Prevalence of matching for families of continued fraction algorithms. Old and new results

> Carlo Carminati Dipartimento di Matematica Università di Pisa

> > 26Jan2021

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Credits

Joint work with Niels Langeveld and Wolfgang Steiner

Carlo Carminati, Niels Langeveld, Wolfgang Steiner: *Tanaka-Ito* α -continued fractions and matching, arXiv:2004.14926

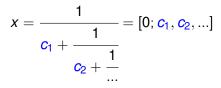
(ロ) (同) (三) (三) (三) (○) (○)

Aim: put it in perspective, reviewing some old results and looking towards new (and open) developments.

The Gauss map

The Gauss map $T: [0,1] \rightarrow [0,1]$ is defined by

$$T: x \mapsto \frac{1}{x} - c(x), \quad c(x) = \lfloor \frac{1}{x} \rfloor$$



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $c_k = c(T^{k-1}(x)).$

Ergodic properties of RCF

The Gauss map T has the folowing properties

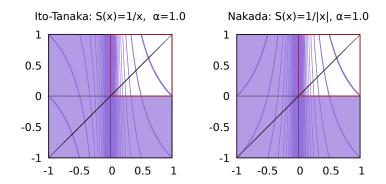
- ▶ it has an invariant measure $d\mu(x) := \frac{dx}{(1+x)\log(2)}$;
- T is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:

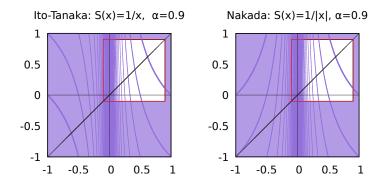
$$\lim_{n\to+\infty}\frac{2}{n}\log q_n=h_\mu(T)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

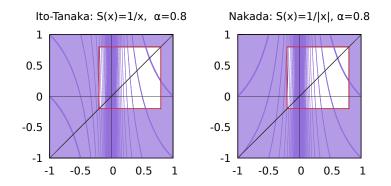
where p_n/q_n is the n-th convergent of x and $h_{\mu}(T)$ is the entropy of *T*.

•
$$h_{\mu}(T) = \int_0^1 \log |T'(x)| d\mu(x) = \frac{\pi^2}{6 \log 2}$$

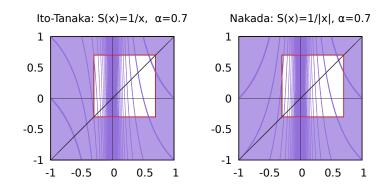




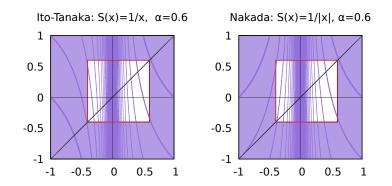
・ロト・日本・日本・日本・日本・日本



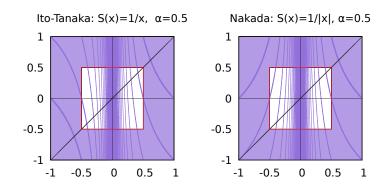
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

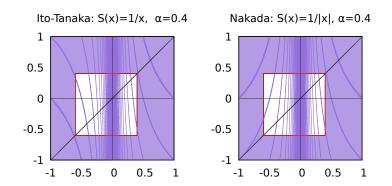


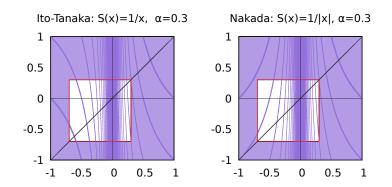
▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ● のへの

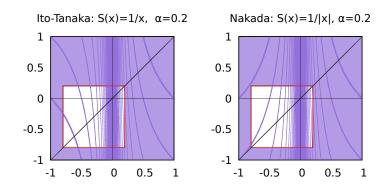


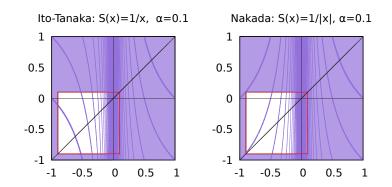
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙



