Infinite ergodic theory and a tree of rational pairs

Claudio Bonanno

University of Pisa

One World Numeration Seminar

January 25, 2022

• • • • • • • •

The *regular continued fraction* expansion of $x \in \mathbb{R}$ is

$$x = [a_0; a_1, a_2, a_3, \dots] \coloneqq a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

with $a_0(x) = \lfloor x \rfloor \in \mathbb{Z}$, and $a_k(x) \in \mathbb{N}$ for $k \ge 1$.

Let $G: [0,1] \to [0,1]$ be the *Gauss map*, $G(x) \coloneqq \frac{1}{x} - \lfloor \frac{1}{x} \rfloor$, and G(0) = 0

Properties of the Gauss map

- if $x = [a_1, a_2, a_3, a_4, \dots]$ then $G(x) = [a_2, a_3, a_4, \dots]$;
- $x \in \mathbb{Q} \cap [0, 1]$ implies $G^k(x) = 0$ for some $k \ge 0$, and viceversa;
- *x* is periodic or pre-periodic if and only if *x* is a quadratic irrational (Lagrange);
- $d\mu(x) = \frac{1}{(1+x)\log 2} dx$ is an ergodic *G*-invariant *probability* measure;
- $\#\{1 \le k \le n : a_k(x) = M\}/n \to \log(1 + 1/M(M+2))/\log 2$ for all $M \ge 1$ and a.e. x (Lévy);
- $(a_1(x)a_2(x)\ldots a_n(x))^{1/n} \to K$ for a.e. x (Khintchine);

•
$$(a_1(x) + a_2(x) + \dots + a_n(x))/n \to +\infty$$
 for a.e. x .

Let $F : [0,1] \rightarrow [0,1]$ be the *Farey map*

$$F(x) := \begin{cases} \frac{x}{1-x}, & x \in [0, \frac{1}{2}] \\ \frac{1}{x} - 1, & x \in [\frac{1}{2}, 1] \end{cases}$$

$$x = [a_1, a_2, a_3, a_4, \dots] \longmapsto F(x) = \begin{cases} [a_1 - 1, a_2, a_3, a_4, \dots], & x \in [0, \frac{1}{2}] \\ [a_2, a_3, a_4, \dots], & x \in [\frac{1}{2}, 1] \end{cases}$$

G is the *jump transformation* of *F* on $C = (\frac{1}{2}, 1]$, that is

 $G(x) = F^{\tau(x)}(x)$

where $\tau(x) := 1 + \min\{k \ge 0 : F^k(x) \in C\} = a_1(x)$.

G is the *jump transformation* of *F* on $C = (\frac{1}{2}, 1]$, that is

 $G(x) = F^{\tau(x)}(x)$

where $\tau(x) \coloneqq 1 + \min\{k \ge 0 : F^k(x) \in C\} = a_1(x)$. Then

$$\frac{a_1(x) + a_2(x) + \dots + a_n(x)}{n} = \frac{a_1(x) + a_1(G(x)) + \dots + a_1(G^{n-1}(x))}{n} = \frac{\tau(x) + \tau(G(x)) + \dots + \tau(G^{n-1}(x))}{n} = \frac{N}{\sum_{j=0}^{N-1} \chi_C(F^j(x))}$$

Properties of the Farey map

- dν(x) = 1/x dx is the unique F-invariant absolutely continuous measure, is ergodic and ν([0, 1]) = *infinite*;
- $\frac{1}{N}\sum_{j=0}^{N-1}h(F^j(x)) \to 0$ for a.e. x and all $h \in L^1(\nu)$;
- using $h = \chi_C$ implies $(a_1(x) + a_2(x) + \cdots + a_n(x))/n \to +\infty$ for a.e. x;

•
$$\mathbb{P}(\left|\frac{\log N}{N}\sum_{j=0}^{N-1}h(F^{j}(x))-\int h\,d\nu\right)|>\epsilon)\to 0$$

for all $\varepsilon > 0$ and all $h \in L^1(\nu)$;

• using $h = \chi_C$ implies $(a_1(x) + a_2(x) + \cdots + a_n(x))/(n \log_2 n) \to 1$ in probability (Khinchin weak law).

