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The Gauss map

The Gauss map T : [0,1]→ [0,1] is defined by

T : x 7→ 1
x − c(x), c(x) = b 1

x c

x =
1

c1 +
1

c2 +
1
...

= [0; c1, c2, ...]

ck = c(T k−1(x)).



Ergodic properties of RCF

The Gauss map T has the folowing properties
I it has an invariant measure dµ(x) := dx

(1+x) log(2) ;
I T is an exact map, hence it is ergodic;
I For almost every x ∈ [0,1]:

lim
n→+∞

2
n

log qn = hµ(T )

where pn/qn is the n-th convergent of x and hµ(T ) is the
entropy of T .

I hµ(T ) =
∫ 1

0 log |T ′(x)|dµ(x) = π2

6 log 2



The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Ito-Tanaka: S(x)=1/x,  α=0.4

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Nakada: S(x)=1/|x|, α=0.4



The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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The Gauss-like map Tα := S(x)− bS(x) + α− 1c
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Invariant probability measures: classical examples

Back in the early ’80s, the explicit expression of a a.c.i.p was
found for α ranging in some intervals:
α ∈ [1/2,1] for Nakada,
α ∈ [1/2,g] for Ito-Tanaka

Movie: natural extension for Nakada α-CF when α drops below 1/2.



Ergodic properties common to both families Tα
The maps Tα (α > 0) have the folowing properties
I α-expansion and α-convergents can be defined;
I Tα has an invariant probability measure µα(x) := ρα(x)dx

with ρα of bounded variation;
I Tα is an exact map, hence it is ergodic;
I For almost every x ∈ [0,1]:

lim
n→+∞

1
n

log q2
n,α = hµα(Tα)

where pn,α/qn,α is the n-th convergent of the α-expansion
of x and hµα(Tα) is the entropy of Tα.

I The entropy h(Tα) can be computed using Rohlin formula:

hµα(Tα) =

∫ α

α−1
log |T ′α(x)|dµα(x);

References: [KSS2012] [T2014] for case (N); [NS2020]
[Lan2019] for case (IT)



Entropy function α 7→ hµα
(Tα)
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Matching intervals - in general

Definition (Matching)
Let J ⊂ [0,1] be a non-empty open interval in parameter space.
We say that J is a matching interval for Tα (with exponents
M,N) if

1. T M
α (α− 1) = T N

α (α) for all α ∈ J,
2. T M−1

α (α− 1) 6= T N−1
α (α) for almost all α ∈ J,

3. J is not contained in a larger open interval with properties
1 and 2 above.

The difference ∆ := M − N is called matching index.

First discovered by Nakada-Natsui, Nonlinearity [NN2008]
Other names: cycle property, synchronization property.



Algebraic nature

Lemma
Let M,M ′,N,N ′ be such that M − N 6= M ′ − N ′. Then there are
at most countably many α ∈ [0,1] such that T M

α (α− 1) = T N
α (α)

and T M′
α (α− 1) = T N′

α (α).
Consequences:
I the matching index is well defined;
I matching intervals with different exponents do not

intersect.
For more details on algebraic features: [Lan2019]



Matching index and monotonicity of entropy

Let J be a matching interval for Tα with matching exponents
(M,N), then the entropy function α 7→ h(Tα)

I is increasing if N > M;
I is decreasing if N < M;
I is constant if N = M.

[NN2008] for Nakada’s CF
[Lan2019] for Ito-Tanaka CF



When matching fails

Bifurcation set = set of points which do not belong to any
matching interval.

a.k.a. exceptional set, and usually denoted by the symbol E .



Bifurcation set EN for Nakada’s α-CF

Characterization of EN using Gauss map T1:

EN = {x ∈ [0,1] : T k
1 (x) ≥ x ∀k ∈ N}

Consequences:
1. Q ∩ EN = {0};
2. meas(EN ) = 0;
3. dimH(EN ) = 1;
4. for all t > 0,

dimH(EN ∩ [0, t ]) = 1, dimH(EN ∩ [t ,1]) < 1.



