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From decimals to continued fractions

I Given n decimal digits d1,d2, . . . ,dn of x ∈ [0, 1],

x = 0.d1d2 . . . ∈ [0, 1]

I determine the number Ln(x) of CFE-digits (partial quotients)
deduced without error

x = [0;a1,a2, . . .] =
1

a1 +
1

a2 +
. . .

.

Natural to consider the quotient Ln(x)/n :

I rate of CFE digits per decimal digit,

I compares relative information/redundancy of expansions.
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Very small rates

I Given n decimal digits d1,d2, . . . ,dn of x ∈ [0, 1],

x = 0.d1d2 . . . ∈ [0, 1]

I determine the number Ln(x) of CFE-digits (partial quotients)
deduced without error

x = [0;a1,a2, . . .] =
1

a1 +
1

a2 +
. . .

.

Theorem (Faivre, 2001. Wu, 2006)

For x ∈ (0, 1) having Lévy constant β(x) := limn→∞ logqn(x)/n,

lim
n→∞ Ln(x)n

=
ln 10

2β(x)
.

As β(x) takes arbitrarily large values, the rate Ln(x)/n takes arbitrarily
small values.
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Lochs’ Theorem

I Given n decimal digits d1,d2, . . . ,dn of x,

x = 0.d1d2 . . . ∈ [0, 1] ,

I Ln(x) continued fraction digits (partial quotients)

x = [0;a1,a2, . . .] =
1

a1 +
1

a2 +
. . .

Lochs’ theorem, 1964

Ln(x)

n
→ 6 ln 10 ln 2

π2
≈ 0, 97 a.e. x (Lebesgue measure)

when n→∞.

“Lochs’ example”. The first 1000 decimals of π determine exactly 968
partial quotients of π.
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Outline

Natural question

Given x ∈ (0, 1) and n ∈ N.
How large is the number Ln(x) of digits determined in one expansion of
the real number x ∈ (0, 1) when a number n of digits of x are given in
some other expansion?

I Partitions, Lochs’ index and entropy.

I Dajani and Fieldsteel’s results a.e./in measure for positive entropy.

I Our extension to zero/infinite entropy.
I The notion of weight function.
I Our main general result.

I Zero entropy: from binary digits to (characteristic) Sturmian words.

I Three instances: Farey, Stern-Brocot and “three-distance” inspired.
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Partitions

Definitions and notations
I A topological partition of [0, 1] is a set P of intervals:

I open (nonempty),
I disjoints
I the union of their closures equals [0, 1].

I A sequence of partitions P = {Pn}n∈N0
is a sequence of topological

partitions

I E is the set of endpoints of the intervals of P.

I In(x) is the interval of Pn that contains x (if x /∈ E).

The partitions are not necessarily self-refining.

0 1

I1(x)

I2(x)

I3(x)

x
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Lochs’ index: definition

In black, the sequence of partitions associated with base 2.
In red, the sequence of partitions associated with base 3.

0 1

n = 1

n = 2

n = 3

0 1

n = 1

n = 2

n = 3

x

B: binary, T: ternary

IB3 (x) ⊆ IT1 (x) but IB3 (x) * IT2 (x)

The first 3 binary digits of x provide only 1 ternary digit.
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Lochs’ index: definition

Consider

I P1 and P2 two sequences of partitions.

I I1n(x): the interval of depth n of P1 that contains x.

I I2n(x): the interval of depth n of P2 that contains x.

Following Bosma, Dajani & Kraaincamp and Dajani & Fieldsteel:

Lochs’ index

For x ∈ [0, 1] (not an endpoint) and each n ∈ N, the Lochs’ index is
defined as

Ln(x,P1,P2) = sup{` > 0 : I1n(x) ⊆ I2`(x)}.

Informally: n digits of x in P1 provide Ln(x,P1,P2) digits of x in P2
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Measure and entropy

Entropy of a sequence of partitions P

I λ is a Borel probability measure on [0, 1].

I P = {Pn}n∈N is a sequence of partitions.