く 同 ト く ヨ ト く ヨ ト -

The Farey tree is a complete binary tree of fractions in (0, 1) generated by

the Farey sum ^a/_c ⊕ ^b/_d := ^{a+b}/_{c+d};
the Farey map F;
matrices L and R.

$$\mathcal{F}_{-1} = \left\{ \frac{0}{1}, \frac{1}{1} \right\}, \ \mathcal{F}_{0} = \left\{ \frac{0}{1}, \frac{0}{1} \oplus \frac{1}{1}, \frac{1}{1} \right\} = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{1}{1} \right\}, \ \mathcal{F}_{1} = \left\{ \frac{0}{1}, \frac{1}{2}, \frac{1$$

$$\mathcal{L}_n \coloneqq \mathcal{F}_n \setminus \mathcal{F}_{n-1}, \forall n \geq 0$$

Claudio Bonanno Infinite ergodic theory and a tree of rational pairs

The Farey tree is a complete binary tree of fractions in (0, 1) generated by

- the Farey sum $\frac{a}{c} \oplus \frac{b}{d} := \frac{a+b}{c+d}$;
- the Farey map F;
- matrices *L* and *R*.

$$\mathcal{L}_n = F^{-n}\left(\frac{1}{2}\right)$$

The Farey tree is a complete binary tree of fractions in (0,1) generated by

- the Farey sum $\frac{a}{c} \oplus \frac{b}{d} := \frac{a+b}{c+d}$;
- the Farey map F;
- matrices L and R.

$$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \leftrightarrow \frac{1}{2}, R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \frac{p}{q} = \frac{a}{c} \oplus \frac{b}{d} \leftrightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in L\{L, R\}^*$$

The *Farey tree* is a complete binary tree of fractions in (0, 1) generated by

- the Farey sum $\frac{a}{c} \oplus \frac{b}{d} := \frac{a+b}{c+d}$;
- the Farey map F;
- matrices L and R.

The *Farey coding* connects $\frac{p}{q} = [a_1, \ldots, a_n]$, with $a_n > 1$, to the tree and the ways it is generated. In particular

$$\frac{p}{q} = [a_1, \dots, a_n] \leftrightarrow \begin{cases} LL^{a_1 - 1}R^{a_2} \cdots L^{a_{n-1}}R^{a_n - 1}, & \text{if } n \text{ is even} \\ LL^{a_1 - 1}R^{a_2} \cdots R^{a_{n-1}}L^{a_n - 1}, & \text{if } n \text{ is odd} \end{cases}$$

A D A D A D A

Let $\triangle := \{(x, y) \in \mathbb{R}^2 : 0 < y \le x \le 1\}$ and $T : \triangle \to \overline{\triangle}$ be the *Triangle map* (Garrity, 2001) given by

$$T(x,y) = \left(\frac{y}{x}, \frac{1-x-ky}{x}\right)$$
 where $k = \left\lfloor\frac{1-x}{y}\right\rfloor$

 $\triangle_k \coloneqq \{(x,y) \in \triangle : ky \le 1 - x < (k+1)y\} \text{ gives } T(\overline{\triangle}_k) = \overline{\triangle}.$

Let $\triangle := \{(x, y) \in \mathbb{R}^2 : 0 < y \le x \le 1\}$ and $T : \triangle \to \overline{\triangle}$ be the *Triangle map* (Garrity, 2001) given by

$$T(x,y) = \left(\frac{y}{x}, \frac{1-x-ry}{x}\right)$$
 where $r = \left\lfloor\frac{1-x}{y}\right\rfloor$

For $(x, y) \in \Delta$, its *triangle sequence* is $\{\alpha_j\}_{j \ge 1}$ in \mathbb{N}_0 for which

$$T^n(x,y) \in \triangle_{\alpha_{n+1}}, \, \forall n \ge 0$$

Then we write

$$(x,y) = [\alpha_1, \alpha_2, \alpha_3, \dots] \longmapsto T(x,y) = [\alpha_2, \alpha_3, \alpha_4, \dots]$$

