Matching of orbits of certain $N\mbox{-expansions}$ with a finite set of digits

Yufei Chen TU Delft &East China Normal University

Joint work with Cor Kraaikamp (TU Delft)

TU Delft, DIAM (2022)

Matching of orbits of certain N-expansions with a fini

< 日 > < 同 > < 三 > < 三 > 、

э

The regular continued fraction

It is well known that every real number x can be written as a finite (in case $x \in \mathbb{Q}$) or infinite (regular) continued fraction of the form:

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n + \cdots}}} = [a_0; a_1, a_2, \dots, a_n, \dots],$$
(1)

where $a_0 \in$ such that $x - a_0 \in [0, 1)$, and $a_n \in$ for $n \ge 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

N-expansions

In 2008, Ed Burger and his co-authors introduced new continued fraction expansions, which are a nice variation on the RCF-expansion from (1).

Let $N \in \mathbb{N}_{\geq 2}$ be a fixed positive integer, and define the map $T_N : [0,1) \to [0,1)$ by:

$$T_N(x) = \frac{N}{x} - \left\lfloor \frac{N}{x} \right\rfloor, \ x \neq 0; \quad T_N(0) = 0.$$

Setting $d_1 = d_1(x) = \lfloor N/x \rfloor$, and $d_n = d_n(x) = d_1(T_N^{n-1}(x))$, whenever $T_N^{n-1}(x) \neq 0$, we find:

Taking finite truncations yield the convergents, which converge to x.

A number of properties resembling those of the RCF-expansion, although in some cases there is (or seems to be) an unexpected variation to the standard case $-\infty_{QQ}$

N-expansions

Figure: The map T_N for N = 2.

In his MSc-thesis from 2015, Niels Langeveld considered N-expansions on an interval **not** containing 0.

To be more precise: let $N \in_{\geq 2}$ and $\alpha \in$ such that $0 < \alpha \leq \sqrt{N} - 1$, then we define $I_{\alpha} := [\alpha, \alpha + 1]$ and $I_{\alpha}^{-} := [\alpha, \alpha + 1)$ and investigate the continued fraction map $T_{\alpha} : I_{\alpha} \to I_{\alpha}^{-}$, defined as:

$$T_{\alpha}(x) := \frac{N}{x} - d(x),$$

where $d(x) := \left\lfloor \frac{N}{x} - \alpha \right\rfloor$.

Note that due to the fact that $\alpha > 0$ there are only finitely many values of partial quotients d possible. Furthermore, *all* expansions are infinite.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

As an example, $N=2,~\alpha=\alpha_{\max}=\sqrt{2}-1$:

イロト イヨト イヨト イヨト

э.

This new N-expansion (with a finite digit set) could be viewed as a small and insignificant variation of the N-expansions with infinitely many digits ... but actually the situation is suddenly dramatically different and more difficult!

Suddenly, for certain values of N and α "gaps" in the interval I_{α} appear. As an example, take N = 51, $\alpha = 6$. In this case there are only 2 digits (viz. 1 and 2), and setting for $n \ge 0$: $r_n = T_{\alpha}^n(\alpha + 1)$, $\ell_n = T_{\alpha}^n(\alpha)$, and in general for a digit i:

$$f_i = f_i(N) = \frac{\sqrt{4N + i^2} - i}{2},$$

as the fixed point of T_{α} with digit *i*, then we immediately see two gaps popping up:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

A maximal open interval $(a,b) \subset I_{\alpha}$ is called a *gap* of I_{α} if for almost every $x \in I_{\alpha}$ there is an $n_0 \in \mathbb{N}$ for which $T_{\alpha}^n(x) \notin (a,b)$ for all $n \geq n_0$.