Assume that λ(endpoints) = 0,

hλ(P) = lim
n→∞ − log λ(In(x))

n
a.e. (resp. in measure) (λ),

if the limit exists.
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Lochs’ index for positive entropy

Theorem (Dajani and Fieldsteel, 2001)

I P1 and P2 are two sequences of partitions of [0, 1],

I λ is a Borel probability measure on [0, 1].

The following limit holds

lim
n→∞ 1

n
Ln(x,P1,P2) =

hλ(P
1)

hλ(P2)

almost everywhere with respect to λ, if

I hλ(P
1) and hλ(P

2) are their entropies a.e. (λ) and they are positive.

In measure λ, if

I hλ(P
1) and hλ(P

2) are their entropies in measure (λ) and they are
positive,

I P2 is self-refining.
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Dajani and Fieldsteel implies Lochs

Theorem (Dajani and Fieldsteel, 2001)

I P1 and P2 are two sequences of partitions of [0, 1],

I λ is a Borel probability measure on [0, 1].

The following limit holds

lim
n→∞ 1

n
Ln(x,P1,P2) =

hλ(P
1)

hλ(P2)

almost everywhere with respect to λ, if

I hλ(P
1) and hλ(P

2) are their entropies a.e. (λ) and they are positive.

Lochs’theorem:

I λ is the Lebesgue measure;

I Decimals have a.e. entropy equal to ln 10;

I Continued fractions have a.e. entropy equal to π2/(6 ln 2).
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Beyond of positive entropy

Remark (Dajani and Fieldsteel, 2001)

lim
n→∞ 1

n
Ln(x,P1,P2) =

{
0, hλ(P

1) = 0 and hλ(P
2) 6= 0,∞, hλ(P

2) = 0 and hλ(P
1) 6= 0.

Is it possible to be more precise?
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Weight functions and log-balanced sequences of partitions

I λ is a Borel probability measure on [0, 1].
I P = {Pn}n∈N is a sequence of partitions.

Entropy hλ(P)

hλ(P) = lim
n→∞ − log λ(In(x))

n
a.e. (in measure) (λ),

if the limit exists.

Weight function f
A map f : N 7→ R, so that

lim
n→∞ − log λ(In(x))

f(n)
= 1 a.e. (in measure) (λ),

Positive entropy
Almost everywhere or in measure λ,

lim
n→∞ Ln(x,P1,P2)

n
=
hλ(P

1)

hλ(P2)
⇔ lim

n→∞ hλ(P
2)Ln(x,P1,P2)

hλ(P1)n
= 1

Beyond positive entropy

lim
n→∞ f2(Ln(x,P1,P2))

f1(n)
= 1 a.e. (in measure) (λ)

Weight for positive entropy

f(n) = hλ(P)n
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Weight functions and log-balanced sequences of partitions

I λ is a Borel probability measure on [0, 1].

I P = {Pn}n∈N is a sequence of partitions.

Definition
P is log-balanced a.e. (resp. in measure) with respect to λ if
λ(endpoints) = 0 and there is some function f : N→ R such that
f(n)→ +∞ as n→∞ and

lim
n→∞ − log λ(In(x))

f(n)
= 1 a.e. (resp. in measure) (λ).

If so, f is called a weight function of P a.e. (resp. in measure) with
respect to λ.
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Simple facts

What does a log-balanced sequence of partitions look like?
If P is a log-balanced sequence of partitions with respect to λ:

I λ has no atoms: λ({x}) = 0,

I the norms of the partitions tend to zero:

sup{λ(I) : I ∈ Pn}→ 0 as n→∞.

A realization result
Given any f : N 7→ R, f(n)→∞ as n→∞, there exists a sequence of
partitions that has f as an a.e. weight function with respect to the
Lebesgue measure.
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Our main theorem: beyond positive entropy

I P1 and P2 are sequences of partitions.

I λ is a Borel probability measure on [0, 1].

The following limit holds

lim
n→∞ f2(Ln(x,P1,P2))

f1(n)
= 1

almost everywhere with respect to λ, if

I f1 and f2 are the corresponding weight functions a.e. (λ),

I limn→∞ f1(n)/ lnn = +∞;

I f2 is nondecreasing;

I n
√

|f2(n)|→ 1 as n→∞.