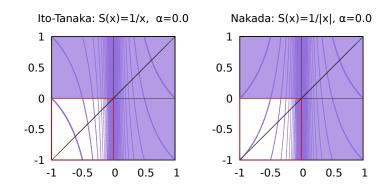








▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Invariant probability measures: classical examples

Back in the early '80s, the explicit expression of a a.c.i.p was found for α ranging in some intervals:

- $\alpha \in [1/2, 1]$ for Nakada,
- $\alpha \in [\mathbf{1/2}, g]$ for Ito-Tanaka

Movie: natural extension for Nakada α -CF when α drops below 1/2.

(日) (日) (日) (日) (日) (日) (日)

Ergodic properties common to both families T_{α}

The maps T_{α} ($\alpha > 0$) have the following properties

- α -expansion and α -convergents can be defined;
- *T_α* has an invariant probability measure μ_α(x) := ρ_α(x)dx with ρ_α of bounded variation;
- T_{α} is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:

$$\lim_{n\to+\infty}\frac{1}{n}\log q_{n,\alpha}^2=h_{\mu_{\alpha}}(T_{\alpha})$$

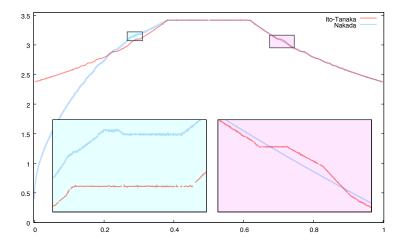
where $p_{n,\alpha}/q_{n,\alpha}$ is the n-th convergent of the α -expansion of x and $h_{\mu_{\alpha}}(T_{\alpha})$ is the entropy of T_{α} .

• The entropy $h(T_{\alpha})$ can be computed using Rohlin formula:

$$h_{\mu_{lpha}}(\mathcal{T}_{lpha}) = \int_{lpha-1}^{lpha} \log |\mathcal{T}_{lpha}'(x)| d\mu_{lpha}(x);$$

References: [KSS2012] [T2014] for case (N); [NS2020] [Lan2019] for case (IT)

Entropy function $\alpha \mapsto h_{\mu_{\alpha}}(T_{\alpha})$



・ロト・(四ト・(川下・(日下))

Matching intervals - in general

Definition (Matching)

Let $J \subset [0, 1]$ be a non-empty open interval in parameter space. We say that *J* is a **matching interval** for T_{α} (with **exponents** *M*, *N*) if

1.
$$T^{\mathcal{M}}_{\alpha}(\alpha - 1) = T^{\mathcal{N}}_{\alpha}(\alpha)$$
 for all $\alpha \in J$,

2.
$$T_{\alpha}^{M-1}(\alpha-1) \neq T_{\alpha}^{N-1}(\alpha)$$
 for almost all $\alpha \in J$,

3. *J* is not contained in a larger open interval with properties 1 and 2 above.

The difference $\Delta := M - N$ is called **matching index**.

First discovered by Nakada-Natsui, Nonlinearity [NN2008] Other names: cycle property, synchronization property.

Algebraic nature

Lemma

Let M, M', N, N' be such that $M - N \neq M' - N'$. Then there are at most countably many $\alpha \in [0, 1]$ such that $T^M_{\alpha}(\alpha - 1) = T^N_{\alpha}(\alpha)$ and $T^{M'}_{\alpha}(\alpha - 1) = T^{N'}_{\alpha}(\alpha)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consequences:

- the matching index is well defined;
- matching intervals with different exponents do not intersect.

For more details on algebraic features: [Lan2019]

Matching index and monotonicity of entropy

Let *J* be a matching interval for T_{α} with matching exponents (M, N), then the entropy function $\alpha \mapsto h(T_{\alpha})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- is increasing if N > M;
- is decreasing if N < M;
- is constant if N = M.