EN 4 EN

Properties of the Triangle map

- $(x, y) \in \mathbb{Q}^2 \cap \triangle$ implies $T^k(x, y) \in \{y = 0\}$ for some $k \ge 1$. The converse is *not true* (Garrity, 2001);
- if (x, y) has an eventually periodic triangle sequence, then x and y have degree at most 3. If x is an irrational solution in (0, 1) of $t^3 + rt^2 + t 1 = 0$ with $r \in \mathbb{N}_0$, then $(x, x^2) = [\overline{r}]$ (Garrity, 2001);
- the triangle sequence {α_j(x, y)}_{j≥1} is weakly convergent for a.e. (x, y) ∈ Δ (Messaoudi-Nogueira-Schweiger, 2009) ;
- $d\mu(x, y) = \frac{12}{(\pi^2 x(1+y))} dxdy$ is an ergodic *T*-invariant *probability* measure (Messaoudi-Nogueira-Schweiger, 2009).

< 口 > < 同 > < 三 > < 三 > 、

2d continued fractions and infinite ergodic theory The Triangle map T has a "slow" version (B.-Del Vigna-Munday, 2021). Let

 $S: \overline{\triangle} \to \overline{\triangle}$ be the *Slow triangle map* given by

$$S(x,y) = \begin{cases} \left(\frac{y}{x}, \frac{1-x}{x}\right), & \text{if } (x,y) \in \Gamma_0 = \triangle_0\\ \left(\frac{x}{1-y}, \frac{y}{1-y}\right), & \text{if } (x,y) \in \Gamma_1 = \bar{\triangle} \setminus \triangle_0 \end{cases}$$

then $S(\triangle_k) = \triangle_{k-1}$ for all $k \ge 1$ and

T is the *jump transformation* of *S* on $\Gamma_0 = \Delta_0$, that is

$$T(x, y) = S^{\tau(x, y)}(x, y)$$

where $\tau(x, y) := 1 + \min\{k \ge 0 : S^k(x, y) \in \Gamma_0\} = \alpha_1(x, y) + 1$.

Properties of the Slow triangle map

- dν(x, y) = 1/xy dxdy is the unique S-invariant absolutely continuous measure, is ergodic and ν(Δ) = infinite;
- $\{y = 0\}$ is a set of neutral fixed points for *S*, and *S* has *intermittent* behaviour.

Theorem (B.-Del Vigna-Munday, 2021)

There exists a sequence $(a_N)_{N\geq 0}$ which satisfies $a_N \asymp N/\log^2 N$ and such that, if it is regularly varying of index 1, for all $\epsilon > 0$ and all $h \in L^1(\overline{\Delta}, \nu)$

$$\lim_{N \to \infty} \mathbb{P}\left(\left| \frac{1}{a_N} \sum_{j=0}^{N-1} h(S^j(x, y)) - \int_{\bar{\bigtriangleup}} h \, d\nu \right| > \epsilon \right) = 0$$

Moreover, under the same assumption, there exists a sequence $(b_n)_{n\geq 0}$ with $b_n \simeq n \log^2 n$, such that for all $\epsilon > 0$

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\frac{1}{b_n}\sum_{j=0}^{n-1}\alpha_j(x,y)-1\right|>\varepsilon\right)=0.$$

Lemma (Nakada-Natsui, 2003)

Let $A \subset \mathbb{R}^d$ and $V : A \to A$ measurable. If (A, V) is a fibred system \bigcirc defds then it admits an invariant probability measure with respect to which the system is continued fraction mixing \bigcirc defdm.

Lemma (see Aaronson, 1997)

If there exists $A \subset \overline{\Delta}$ with $\nu(A) \in (0, \infty)$ such that the induced system (A, S_A, ν_A) is continued fraction mixing, then $(\overline{\Delta}, S, \nu)$ is pointwise dual ergodic • detpde with sequence $(a_N)_{N\geq 0}$ given by

$$a_N symp rac{N}{\sum_{k=0}^{N-1}
u(A \cap \{ arphi > k \})}$$

being $\varphi(x, y) = \min\{n \ge 1 : S^n(x, y) \in A\}.$

Darling-Kac Theorem and the fact that the Mittag-Leffler distribution of order 1 is constant imply the result.