In measure λ, if

I f1 and f2 are the corresponding weight functions in measure (λ),

I f2 is nondecreasing;

I n
√

|f2(n)|→ 1 as n→∞;

I P2 is self-refining.
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Ideas of the proof

For a log-balanced sequence of partitions with weight function f,

λ(In(x)) ≈ e−f(n)

Roughly,

Ln(x,P1,P2) = m means λ(I1n(x)) ≈ λ(I2m(x))

Then,
e−f1(n) ≈ λ(I1n(x)) ≈ λ(I2m(x)) ≈ e−f2(m).

So,
Ln(x,P1,P2) = m ≈ f−1

2 (f1(n))

Finally,
f2(Ln(x,P1,P2))

f1(n)
≈ 1
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Ideas of the proof

An interval is ε-good for P and its weight function f, if

e−(1+ε)f(n) < λ(In(x)) < e
−(1−ε)f(n).

Deal with the set

Dn,ε := {x : I1n(x) and I2m(n)(x) are both ε− good}

with mn(x) = “f−1
2 ”((1 − η)f1(n)) << “f−1

2 ”(f1(n)).

I Almost everywhere:
Borel-Cantelli + limn→∞ f1(n)/ lnn = +∞ implies

λ({x : x ∈ Dn,ε i.o. }) = 0.

I In measure:
It suffices that f1(n)→∞ to ensure that λ(Dn,ε)→ 0.

For f2 : N→ R, define f
[−1]
2 (y) = min{n ∈ N : f2(n) > y}

n
√
f2(n)→ 1 =⇒ f2(f

[−1]
2 (y))→ 1 as y→∞.
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Motivation and applications: Sturmian words

Characteristic Sturmian words
Let x ∈ (0, 1) \Q. Consider the sequence of fractional parts of the
multiples nx of x with n > 1:

n 7→ {nx}.

Consider the intervals

J0 = [0, 1 − x) and J1 = (1 − x, 1].

Define the word ω as follows

ω[n] =

{
0, if {nx} ∈ J0,

1, if {nx} ∈ J1.

The letters of ω are the characteristic Sturmian digits.

Each irrational x produces an infinite word of 0’s and 1’s.
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From binary to characteristic Sturmian words

I Given n binary digits b1,b2, . . . ,bn of x ∈ [0, 1],

x = (0.b1b2 . . .)2 ∈ [0, 1] .

I Estimate the number Ln(x) of characteristic Sturmian-digits
deduced without error.

The partition associated with characteristic Sturmian words
is the Farey partition.
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Farey

The Farey partition Fn

F0 := [0/1, 1/1]

Fn is built from Fn−1

each interval [a/c,b/d] is split by its mediant (a+ b)/(c+ d)
if and only if c+ d 6 n+ 1

F0 : 0/1 1/1

F1 : 0 11/2

F2 : 00 01 10 111/3 2/3

F3 : 000 001 010 101 110 1111/4 3/4

F4 : 1/5 2/5 3/5 4/5

Each interval gathers the irrational numbers whose characteristic
Sturmian words begin with the blue prefix.
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Farey partition

Weight for Farey
The Farey partition is a. e. log-balanced for the Leb. measure,

Weight function: fF(n) = 2 lnn, n > 2.

Idea of the proof
Fix x ∈ (0, 1) \Q and n. Let m := m(x,n) and r := r(x,n) be such that

(r+1)qm+qm−1 6 n+1 < (r+2)qm+qm−1, m > 0, and 0 6 r < am+1,

where qm = qm(x) is the continuant associated with x.
The only interval of Fn that contains x measures

|IFn(x)| = (((r+ 1)qm + qm−1)qm)−1 .

Then,
1

(n+ 1)2
6
∣∣IFn(x)∣∣ 6 2(r+ 3)

(n+ 1)2
.