[NN2008] for Nakada's CF [Lan2019] for Ito-Tanaka CF **Bifurcation set** = set of points which do not belong to any matching interval.

a.k.a. exceptional set, and usually denoted by the symbol \mathcal{E} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Bifurcation set $\mathcal{E}_{\mathcal{N}}$ for Nakada's α -CF

Characterization of $\mathcal{E}_{\mathcal{N}}$ using Gauss map T_1 :

$$\mathcal{E}_{\mathcal{N}} = \{x \in [0,1] : T_1^k(x) \ge x \quad \forall k \in \mathbb{N}\}$$

Consequences:

- 1. $\mathbb{Q} \cap \mathcal{E}_{\mathcal{N}} = \{0\};$
- 2. meas($\mathcal{E}_{\mathcal{N}}$) = 0;
- 3. dim_H($\mathcal{E}_{\mathcal{N}}$) = 1;
- **4**. for all *t* > 0,

 $\dim_H(\mathcal{E}_{\mathcal{N}} \cap [0, t]) = 1, \quad \dim_H(\mathcal{E}_{\mathcal{N}} \cap [t, 1]) < 1.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Relation with bounded type numbers

$$E_n := \{x \in [0,1] : x = [0; a_1, a_2, a_3, ...], a_k \le n \ \forall k\}$$

Properties:

・ロト・(四ト・(川下・(日下))

Why "bifurcation set"?

Let us set
$$\mathcal{B}(t) := \{x \in [0, 1] : T^{k}(x) \ge t\}.$$

Note: $E_{n} = \mathcal{B}(\frac{1}{n+1})$

In [CT202*] it is proved that

- *E_N* is the **bifurcation set** of the function *t* → *B*(*t*): in particular this function is constant outside *E_N*;
- ▶ $t \mapsto \dim_H(\mathcal{E}_N \cap [t, 1])$ is a continuous function and

 $\dim_H(\mathcal{E}_{\mathcal{N}}\cap [t,1])=\dim_H(\mathcal{B}(t))$

See [CT202*]: arXiv:1109.0516

Ito-Tanaka α -expansions

Ito-Tanaka case $T_{\alpha} : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ is defined by

$$T: x \mapsto \frac{1}{x} - c_{\alpha}(x), \qquad \qquad c_{\alpha}(x) = \lfloor \frac{1}{x} + 1 - \alpha \rfloor$$

 $x = [0; c_{\alpha,1}, c_{\alpha,2}, ...]$ $c_{\alpha,k} = c_{\alpha}(T_{\alpha}^{k-1}(x))$

$$rac{p_{lpha,n}}{q_{lpha,n}} := [\mathbf{0}; \mathbf{C}_{lpha,1}, \mathbf{C}_{lpha,2}, ..., \mathbf{C}_{lpha,n}]$$

Formally identical to the classical case, the only difference being that $c_{\alpha,n}$, $p_{\alpha,n}$, $q_{\alpha,n}$ need no more to be positive. For "tipical" x

$$h_{\mu_lpha}(\mathit{T}_lpha) = \lim_{n o +\infty} rac{1}{n} \log q_{n,lpha}^2$$

Ito-Tanaka α -CF: parameter reduction

The following diagram 'almost' commutes, with only countable many exceptions ($\tau(x) := -x$)

$$T_{\alpha}: [\alpha - 1, \alpha) \xrightarrow{T_{\alpha}} [\alpha - 1, \alpha)$$

$$\downarrow \tau \qquad \qquad \downarrow \tau$$

$$T_{1-\alpha}: [-\alpha, \alpha - 1) \xrightarrow{T_{1-\alpha}} [-\alpha, \alpha - 1)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Therefore the two dynamical systems are conjugated.

WLOG: $\alpha \in [1/2, 1]$.