イロト 不得 トイヨト イヨト 二日

A complete tree of rational pairs in $\overline{\Delta}$: the Triangle tree

The Farey sum for rational pairs $(\frac{a}{c}, \frac{b}{d}) \oplus (\frac{a'}{c'}, \frac{b'}{d'}) = (\frac{a+a'}{c+c'}, \frac{b+b'}{d+d'})$. Let

$$S_{-1} \coloneqq \{v_0 = (0,0), v_1 = (1,0), v_2 = (1,1)\}$$

and \mathcal{P}_0 the partition of $\overline{\triangle}$ with vertices in \mathcal{S}_{-1} .

The level S_0 is given by the Farey sums of pairs in S_{-1} close along sides in \mathcal{P}_0 , that is

$$\mathcal{S}_{0} \coloneqq \left\{ (0,0), \left(\frac{1}{2}, 0\right), (1,0), \left(1, \frac{1}{2}\right), (1,1), \left(\frac{1}{2}, \frac{1}{2}\right) \right\}$$

and \mathcal{P}_1 is the partition obtained by joining v_0, v_1, v_2 and $v_0 \oplus v_2$ from \mathcal{S}_{-1} and by relabelling.

A complete tree of rational pairs in $\overline{\triangle}$: the Triangle tree

The Farey sum for rational pairs $(\frac{a}{c}, \frac{b}{d}) \oplus (\frac{a'}{c'}, \frac{b'}{d'}) = (\frac{a+a'}{c+c'}, \frac{b+b'}{d+d'})$. Let

$$S_{-1} \coloneqq \{v_0 = (0,0), v_1 = (1,0), v_2 = (1,1)\}$$

and \mathcal{P}_0 the partition of $\overline{\triangle}$ with vertices in \mathcal{S}_{-1} .

The level S_0 is given by the Farey sums of pairs in S_{-1} close along sides in \mathcal{P}_0 , that is

$$\mathcal{S}_{0} := \left\{ (0,0), \left(\frac{1}{2}, 0\right), (1,0), \left(1, \frac{1}{2}\right), (1,1), \left(\frac{1}{2}, \frac{1}{2}\right) \right\}$$

and \mathcal{P}_1 is the partition obtained by joining v_0, v_1, v_2 and $v_0 \oplus v_2$ from \mathcal{S}_{-1} and by relabelling.

A complete tree of rational pairs in $\overline{\triangle}$: the Triangle tree

Consider a modified Slow triangle map $\tilde{S}: \bar{\bigtriangleup} \to \bar{\bigtriangleup}$

$$\tilde{S}(x,y) = \begin{cases} \left(\frac{y}{x}, \frac{1-x}{x}\right), & \text{if } (x,y) \in \Gamma_0 = \Delta_0\\ \left(\frac{x}{1-y}, \frac{y}{1-y}\right), & \text{if } (x,y) \in \Gamma_1 \setminus \{y=0\}\\ (x,x), & \text{if } (x,y) \in \{y=0\} \end{cases}$$

with local inverses

$$\begin{split} \phi_0 : \bar{\bigtriangleup} \setminus \{x = y\} \to \Gamma_0, \quad \phi_1 : \bar{\bigtriangleup} \setminus \{y = 0\} \to \Gamma_1 \setminus \{y = 0\}, \\ \phi_2 : \bar{\bigtriangleup} \cap \{x = y\} \to \bar{\bigtriangleup} \cap \{y = 0\} \end{split}$$

A complete tree of rational pairs in \triangle : the Triangle tree

$$\begin{array}{ccc} \mathcal{T}_n & \left(\begin{matrix} \frac{p}{q}, \frac{r}{q} \end{matrix} \right) \\ & \phi_0 \\ \mathcal{R}_1 \\ \phi_1 \\ \mathcal{T}_{n+1} & \left(\begin{matrix} \frac{q}{r+q}, \frac{p}{r+q} \end{matrix} \right) & \left(\begin{matrix} \frac{p}{r+q}, \frac{q}{r+q} \end{matrix} \right) \end{array}$$

A complete tree of rational pairs in $\overline{\triangle}$: the Triangle tree

A complete tree of rational pairs in $\overline{\triangle}$: the Triangle tree

Theorem (B.-Del Vigna-Munday, 2021)

The two methods generates the same sets $(\mathcal{T}_n)_{n\geq 0}$. The Triangle tree $\mathcal{T} = \bigcup \mathcal{T}_n$ contains all pairs $(x, y) \in \mathbb{Q}^2 \cap \overline{\triangle}$, and each pair appears exactly once.