イロト 不得 トイヨト イヨト

3

Some ergodic properties

Since $\inf |T'_{\alpha}| > 1$, applying Theorem 1 from the classical 1973 paper by Lasota and Yorke immediately yields the following assertion:

Lemma

If μ is an absolutely continuous invariant probability measure for T_{α} , then there exists a function h of bounded variation such that

$$\mu(A) = \int_A h \, d\lambda, \ \lambda - \text{a.e.}, \ \text{with} \ \lambda \ \text{the Lebesgue measure}$$

i.e. any absolutely continuous invariant probability measure has a version of its density function of bounded variation.

One have the following result:

Theorem

Let $N \in \geq_2$. Then there is a unique absolutely continuous invariant probability measure μ_{α} such that T_{α} is ergodic with respect to μ_{α} .

TU Delft, DIAM (2022)

Motivation

Consider $N \in \mathbb{N}_{\geq 2}$ and $\alpha \in$ such that $0 < \alpha \leq \sqrt{N} - 1$, define $I_{\alpha} := [\alpha, \alpha + 1]$ and $I_{\alpha}^{-} := [\alpha, \alpha + 1)$ and the continued fraction map $T_{\alpha} : I_{\alpha} \to I_{\alpha}^{-}$, defined as:

$$T_{\alpha}(x) := \frac{N}{x} - d(x),$$

where $d: I_{\alpha} \to \text{ is defined by } d(x) := \lfloor \frac{N}{x} - \alpha \rfloor$.

In 2017, by investigating the above continued fraction map $T_{\alpha}: I_{\alpha} \to I_{\alpha}^{-}$, Cor and Niels found that there exists a plateau in entropy simulation graph in case N = 2, (in fact, with $\alpha \in (\frac{\sqrt{33}-5}{2}, \sqrt{2}-1)$), and also gives many important results for it.

・ロ・・一部・・ヨ・・ヨ・ ヨ・ うへぐ

Matching

Definition

We say matching holds for α if there are $K, M \in \mathbb{N}_{\geq 2}$ such that $T_{N,\alpha}^K(\alpha) = T_{N,\alpha}^M(\alpha+1)$. The numbers K, M are called the matching exponents, KM is called the matching index and an interval (c, d) such that for all $\alpha(c, d)$ we have the same matching exponents is called a matching interval.

Cor and Niels get

Theorem

Let
$$N = 2$$
 and $\alpha \in \left(\frac{\sqrt{33}-5}{2}, \sqrt{2}-1\right)$, then $T^3(\alpha) = T^3(\alpha+1)$.

イロト 不得 トイヨト イヨト

3

Natural extensions

A way to find the invariant density of the absolutely continuous invariant measure of $T(\alpha),$ is:

1. Constructing a natural extension domain such that $\mathcal{T}(x,y)$ is almost bijective and minimal from a measure theoretic point of view,

2. Simply projecting this map onto the first coordinate.

Here they use the 'standard' natural extension map $\mathcal{T}(x,y) = \left(T(x), \frac{N}{d_1(x)+y}\right)$, where N = 2.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Natural extensions

A way to find the invariant density of the absolutely continuous invariant measure of $T(\alpha),$ is:

1. Constructing a natural extension domain such that $\mathcal{T}(x,y)$ is almost bijective and minimal from a measure theoretic point of view,

2. Simply projecting this map onto the first coordinate.

Here they use the 'standard' natural extension map $\mathcal{T}(x,y) = \left(T(x), \frac{N}{d_1(x)+y}\right)$, where N = 2.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Cor and Niels guessed the shape of the domain of natural extension from simulation.