Unexplored region: [g, 1] $(g = \frac{\sqrt{5}-1}{2}).$

$\mathcal{E}_{IT} \cap [g, 1]$: characterization

Theorem The set $\mathcal{E}_{IT} \cap [g, 1]$ can be characterized as 1. $\{\alpha \in [g, 1] : T_{\alpha}^{n}(\alpha - 1) \leq \frac{1}{\alpha + 1} \text{ and } T_{\alpha}^{n}(\frac{1}{\alpha} - 1) \leq \frac{1}{\alpha + 1} \quad \forall n \geq 1\}$ 2. $\{\alpha \in [g, 1] : T_{g}^{n}(\alpha - 1) \geq \alpha - 1 \text{ and } T_{g}^{n}(\frac{1}{\alpha} - 1) \geq \alpha - 1 \quad \forall n \geq 1\}$ 3.

$$\{ \alpha \in [g, 1] : T_1^n(\alpha) \notin (\frac{1}{\alpha+1}, \alpha) \forall n \ge 2 \text{ and } T_1^n(\alpha) \notin (1 - \alpha, \frac{\alpha}{\alpha+1}) \\ \forall n \ge 2 \text{ such that } P_n(\alpha) \text{ is odd} \},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where

$$P_n(\alpha) = \min\{k \ge 0: T_1^{n-k}(\alpha) \le 1 - \alpha \text{ or } T_1^{n-k-1}(\alpha) \ge \alpha\}.$$

Consequences: properties of \mathcal{E}_{IT} .

Theorem We have that \mathcal{E}_{IT} is a Lebesgue measure zero set and

 $\dim_H(\mathcal{E}_{IT}) = \mathbf{1}.$

Moreover, for all $\delta > 0$

 $\dim_H (\mathcal{E}_{IT} \cap (g, g + \delta)) = 1$ and $\dim_H (\mathcal{E}_{IT} \cap (g + \delta, 1)) < 1$.

Unexpected features: neighbourhoods of $r_0 \in \mathcal{E}_{IT} \cap \mathbb{Q}$

Theorem

- *E_{IT}* contains infinitely many rational values (a.k.a. bad rationals);
- the set of rational bifurcation parameters E_{IT} ∩ Q has no isolated points;
- ▶ for all $r \in \mathcal{E}_{IT} \cap \mathbb{Q}$ and for all $\delta > 0$ we have that

$$\dim_{H}(\mathcal{E}_{IT} \cap (r-\delta, r+\delta)) > 1/2.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Bad rationals: 2/3, the simplest example

 $r_0 := 2/3 = [0; 1, 2]$ is accumulated (on both sides) by elements of \mathcal{E}_{IT} (hence belongs to \mathcal{E}_{IT}). The value $\alpha = [0; 1, 2, a_3, a_4, ...]$ is such that

$$\frac{1}{\alpha+1} = [0; 1, 1, 2, a_3, a_4, ...], \quad \alpha - 1 = -[0; 3, a_3, a_4, ...]$$

$$\forall k \ge 1 \quad \begin{cases} T_{\alpha}^{k}(\alpha) &= T_{1}^{k}(\alpha) < \frac{1}{\alpha+1} \\ T_{\alpha}^{k}(\alpha-1) &= -T_{1}^{k}(\alpha) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Injecting high type numbers

$$H_n := \{x \in [0, 1] : x = [0; a_1, a_2, a_3, ...], a_k \ge n \ \forall k\}$$

 $\dim_H H_n > \frac{1}{2} \ \forall n.$

We can inject a lipschitz copy of H_4 in any neighbourhood of 2/3.

An analogous result holds for all bad rationals (choosing a suitable H_n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Mode locking ...

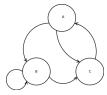
$$x_n := T^n_{\alpha}(\alpha - 1), \quad y_n := T^n_{\alpha}(\frac{1}{\alpha} - 1)$$

Lemma

Let $\alpha \in [g, 1]$, $m \in \mathbb{N}$ be such that

$$x_n \leq rac{1}{lpha+1}$$
 and $y_n \leq rac{1}{lpha+1}$ for all $0 \leq n < m.$ (1)

Then for all $0 \le n \le m$ the pair (x_n, y_n) satisfies one of the (A) $(x_n + 1)(y_n + 1) = 1$, following relations: (B) $x_n + y_n = 0$, (C) $x_n + y_n = 1$. If $x_m > \frac{1}{\alpha+1}$ or $y_m > \frac{1}{\alpha+1}$, then $x_m + y_m = 1$.