< D > < P > < E > <</pre>

Representation of pairs

We introduce a two-part *representation* (2d continued fraction expansion) of $(x, y) \in \overline{\Delta}$ (B.-Del Vigna, 2021).

Infinite triangle sequence. $(x, y) = [\alpha_1, \alpha_2, ...], \alpha_j \in \mathbb{N}_0.$

$$rep(x,y) \coloneqq ([\alpha_1, \alpha_2, \dots], [2])$$

since: in the convergent case

$$(x,y) = \lim_{n \to \infty} \phi_1^{\alpha_1} \phi_0 \phi_1^{\alpha_2} \phi_0 \dots \phi_1^{\alpha_n} \phi_0 \phi_2 \left(\frac{1}{2}, \frac{1}{2}\right);$$

in the *non-convergent case* (x, y) lies on a line [P, Q] of points for which

$$P = \lim_{n \to \infty} \phi_1^{\alpha_1} \phi_0 \phi_1^{\alpha_2} \phi_0 \dots \phi_1^{\alpha_{2n}} \phi_0 \phi_2 \left(\frac{1}{2}, \frac{1}{2}\right)$$
$$Q = \lim_{n \to \infty} \phi_1^{\alpha_1} \phi_0 \phi_1^{\alpha_2} \phi_0 \dots \phi_1^{\alpha_{2n+1}} \phi_0 \phi_2 \left(\frac{1}{2}, \frac{1}{2}\right).$$

A (B) < (B) < (B) < (B) </p>

Representation of pairs

We introduce a two-part *representation* (2d continued fraction expansion) of $(x, y) \in \overline{\Delta}$ (B.-Del Vigna, 2021).

Finite triangle sequence. $(x, y) = [\alpha_1, \alpha_2, \dots, \alpha_k], \alpha_j \in \mathbb{N}_0.$

If (x, y) is in the *interior of* $\overline{\triangle}$ then there exists a unique $\xi = [a_1, a_2, ...] \in (0, 1)$ such that

$$(x, y) = \phi_1^{\alpha_1} \phi_0 \phi_1^{\alpha_2} \phi_0 \dots \phi_1^{\alpha_k} \phi_0 \phi_2 (\xi, \xi)$$

with $\xi \in \mathbb{Q}$ if and only if $(x, y) \in \mathbb{Q}^2$, then

$$rep(x,y) \coloneqq \left([\alpha_1, \alpha_2, \dots, \alpha_k], [a_1, a_2, \dots] \right)$$

If (x, y) is in the *boundary of* $\overline{\triangle}$ an analogous argument works.

(日本)(日本)(日本)(日本)

Let $(x, y) \in \mathbb{Q}^2$ be in the interior of $\overline{\triangle}$ with

$$rep(x, y) = \left([\alpha_1, \alpha_2, \dots, \alpha_k], [a_1, a_2, \dots, a_n] \right)$$

Then

$$(x,y) \in \phi_1^{\alpha_1} \phi_0 \phi_1^{\alpha_2} \phi_0 \dots \phi_1^{\alpha_k} \phi_0 \phi_2 \Big(\{x=y\} \cap \overline{\bigtriangleup} \Big) =: \mathcal{L}$$

How to reach (x, y) by motions on the Triangular tree on $\overline{\triangle}$?

How to reach (x, y) by motions on the Triangular tree on $\overline{\triangle}$?

1) We start from $(\frac{1}{2}, \frac{1}{2})$ and reach

$$(\alpha,\beta) \coloneqq \phi_1^{\alpha_1} \phi_0 \phi_1^{\alpha_2} \phi_0 \dots \phi_1^{\alpha_k} \phi_0 \phi_2 \left(\frac{1}{2}, \frac{1}{2}\right)$$

2) We move on \mathcal{L} from (α, β) as in the Farey coding.

Let us introduce the following motions:

- <u>Motion L</u>. It means moving on an oriented line by taking the Farey sum of a pair and its left parent.
- <u>Motion R</u>. It means moving on an oriented line by taking the Farey sum of a pair and its right parent.
- <u>Motion I</u>. It means taking the Farey sum of a pair $\phi_{\omega}(\frac{1}{2}, \frac{1}{2})$ and $\phi_{\omega}(1, 0)$ (it means moving to another line).