< ロ > < 同 > < 回 > < 回 >

э

By projecting $\mathcal{T}(x,y)$ onto the first coordinate, Cor and Niels obtained the following result:

Theorem

For N = 2 and $\alpha \in \left(\frac{\sqrt{33}-5}{2}, \sqrt{2}-1\right)$, the natural extension can be build (see the Figure on the above page). Moreover the invariant density is given by:

$$f(x) = H\left(\frac{D}{2+Dx}\mathbf{1}_{(\alpha,T(\alpha+1))} + \frac{E}{2+Ex}\mathbf{1}_{(T(\alpha+1),T^{2}(\alpha))} + \frac{F}{2+Fx}\mathbf{1}_{(T^{2}(\alpha),\alpha+1)} - \frac{A}{2+Ax}\mathbf{1}_{(\alpha,T^{2}(\alpha+1))} - \frac{B}{2+Bx}\mathbf{1}_{(T^{2}(\alpha+1),T(\alpha))} - \frac{C}{2+Cx}\mathbf{1}_{(T(\alpha),\alpha+1)}\right),$$

with $A = \frac{\sqrt{33}-5}{2}, B = \sqrt{2}-1, C = \frac{\sqrt{33}-3}{6}, D = 2\sqrt{2}-2, E = \frac{\sqrt{33}-3}{2}, F = \sqrt{2}$ and $H^{-1} = \log\left(\frac{1}{32}(3+2\sqrt{2})(7+\sqrt{33})(\sqrt{33}-5)^2\right) \approx 0.25$ the normalizing constant.

Cor and Niels provide a more elegant proof to show that the entropy is constant based on the so-called quilting (Figure in next page) of natural extensions.

Theorem

Let $(\mathcal{T}_{\alpha}, \Omega_{\alpha}, \mathcal{B}_{\alpha}, \mu)$ and $(\mathcal{T}_{\beta}, \Omega_{\beta}, \mathcal{B}_{\beta}, \mu)$ be two dynamical systems as in our setting. Furthermore let $D_1 = \Omega_{\alpha} \setminus \Omega_{\beta}$ and $A_1 = \Omega_{\beta} \setminus \Omega_{\alpha}$. If there is a $k \in \mathbb{N}$ such that $\mathcal{T}_{\alpha}^k(D_1) = \mathcal{T}_{\beta}^k(A_1)$ then the dynamical systems are isomorphic.

Since isomorphic systems have the same entropy, by using Rohlin's formula to calculate the entropy for $\alpha = \sqrt{2} - 1$, it will give the following corollary.

Corollary

For N = 2, the entropy function is constant on $\left(\frac{\sqrt{33}-5}{2}, \sqrt{2}-1\right)$ and the value is approximately 1.14.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The following questions about entropy arise:

i. For every integer $N \ge 2$ such plateaux exist, is there an interval in $(0, \sqrt{N} - 1)$ for which the entropy function is constant?

ii. For every integer $N\geq 2$ for which $\alpha\in (0,\sqrt{N}-1)$ do we have matching?

In this paper we proved, that for every integer $N\geq 2$ such matching and plateaux exist, and give them explicitly.

i. The number of such plateaux will be a function of N.

ii. The matching

$$T^3_{\alpha}(\alpha) = T^3_{\alpha}(\alpha+1),$$

always exists in $\alpha \in (0, \sqrt{N} - 1)$.

2

<ロ> (日) (日) (日) (日) (日)

Figure: Number of plataux for N = 2, ..., 200 (left) and N = 2, ..., 10.000 (right)

Map: Let $T_{\alpha}: [\alpha, \alpha + 1] \rightarrow [\alpha, \alpha + 1)$ be the Gauss map defined as defined as:

$$T_{\alpha}(x) := \frac{N}{x} - d(x),$$

where $d: I_{\alpha} \to \text{is defined by } d(x) := \lfloor \frac{N}{x} - \alpha \rfloor.$

Digit set: Here the (finite) set of partial quotients (i.e. digits) for T_{α} is denoted by $\{d, d+1, \dots, d+i\}$

Partition: $\mathcal{P} = \bigcup I_k$ of $[\alpha, \alpha + 1]$, where $I_k = \{x \mid d_1(x) = k\}$, $k = d, \cdots, .$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma

Let $N \in \mathbb{N}$, $N \ge 2$, and $0 < \alpha \le \sqrt{N} - 1$, we have that $d \in \{1, 2, \dots, N - 1\}$ and $\lim_{\alpha \downarrow 0} d = N - 1$.