... leads to matching

$$\tilde{\mathcal{E}} := \{ \alpha \in [g, 1] : x_n \leq \frac{1}{\alpha + 1} \text{ and } y_n \leq \frac{1}{\alpha + 1} \text{ for all } n \geq 1 \}$$

Let $\alpha \in (g, 1], m \in \mathbb{N}$ and assume that
 $x_n \leq \frac{1}{\alpha + 1}$ and $y_n \leq \frac{1}{\alpha + 1}$ for all $0 \leq n < m$. (2)

but

$$x_m > \frac{1}{\alpha+1}$$
 or $y_m > \frac{1}{\alpha+1}$ (3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Then α belongs to some matching interval J

Matching pops up also in other families of CF algorithms

- **•** Rosen α -continued fractions [DKS2009];
- Katok-Ugarcovici α-continued fractions (S(x) = -1/x): [KU2010] [KU2012] [CIT2018]

(ロ) (同) (三) (三) (三) (○) (○)

 α-continued fractions associated to distinct triangle Fuchsian groups [CKS2017]

Meta-question: why does this happen?

A simpler meta-question

For $\beta > 1$ a fixed value, let us define

$$T_{\alpha}: \begin{array}{cc} [0,1] \rightarrow & [0,1] \\ x \mapsto & T_{\alpha}(x) := \beta x + \alpha \pmod{1} \end{array}$$

In [BCK2017] it is shown that:

 if β > 1 is a quadratic irrational number, matching holds iff β is Pisot.

In such a case matching intervals cover a.e. $\alpha \in [0, 1]$

 if α belongs to a matching interval, the invariant density for *T*_α is constant on the complement of a finite set

$$\rho_{\alpha}(\mathbf{x}) := \frac{d\mu(\mathbf{x})}{d\mathbf{x}} = \sum_{T_{\alpha}^{n}(1) < \mathbf{x}} \beta^{-n} - \sum_{T_{\alpha}^{n}(0) < \mathbf{x}} \beta^{-n},$$

if there is a matching interval for T_α then the slope β must be an algebraic integer.

How density changes

with the parameter α for $\beta = \frac{3+\sqrt{5}}{2}$

Show movie

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

... and yet not so simple!

- Which values of β give rise to matching intervals?
- For which values of β matching intervals cover almost all parameter space?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The end.

Some more open questions

- Using the techniques of [T] one can prove that the entropy is Hölder continuous also for the family (TI); it is natural to ask whether it is Lipschitz continuous.
- Is the entropy weakly decreasing on [g, 1]? We believe the answer is affirmative, but we still cannot rule out some devil staircase pathology.
- Can one characterize the isolated points of *E*?
- Is there some countable chain of adjacent intervals as it was observed for the family (N)?
- Are there non isolated points of \mathcal{E}_{IT} at which the local Hausdorff dimension of \mathcal{E}_{IT} falls in the open interval (0, 1/2)?

α -continued fractions and the maps T_{α}

The maps $T_{\alpha} : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ are defined as follows:

$$T_{\alpha}(x) := rac{1}{|x|} - c_{lpha}(x), \quad c_{lpha}(x) := \lfloor rac{1}{|x|} + 1 - lpha
floor.$$

Inverting the first equation above we get

$$x = rac{\epsilon(x)}{c_{lpha}(x) + T_{lpha}(x)}, \quad \epsilon(x) = \operatorname{sign}(x)$$

Iterating this procedure we recover the infinite α -continued fractional expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \dots}}$$

which is sometimes written as

$$\mathbf{x} = [\mathbf{0}; (\epsilon_{\alpha,1}, \mathbf{C}_{\alpha,1}), (\epsilon_{\alpha,2}, \mathbf{C}_{\alpha,2}), (\epsilon_{\alpha,3}, \mathbf{C}_{\alpha,3}), \ldots]$$