周 ト イ ヨ ト イ ヨ ト

Theorem (B.-Del Vigna, 2021) Let $(x, y) \in \mathbb{Q}^2$ be in the interior of $\overline{\Delta}$ with $rep(x, y) = ([\alpha_1, \alpha_2, \dots, \alpha_k], [a_1, a_2, \dots, a_n])$ then $(x, y) = \begin{cases} \left(\frac{1}{2}, \frac{1}{2}\right) L^{\alpha_1} I \cdots L^{\alpha_{k-1}} I L^{\alpha_k - 1} I L^{a_1 - 1} R^{a_2} \cdots L^{a_{n-1}} R^{a_n - 1}, & \text{if } n \text{ is even} \\ \left(\frac{1}{2}, \frac{1}{2}\right) L^{\alpha_1} I \cdots L^{\alpha_{k-1}} I L^{\alpha_k - 1} I L^{a_1 - 1} R^{a_2} \cdots R^{a_{n-1}} L^{a_n - 1}, & \text{if } n \text{ is odd} \end{cases}$

「キャート・コート ・ コート

$$(x,y) = \begin{cases} \left(\frac{1}{2},\frac{1}{2}\right) L^{\alpha_1} I \cdots L^{\alpha_{k-1}} I L^{\alpha_k - 1} I L^{a_1 - 1} R^{a_2} \cdots L^{a_{n-1}} R^{a_n - 1}, & \text{if } n \text{ is even} \\ \left(\frac{1}{2},\frac{1}{2}\right) L^{\alpha_1} I \cdots L^{\alpha_{k-1}} I L^{\alpha_k - 1} I L^{a_1 - 1} R^{a_2} \cdots R^{a_{n-1}} L^{a_n - 1}, & \text{if } n \text{ is odd} \end{cases}$$

<u>Ex.</u> $rep(\frac{19}{54}, \frac{14}{54}) = ([2, 0, 1, 1], [2, 2])$ then

$$\left(\frac{19}{54},\frac{14}{54}\right) = \left(\frac{1}{2},\frac{1}{2}\right)LLIILIILR$$

P + 4 = + 4 = +

$$\left(\frac{19}{54},\frac{14}{54}\right) = \left(\frac{1}{2},\frac{1}{2}\right)LLIIILIIR$$

$$\left(\frac{19}{54}, \frac{14}{54}\right) = \left(\frac{1}{2}, \frac{1}{2}\right) LLII LII LR$$

E 5 4

Matrices in L, R, and I.

$$L \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \leftrightarrow \begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \quad R \coloneqq \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad I \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Let $rep(x, y) = ([\alpha_1, \alpha_2, ..., \alpha_k], [a_1, a_2, ..., a_n])$, then

$$(x,y) = \begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} L^{\alpha_1} I \cdots L^{\alpha_{k-1}} I L^{\alpha_k - 1} I L^{a_1 - 1} R^{a_2} \cdots L^{a_{n-1}} R^{a_n - 1}, & \text{if } n \text{ is even} \\ \\ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} L^{\alpha_1} I \cdots L^{\alpha_{k-1}} I L^{\alpha_k - 1} I L^{a_1 - 1} R^{a_2} \cdots R^{a_{n-1}} L^{a_n - 1}, & \text{if } n \text{ is odd} \end{cases}$$

く 同 ト く ヨ ト く ヨ ト

$$\begin{pmatrix} \frac{19}{54}, \frac{14}{54} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} LLIILIILR = \begin{pmatrix} 23 & 31 & 11\\ 8 & 11 & 4\\ 6 & 8 & 3 \end{pmatrix}$$

Approximation of non-rational pairs

The representation of $(x, y) \in \overline{\triangle} \setminus \mathbb{Q}^2$ induces the definition of an infinite word

$$\mathcal{W}(x,y) = \begin{cases} L^{\alpha_1}I \cdots L^{\alpha_{k-1}}IL^{\alpha_k-1}IL^{a_1-1}R^{a_2}L^{a_3} \dots, & \text{finite triangle seq.} \\ L^{\alpha_1}IL^{\alpha_2}IL^{\alpha_3}I \dots, & \text{infinite triangle seq.} \end{cases}$$

Approximations can be constructed by the finite sub-words of W(x, y).