Proof: From $\alpha < N/(\alpha + 1) - d$, it follows that $\alpha^2 + (d + 1)\alpha + d - N < 0$. Since $\alpha, d > 0$ it follows that d < N. Furthermore, if α tends to 0 it follows that d tends to N - 1. Note that if $\alpha = 0$, we have that d = N.

The following result gives bounds on the number i + 1 of possible digits.

Lemma

For all
$$N \in N \ge 2$$
, and $0 < \alpha \le \sqrt{N} - 1$, $d \ge 1$, one has $\frac{d}{\alpha} \le i < \frac{d+1}{\alpha} + 2$, where $i + 1$ is the number of possible digits. Furthermore, $\lim_{\alpha \downarrow 0} i = +\infty$.

Now define $\mathcal{A}_{N,d,i}$ be the set of all $\alpha \in (0, \sqrt{N} - 1]$ with digit set $\{d, d+1, \ldots, d+i\}$. Furthermore, we define the sets $X_{N,d,i}$ and $X_{N,d,i,k}$ as follows, for $k = d, \ldots, d+i-1$:

$$X_{N,d,i} = \left\{ \alpha \in \mathcal{A}_{N,d,i} \middle| T_{\alpha}(\alpha) \in I_d^o, T_{\alpha}(\alpha+1) \in I_{d+i}^o \right\};$$
(3)

$$X_{N,d,i,k} = \{ \alpha \in X_{N,d,i} \mid T_{\alpha}^{2}(\alpha) \in I_{k}, T_{\alpha}^{2}(\alpha+1) \in I_{k+1} \}.$$
(4)

where

$$X_{N,d,i} = \left\{ \frac{N}{d+1+\alpha} < \frac{N}{\alpha} - (d+i) < \alpha+1, \ \alpha < \frac{N}{\alpha+1} - d < \frac{N}{d+i+\alpha} \right\}.$$

Actually, it means that we let the first second digit of α and $\alpha + 1$ are, respectively, $\alpha : d + i, d$, and $\alpha + 1 : d, d + i$

ヘロト 人間 ト 人造 ト 人造 ト 二 油 …

We obtained the following result (Matching):

Theorem

Let $N \geq 2$ be an integer, and let $d, i \in i \geq 2$, be such, that $N = \frac{d(d+i)}{i-1}$. Then for any $\alpha \in X_{N,d,i}$, one has that $T^2_{\alpha}(\alpha) \in I_k$ and $T^2_{\alpha}(\alpha+1) \in I_{k+1}$ for some $k \in \{d, \ldots, d+i-1\}$. Moreover, $T^3_{\alpha}(\alpha) = T^3_{\alpha}(\alpha+1)$.

イロト 不得 トイヨト イヨト

$$\begin{array}{l} Proof: \mbox{By definition of } X_{N,d,i} \mbox{ and } T_{\alpha}, \mbox{ one has for } \alpha \in X_{N,d,i} \mbox{ that} \\ T^2_{\alpha}(\alpha) = \frac{N}{\frac{N}{\alpha} - (d+i)} - d, \mbox{ and that } T^2_{\alpha}(\alpha+1) = \frac{N}{\frac{N}{\alpha+1} - d} - (d+i). \mbox{ Then,} \\ \\ \frac{N}{T^2_{\alpha}(\alpha)} &= \frac{N}{\frac{N}{\frac{N}{\alpha} - (d+i)} - d} = -\frac{N(N - (d+i)\alpha)}{Nd - (d^2 + di + N)\alpha}, \\ \\ \frac{N}{T^2_{\alpha}(\alpha+1)} &= \frac{N}{\frac{N}{\frac{N}{\alpha+1} - d} - (d+i)} = -\frac{N(N - d(\alpha+1))}{(d+i - \alpha - 1)N - d(d+i)(\alpha+1))}, \end{array}$$