Relation with bounded type numbers

En := {x ∈ [0,1] : x = [0; a1,a2,a3, ...], ak ≤ n ∀k}

Properties:
I dimH(En) < 1 ∀n;
I sup dimH(En) = 1

For a ∈ N set φa(x) :=
1

a + x
; we have:

I EN ∩ [
1

n + 1
,1] ⊂ En;

I EN ∩ [ 1
a+1 ,

1
a ] ⊃ φa(En−1) for all a ∈ N, a ≥ n.



Why ”bifurcation set”?

Let us set B(t) := {x ∈ [0,1] : T k (x) ≥ t}.

Note: En = B( 1
n+1)

In [CT202*] it is proved that
I EN is the bifurcation set of the function t 7→ B(t):

in particular this function is constant outside EN ;
I t 7→ dimH(EN ∩ [t ,1]) is a continuous function and

dimH(EN ∩ [t ,1]) = dimH(B(t))

See [CT202*]: arXiv:1109.0516



Ito-Tanaka α-expansions

Ito-Tanaka case Tα : [α− 1, α]→ [α− 1, α] is defined by

T : x 7→ 1
x − cα(x), cα(x) = b 1

x + 1− αc

x = [0; cα,1, cα,2, ...] cα,k = cα(T k−1
α (x))

pα,n
qα,n := [0; cα,1, cα,2, ..., cα,n]

Formally identical to the classical case, the only difference
being that cα,n,pα,n,qα,n need no more to be positive.
For ”tipical” x

hµα(Tα) = lim
n→+∞

1
n

log q2
n,α



Ito-Tanaka α-CF: parameter reduction

The following diagram ’almost’ commutes, with only countable
many exceptions (τ(x) := −x)

Tα : [α− 1, α)
Tα−→ [α− 1, α)

↓ τ ↓ τ
T1−α : [−α, α− 1)

T1−α−→ [−α, α− 1)

Therefore the two dynamical systems are conjugated.

WLOG: α ∈ [1/2,1].

Unexplored region: [g,1]

(g =
√

5−1
2 ).



EIT ∩ [g,1]: characterization

Theorem
The set EIT ∩ [g,1] can be characterized as

1. {α ∈ [g,1] : T n
α(α−1) ≤ 1

α+1 and T n
α( 1

α−1) ≤ 1
α+1 ∀n ≥ 1}

2.
{
α ∈ [g,1] : T n

g (α− 1) ≥ α− 1 and T n
g ( 1

α − 1) ≥
α− 1 ∀ n ≥ 1

}
3. {

α ∈ [g,1] : T n
1 (α) /∈ ( 1

α+1 , α) ∀ n ≥ 2 and T n
1 (α) /∈ (1− α, α

α+1)

∀ n ≥ 2 such that Pn(α) is odd
}
,

where
Pn(α) = min{k ≥ 0 : T n−k

1 (α) ≤ 1− α or T n−k−1
1 (α) ≥ α}.



Consequences: properties of EIT .

Theorem
We have that EIT is a Lebesgue measure zero set and

dimH(EIT ) = 1.

Moreover, for all δ > 0

dimH (EIT ∩ (g,g + δ)) = 1 and dimH (EIT ∩ (g + δ, 1)) < 1.



Unexpected features: neighbourhoods of r0 ∈ EIT ∩Q

Theorem
I EIT contains infinitely many rational values (a.k.a. bad

rationals);
I the set of rational bifurcation parameters EIT ∩Q has no

isolated points;
I for all r ∈ EIT ∩Q and for all δ > 0 we have that

dimH(EIT ∩ (r − δ, r + δ)) > 1/2.



Bad rationals: 2/3, the simplest example

r0 := 2/3 = [0; 1,2] is accumulated (on both sides) by elements
of EIT (hence belongs to EIT ).
The value α = [0; 1,2,a3,a4, ...] is such that
I α > r0

I if ak ≥ 4 ∀k ≥ 3 then α ∈ EIT

1
α + 1

= [0; 1,1,2,a3,a4, ...], α− 1 = −[0; 3,a3,a4, ...]