・ 回 ト く ヨ ト く ヨ ト 二 ヨ

Approximation of non-rational pairs

÷

Ex.: finite triangle sequence.

Let $(x, y) = (\frac{1}{2}, \sqrt{2} - 1)$. Then rep(x, y) = ([1, 1], [4, 1]) and $\mathcal{W}(x, y) = LIILLL RL^4$. Then $(\frac{1}{2}, \frac{1}{2})$ $\mathcal{W}_{(0)} = \varepsilon$ ([1], [2]) $(\frac{1}{3}, \frac{1}{3})$ $\mathcal{W}_{(1)} = L$ ([2], [3]) $\left(\frac{2}{4},\frac{1}{4}\right)$ $\mathcal{W}_{(2)} = LI$ ([2], [2]) $\left(\frac{3}{6},\frac{2}{6}\right)$ $\mathcal{W}_{(3)} = LII$ ([1,1],[2]) $\left(\frac{4}{8},\frac{3}{8}\right)$ $\mathcal{W}_{(4)} = LIIL$ ([1,1],[3]) $\left(\frac{5}{10}, \frac{4}{10}\right)$ $\mathcal{W}_{(5)} = LIILL$ ([1,1],[4]) $\left(\frac{6}{12}, \frac{5}{12}\right)$ $\mathcal{W}_{(6)} = LIILLL$ ([1,1],[5]) $\left(\frac{11}{22}, \frac{9}{22}\right)$ $\mathcal{W}_{(7)} = LIILLLR$ ([1,1],[4,2]) $\left(\frac{17}{34}, \frac{14}{34}\right)$ $\mathcal{W}_{(8)} = LIILLLRL$ ([1,1],[4,1,2]) $\left(\frac{23}{46}, \frac{19}{46}\right)$ $\mathcal{W}_{(9)} = LIILLRLL$ ([1,1],[4,1,3])

Approximation of non-rational pairs

Rem.: infinite non-convergent triangle sequence.

Let $(x, y) \in \overline{\triangle}$ with $rep(x, y) = ([\alpha_1, \alpha_2, \dots], [2])$ and $(x, y) \in [P, Q]$. Let

$$(\xi_j,\eta_j)\coloneqq T^j(x,y)\in riangle_{lpha_j} \quad \Rightarrow \quad \eta_j \mathop{\longrightarrow}\limits_{j
ightarrow \infty} 0$$

Then using $\xi_j = [a_1(j), a_2(j), ...]$ we construct the approximations $(\frac{p_j}{r_j}, \frac{q_j}{r_j})$ for which

$$rep\left(\frac{p_j}{r_j},\frac{q_j}{r_j}\right) = \left([\alpha_1,\alpha_2,\ldots,\alpha_j],[a_1(j),a_2(j),\ldots,a_j(j)]\right)$$

Future directions of research

- The Slow triangle map in higher dimensions;
- properties of the Triangle tree and other trees (?);
- connections with statistical properties of dynamical systems with two parameters;
- connections with other number theoretic problems (e..g. integer partitions, see B.-Del Vigna-Garrity-Isola, arxiv).

b) a) The b (a) The b

Thank you!

ヘロト ヘロト ヘヨト ヘヨト

References

- C. Bonanno, A. Del Vigna, S. Munday, A slow triangle map with a segment of indifferent fixed points and a complete tree of rational pairs, Monatsh. Math. 194 (2021), 1–40
- C. Bonanno, A. Del Vigna, Representation and coding of rational pairs on a Triangular tree and Diophantine approximation in ℝ², Acta Arith. 200 (2021), no. 4, 389–427
- J. Aaronson, "An introduction to infinite ergodic theory". Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997
- T. Garrity, *On periodic sequences for algebraic numbers*, J. Number Theory **88** (2001), no. 1, 86–103
- A. Messaoudi, A. Nogueira, F. Schweiger, *Ergodic properties of triangle partitions*, Monatsh. Math. **157** (2009), no. 3, 283–299
- H. Nakada, R. Natsui, On the metrical theory of continued fraction mixing fibred systems and its application to Jacobi-Perron algorithm, Monatsh. Math. 138 (2003), no. 4, 267–288