Then one easily finds that:

イロト イヨト イヨト イヨト

э.

$$\frac{N}{T^{2}(\alpha)} - \left(\frac{N}{T^{2}(\alpha+1)} - 1\right) = \left(d^{2} + di - N(i-1)\right) \cdot R_{N,d,i,\alpha},$$

where $R_{N,d,i,\alpha}$ satisfies:

$$R_{N,d,i,\alpha} = \frac{\left((\alpha^2 + \alpha)d^2 + ((-2\alpha - 1)N + di\alpha(\alpha + 1)) + (N - \alpha(i - \alpha - 1))N \right)}{(-d^2\alpha + (-i\alpha + N)d - N\alpha)((-\alpha - 1)d^2 + (-i\alpha + N - i)d + N(i - \alpha - 1))}.$$

Note that if $d^2 + di - N(i-1) = 0$, so if $N = \frac{d(d+i)}{i-1}$, we have that:

$$\frac{N}{T_{\alpha}^{2}(\alpha)} = \frac{N}{T_{\alpha}^{2}(\alpha+1)} - 1.$$

・ロト ・日 ・ モー・ モー・ ちょうくの

Since the length of the interval $[\alpha, \alpha + 1)$ is 1, we see that for $N = \frac{d(d+i)}{i-1}$ we have matching in 3 steps: $T^3_{\alpha}(\alpha) = T^3_{\alpha}(\alpha + 1)$. Furthermore, $T^2_{\alpha}(\alpha) \in I_k$ and $T^2_{\alpha}(\alpha + 1) \in I_{k+1}$ for some $k \in \{d, \ldots, d+i-1\}$. Theorem is proved.

Note that an immediate consequence of the proof of Theorem is that for $N=\frac{d(d+i)}{i-1}$,

$$X_{N,d,i} = \bigcup_{k=d}^{d+i-1} X_{N,d,i,k}.$$

By simulation (Figure on the following page) to extension map $\mathcal{T}(x,y) = \left(T(x), \frac{N}{d_1(x)+y}\right)$, we can also figure the shape of the domain of natural extension.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

*) Q (4

э.

・ロト ・四ト ・ヨト ・ヨト

Then, we proved and obtained:

Theorem

Let $N \geq 2$ be an integer, and let $d \geq 1$ and $i \geq 2$ be integers, such that $N = \frac{d(d+i)}{i-1}$. Let $\alpha \in X_{N,d,i}$ arbitrary, we get the natural extension graph for the planar domain Ω_{α} , which is a polygon bounded by the straight line segments between the vertices (in clockwise order) (α, A) , $(T_{\alpha}^2(\alpha + 1), A)$, $(T_{\alpha}^2(\alpha + 1), B)$, $(T_{\alpha}(\alpha), B)$, $(T_{\alpha}(\alpha), C)$, $(\alpha + 1, C)$, $(\alpha + 1, F)$, $(T_{\alpha}^2(\alpha), F)$, $(T_{\alpha}^2(\alpha), E)$, $(T_{\alpha}(\alpha + 1), E)$, $(T_{\alpha}(\alpha + 1), D)$, (α, D) , and finally 'back' to (α, A) , where Ω_{α} is illustrated for various α), where 0 < A < B < C < D < E < F.

Theorem

$$\begin{split} X_{N,d,i} &= (A,B), \text{ where} \\ X_{N,d,i} &= \left\{ \frac{N}{d+1+\alpha} < \frac{N}{\alpha} - (d+i) < \alpha+1, \ \alpha < \frac{N}{\alpha+1} - d < \frac{N}{d+i+\alpha} \right\}. \end{split}$$

 Ω_{α} and $T(\Omega_{\alpha})$ with (a): $\alpha \in X_{N,d,i,1}$; (b): $\alpha \in X_{N,d,i,2}$; (c): $\alpha \in X_{N,d,i,3}$, for N = 2, d = 1, i = 3.