∀k ≥ 1

{
T k
α (α) = T k

1 (α) < 1
α+1

T k
α (α− 1) = −T k

1 (α)



Injecting high type numbers

Hn := {x ∈ [0,1] : x = [0; a1,a2,a3, ...], ak ≥ n ∀k}

dimH Hn >
1
2
∀n.

We can inject a lipschitz copy of H4 in any neighbourhood of
2/3.

An analogous result holds for all bad rationals (choosing a
suitable Hn).



Mode locking ...
xn := T n

α(α− 1), yn := T n
α( 1

α − 1)

Lemma
Let α ∈ [g,1], m ∈ N be such that

xn ≤ 1
α+1 and yn ≤ 1

α+1 for all 0 ≤ n < m. (1)

Then for all 0 ≤ n ≤ m the pair (xn, yn) satisfies one of the

following relations:
(A) (xn + 1)(yn + 1) = 1,
(B) xn + yn = 0,
(C) xn + yn = 1.

If xm > 1
α+1 or ym > 1

α+1 , then xm + ym = 1.



... leads to matching

Ẽ := {α ∈ [g,1] : xn ≤ 1
α+1 and yn ≤ 1

α+1 for all n ≥ 1}

Let α ∈ (g,1], m ∈ N and assume that

xn ≤ 1
α+1 and yn ≤ 1

α+1 for all 0 ≤ n < m. (2)

but
xm > 1

α+1 or ym > 1
α+1 (3)

Then α belongs to some matching interval J



Other directions

Matching pops up also in other families of CF algorithms
I Rosen α-continued fractions [DKS2009];
I Katok-Ugarcovici α-continued fractions (S(x) = −1/x):

[KU2010] [KU2012] [CIT2018]
I α-continued fractions associated to distinct triangle

Fuchsian groups [CKS2017]
Meta-question: why does this happen?



A simpler meta-question
For β > 1 a fixed value, let us define

Tα :
[0,1]→ [0,1]
x 7→ Tα(x) := βx + α (mod 1)

In [BCK2017] it is shown that:
I if β > 1 is a quadratic irrational number, matching holds iff
β is Pisot.
In such a case matching intervals cover a.e. α ∈ [0,1]

I if α belongs to a matching interval, the invariant density for
Tα is constant on the complement of a finite set

ρα(x) :=
dµ(x)

dx
=

∑
T n
α(1)<x

β−n −
∑

T n
α(0)<x

β−n,

I if there is a matching interval for Tα then the slope β must
be an algebraic integer.



How density changes

with the parameter α for β = 3+
√

5
2

Show movie



... and yet not so simple!

I Which values of β give rise to matching intervals?
I For which values of β matching intervals cover almost all

parameter space?
The end.



Some more open questions

I Using the techniques of [T] one can prove that the entropy
is Hölder continuous also for the family (TI); it is natural to
ask whether it is Lipschitz continuous.

I Is the entropy weakly decreasing on [g,1]? We believe the
answer is affirmative, but we still cannot rule out some
devil staircase pathology.

I Can one characterize the isolated points of E?
I Is there some countable chain of adjacent intervals as it

was observed for the family (N)?
I Are there non isolated points of EIT at which the local

Hausdorff dimension of EIT falls in the open interval
(0,1/2)?



α–continued fractions and the maps Tα
The maps Tα : [α− 1, α]→ [α− 1, α] are defined as follows:

Tα(x) :=
1
|x |
− cα(x), cα(x) := b 1

|x |
+ 1− αc.

Inverting the first equation above we get

x =
ε(x)

cα(x) + Tα(x)
, ε(x) = sign(x)

Iterating this procedure we recover the infinite α-continued
fractional expansion:

x =
ε1,α

c1,α +
ε2,α

c2,α + . . .

which is sometimes written as

x = [0; (εα,1, cα,1), (εα,2, cα,2), (εα,3, cα,3), ...]
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