A fibred system $V : A \rightarrow A$

- (h1) There exists a finite or countable measurable partition $C = \{C_i\}_{i \in \mathcal{I}}$ of *A* such that the restriction of *V* to C_i is injective for all $i \in \mathcal{I}$.
- (h2) The map V is differentiable and non-singular.
- (h3) There exists a sequence $(\sigma(n))_{n\geq 0}$ with $\sigma(n) \to 0$ as $n \to \infty$ and such that

 $\sup_{(i_1,\ldots,i_n)\in\mathcal{I}^n}\operatorname{diam} C_{i_1,\ldots,i_n}\leq\sigma(n).$

- (h4) There exist a finite number of measurable subsets U_1, \ldots, U_N of A such that for any cylinder C_{i_1, \ldots, i_n} of positive measure, there exists U_j with $1 \le j \le N$ such that $V^n(C_{i_1, \ldots, i_n}) = U_j$ up to measure-zero sets.
- (h5) There exists a constant $\lambda \ge 1$ such that for $\psi_{i_1,...,i_n} := (V^n|_{C_{i_1},...,i_n})^{-1}$

$$\sup_{V^n(C_{i_1},...,i_n)} |J\psi_{i_1},...,i_n| \le \lambda \inf_{V^n(C_{i_1},...,i_n)} |J\psi_{i_1},...,i_n|$$

where $J\psi_{i_1,...,i_n}$ denotes the Jacobian determinant of $\psi_{i_1,...,i_n}$. (h6) For any $1 \le j \le N$, U_j contains a proper cylinder.

▶ back

A fibred system $V : A \rightarrow A$

(h7) There is a constant $r_1 > 0$ such that

$$|J\psi_{i_1,\ldots,i_n}(p_1) - J\psi_{i_1,\ldots,i_n}(p_2)| \le r_1 m(C_{i_1,\ldots,i_n}) ||p_1 - p_2||$$

for any $p_1, p_2 \in U_j$ and all j.

(h8) There is a constant $r_2 > 0$ such that

$$\|\psi_{i_1,\ldots,i_n}(p_1) - \psi_{i_1,\ldots,i_n}(p_2)\| \le r_2\sigma(n)\|p_1 - p_2\|$$

for any $p_1, p_2 \in U_j$ and all j.

(h9) Let \mathcal{F} be a finite partition generated by U_1, \ldots, U_N and denote by \mathcal{F}_m^c the cylinders in \mathcal{C}^m that are not contained in any element of \mathcal{F} . Then, as $m \to \infty$

$$\gamma(m) \coloneqq \sum_{C(i_1,\ldots,i_m)\in \mathcal{F}_m^c} m(C(i_1,\ldots,i_m)) \to 0.$$

back

A D A D A D A

Continued fraction mixing

Let $V : A \to A$ and μ be a *V*-invariant probability on the Borel σ -algebra \mathcal{B} . Let \mathcal{C} be a countable measurable generating partition for *V*. The system $(A, \mathcal{B}, \mu, V, \mathcal{C})$ is said to be *continued fraction mixing* if

$$\psi_n \coloneqq \sup_{\substack{C \in \mathcal{C}^k, k \ge 1, \mu(C) > 0\\ B \in \mathcal{B}, \ \mu(B) > 0}} \frac{\left| \mu\left(C \cap V^{-(k+n)}B\right) - \mu(C)\mu(B) \right|}{\mu(C)\mu(B)} \quad \xrightarrow[n \to \infty]{} 0$$

back

A = 1

Pointwise dual ergodicity

The system $(\overline{\triangle}, S, \nu)$ is *pointwise dual ergodic* if there exists a sequence $(a_N)_{N\geq 0}$ such that

$$\lim_{N \to \infty} \frac{1}{a_N} \sum_{j=0}^{N-1} (P^j h)(x, y) = \int_{\bar{\bigtriangleup}} h \, d\nu$$

for ν -almost every $(x, y) \in \overline{\triangle}$ and for all $h \in L^1(\overline{\triangle}, \nu)$, where *P* is the transfer operator of the system.

back

A D A D A D A