(日) (四) (日) (日) (日)

 Ω_{α} and $T(\Omega_{\alpha})$ with (a): $\alpha \in X_{N,d,i,1}$;(b): $\alpha \in X_{N,d,i,2}$; (c): $\alpha \in X_{N,d,i,3}$, for N = 2, d = 1, i = 3.

(日) (四) (日) (日) (日)

 Ω_{α} and $T(\Omega_{\alpha})$ with (a): $\alpha \in X_{N,d,i,1}$;(b): $\alpha \in X_{N,d,i,2}$; (c): $\alpha \in X_{N,d,i,3}$, for N = 2, d = 1, i = 3.

 Ω_{α} and $\mathcal{T}_{\alpha}(\Omega_{\alpha})$ with (a): $\alpha \in X_{N,d,i,1}$, d = 1, i = 3; (b): $\alpha \in X_{N,d,i,1}$, d = 2, i = 7 for N = 3.

d = 2, i = 7 for N = 3.

By projecting $\mathcal{T}(x,y)$ onto the first coordinate, we obtained the following result:

Theorem

Let $N \geq 2$ be an integer, and let $d \geq 1$ and $i \geq 2$ be integers, such that $N = \frac{d(d+i)}{i-1}$. Let $\alpha \in \overline{X}_{N,d,i}$ arbitrary, the density $f_{\alpha}(x)$ of the T_{α} -invariant measure μ_{α} is given by

$$f_{\alpha}(x) = H\left(\frac{D}{N+Dx}\mathbf{1}_{(\alpha,T(\alpha)+1)}(x) + \frac{E}{N+Ex}\mathbf{1}_{(T(\alpha)+1),T^{2}(\alpha)}(x) + \frac{F}{N+Fx}\mathbf{1}_{(T^{2}(\alpha),\alpha+1)}(x) - \frac{A}{N+Ax}\mathbf{1}_{(\alpha,T^{2}(\alpha)+1)}(x) - \frac{B}{N+Bx}\mathbf{1}_{(T^{2}(\alpha)+1),T(\alpha))}(x) - \frac{C}{N+Cx}\mathbf{1}_{(T(\alpha),\alpha+1)}(x)\right)$$

where

$$H^{-1} = 2\log A + 2\log(B+1) - \log(N - (A+1)d) - \log(N - (d+i)B),$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem

Let $N \geq 2$ be an integer, and let $d \geq 1$ and $i \geq 2$ be integers, such that $N = \frac{d(d+i)}{i-1}$. Let $\alpha, \beta \in [A, B] = \overline{X}_{N,d,i}$, $\alpha < \beta$ arbitrary. Then the dynamical systems $(\Omega_{\alpha}, \overline{\mathcal{B}}_{\alpha}, \overline{\mu}_{\alpha}, \mathcal{T}_{\alpha})$ and $(\Omega_{\beta}, \overline{\mathcal{B}}_{\beta}, \overline{\mu}_{\beta}, \mathcal{T}_{\beta})$ are metrically isomorphic.

イロト 不得 トイヨト イヨト 二日

2

Figure: Ω_B (left) and Ω_A (right).

< ロ > < 同 > < 回 > < 回 >

э

By using Rohlin's formula to calculate the entropy for $\alpha=B,$ we get the entropy is constant.