Take “logs”, recall Borel-Berstein to bound logam/m with m = O(lnn). 22 / 34



From binary to Farey (or Sturm)

λ = Lebesgue measure.

I The sequence B of binary intervals is log-balanced a.e.

Weight: fB(n) = (ln 2)n.

I The Farey sequence of partitions, F, is log-balanced a.e.

Weight: fF(n) = 2 lnn.

I Our result implies

lim
n→∞ 2 ln(Ln(x,B,F))

(ln 2)n
= 1 a.e.

I Informally: ln(Ln(x,B,F)) ∼ (ln(2)/2)n, we can say

n binary digits provide about (
√

2)n Farey digits.
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Farey and Stern-Brocot sequences of partitions

Farey partition Fn

F0 := [0/1, 1/1]

Fn arises from Fn−1 by

dividing each interval [a/c,b/d] by
its mediant (a+ b)/(c+ d)

only if c+ d 6 n+ 1

Stern-Brocot partitions SBn

SB0 := [0/1, 1/1]

SBn arises from SBn−1 by

dividing each interval [a/c,b/d] by
its mediant (a+ b)/(c+ d)

(always)

SB0 : 0/1 1/1

SB1 : 1/2

SB2 : 1/3 2/3

SB3 : 1/4 2/5 3/43/5

SB4 : 1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5
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Stern-Brocot partition

Weight function for Stern-Brocot
With respect to the Lebesgue measure, the Stern-Brocot sequence of
partitions, SB,

I has zero entropy,

I is log-balanced in measure with weight fSB(n) =
π2

6

n

logn
, n > 2,

I is not log-balanced a.e.

Idea of the proof
Fix x = [a1,a2, . . . ] and n ∈ N. Then,∣∣InSB(x)

∣∣ = (((r+ 1)qm + qm−1)qm)−1

where
∑m
i=1 ai 6 n <

∑m+1
i=1 ai and r = n−

∑m
i=1 ai.

Classical: logqm/m ∼ π2/(12 ln 2)) (as m→∞) a.e.,
and
n ≈
∑m
i=1 ai ≈ m logm/(ln 2) in measure but not a.e.
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The family 3D(α)

The three distance partition
Fix an irrational α ∈ (0, 1).

Consider the sequence of fractionals parts of the multiples of kα:

k 7→ {kα}.

The intervals of 3Dα(n) have the points {kα}16k6n as endpoints.

3D0(α)
0 1

3D1(α)
α

3D2(α)
{2α}

3D3(α)
{3α}

3D4(α)
{4α}
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The family 3D(α)

Three-distance sequence of partitions
The sequence of partitions 3D(α) is

I log-balanced a.e. with respect to the Leb. measure with weight
function

fSB(n) = lnn

for α in a set of measure 1.

I There exists an uncountable set of α’s so that the sequence of
partitions 3D(α) are not log-balanced even in measure.

The proof is based on the three-distance theorem.
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Conclusions

I We introduce the notions of log-balanced sequence of partitions and
weight function.

I There are natural zero entropy instances with weight function
I a.e.
I in measure but not a.e.
I not log-balanced at all.

I For any function f(n) that goes to infinite with n, there exists a
sequence of partitions that realizes f as weight function.

I Our main results are Lochs-type theorems for log-balanced sequences
of partitions beyond positive entropy: zero and infinite entropy.

I Our results holds for a large class of sequences of partitions (even
not self-refining).

I However, our results do not hold when the weight of the “source”
sequence of partitions grows very slowly or when the weight of the
“target” sequence of partitions grows exponentially fast.
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Open questions/further work

I Are there any other “natural” sequences of partitions of zero or
infinite entropy?
Some candidates: instances of Variable Length Markov Chains
sources, fibred maps with indifferent fixed points.

I Is it possible to relax our assumptions on the growth of the weight
function?
Work in progress by Brigitte Vallée for the self-refining case.

I In our work, we prove a Lochs-type theorem in distribution from
continued fractions to Farey.
Is it possible to obtain such results in distribution for others
sequences of partitions?

I Is the notion of weight function relevant in other contexts beyond
the Lochs’ index?
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