 with σ(n)→ 0 as n→∞ and such that

sup
(i1, ..., in)∈In

diam Ci1, ..., in ≤ σ(n).

(h4) There exist a finite number of measurable subsets U1, . . . , UN of A such that for
any cylinder Ci1, ..., in of positive measure, there exists Uj with 1 ≤ j ≤ N such that
Vn(Ci1, ..., in ) = Uj up to measure-zero sets.

(h5) There exists a constant λ ≥ 1 such that for ψi1, ..., in := (Vn|Ci1, ..., in
)−1

sup
Vn(Ci1, ..., in )

|Jψi1, ..., in | ≤ λ inf
Vn(Ci1, ..., in )

|Jψi1, ..., in |

where Jψi1,...,in denotes the Jacobian determinant of ψi1, ..., in .

(h6) For any 1 ≤ j ≤ N, Uj contains a proper cylinder.

back
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A fibred system V : A→ A

(h7) There is a constant r1 > 0 such that

|Jψi1, ..., in (p1)− Jψi1, ..., in (p2)| ≤ r1m(Ci1, ..., in )‖p1 − p2‖

for any p1, p2 ∈ Uj and all j.

(h8) There is a constant r2 > 0 such that

‖ψi1, ..., in (p1)− ψi1, ..., in (p2)‖ ≤ r2σ(n)‖p1 − p2‖

for any p1, p2 ∈ Uj and all j.

(h9) Let F be a finite partition generated by U1, . . . , UN and denote by F c
m the

cylinders in Cm that are not contained in any element of F . Then, as m→∞

γ(m) :=
∑

C(i1, ..., im)∈Fc
m

m(C(i1, . . . , im))→ 0.

back
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Continued fraction mixing

Let V : A→ A and µ be a V-invariant probability on the Borel σ-algebra B. Let
C be a countable measurable generating partition for V. The system
(A,B, µ,V, C) is said to be continued fraction mixing if

ψn := sup
C∈Ck,k≥1,µ(C)>0

B∈B, µ(B)>0

∣∣µ (C ∩ V−(k+n)B
)
− µ(C)µ(B)

∣∣
µ(C)µ(B)

−→
n→∞

0

back
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Pointwise dual ergodicity

The system (4̄, S, ν) is pointwise dual ergodic if there exists a sequence
(aN)N≥0 such that

lim
N→∞

1
aN

N−1∑
j=0

(Pjh)(x, y) =

∫
4̄

h dν

for ν-almost every (x, y) ∈ 4̄ and for all h ∈ L1(4̄, ν), where P is the transfer
operator of the system.

back
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