Theorem

Let $N \ge 2$ be an integer, and let $d, i \in i \ge 2$, be such, that $N = \frac{d(d+i)}{i-1}$. Then for any $\alpha \in [A, B] = \overline{X}_{N,d,i}$, one has that the entropy function $h(T_{\alpha})$ is constant on $[A, B] = \overline{X}_{N,d,i}$, and is given by:

$$h(T_{\alpha}) = \log N - 2H\left(\left(\operatorname{Li}_{2}\left(-\frac{Ex}{N}\right) + (\log x)\log\left(\frac{Ex}{N} + 1\right)\right)\Big|_{B}^{B+1} - \left(\operatorname{Li}_{2}\left(-\frac{Ax}{N}\right) + (\log x)\log\left(\frac{Ax}{N} + 1\right)\right)\Big|_{D}^{D} - \left(\operatorname{Li}_{2}\left(-\frac{Cx}{N}\right) + (\log x)\log\left(\frac{Cx}{N} + 1\right)\right)\Big|_{D}^{B+1}\right),$$

where

 $H^{-1} = 2\log A + \log(A+1) + \log(B+1) - \log(N - (A+1)d) - \log(N - (d+i)B)$ is the normalising constant for the T_{α} -invariant measure μ_{α} for $\alpha \in X_{N,d,i}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In case N = 2, our method yields only one plateau with equal entropy which follows from our method. This is the interval $[A, B] = [\frac{\sqrt{33}-5}{2}, \sqrt{2}-1] = [0.3722813\cdots, 0.4142136\cdots]$, which was already found by Cor and Niels, where it was also determined that for $\alpha \in [A, B]$ we have that $h(T_{\alpha}) = 1.137779584292255\cdots$ and $H = 3.965116120651161\cdots$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

2

<ロ> (日) (日) (日) (日) (日)

Example

In case N=8 it follows from our method that there are five plateaux of equal entropy; see Table 1.

(d, i)	Plateau intervals	Approximation of interval	H_{α}	$h(T_{\alpha})$
(2, 2)	$\left[\frac{\sqrt{57}-5}{2}, \frac{\sqrt{33}-3}{2}\right]$	[1.2749,1.3723]	18.377877038370	0.9212748062044
(4, 6)	$\left[\frac{3\sqrt{17}\!-\!11}{2},\frac{\sqrt{41}\!-\!5}{2}\right]$	[0.6847,0.7016]	11.239480662654	1.8212263472923
(5, 11)	$\left[\frac{3\sqrt{97}\!-\!29}{2},\frac{\sqrt{57}\!-\!7}{2}\right]$	[0.2733,0.2749]	9.9626774452815	2.7933207303296
(6, 22)	$\left[\frac{\sqrt{321}\!-\!17}{2},\frac{2\sqrt{3}\!-\!3}{2}\right]$	[0.4582,0.4641]	9.2212359716540	2.2547418855378
(7, 57)	$\left[\frac{3\sqrt{473}{-}65}{2},\frac{\sqrt{17}{-}4}{2}\right]$	[0.1228,0.1231]	8.7715446381451	3.3495778601659

Table: The pairs of integers $d \ge 1, i \ge 2$, the related plateau intervals [A, B] and constant entropy $h(T_{\alpha})$ for $\alpha \in [A, B]$. Here N = 8.

2

ヘロト ヘロト ヘヨト ヘヨト

Thank you for your attention!

TU Delft, DIAM (2022)

Matching of orbits of certain N-expansions with a fini

イロト イヨト イヨト イヨト

э.

- Anselm, M., Weintraub, S. H.: A Generalization of continued fractions, J. Number Theory 131 (12) (2011), 2442 – 2460.
- Burger, E. B., Gell-Redman, J., Kravitz, R., Walton, D., Yates, N.: Shrinking the period lengths of continued fractions while still capturing convergents, J. Number Theory 128 (1) (2008), 144 –153.
- [3] Calta, K., Kraaikamp, C., Schmidt, T.A.: Proofs of ergodicity of piecewise Möbius interval maps using planar extensions, arXiv (2022).
- [4] Carminati, C., Tiozzo, G.: Tuning and plateaux for the entropy of α-continued fractions, Nonlinearity 26 (2013), no. 4, 1049—1070.
- [5] Dajani, K., Kalle, C.: A First Course in Ergodic Theory, (1st ed.), Chapman and Hall/CRC (2021).
- [6] Dajani, K., Kraaikamp, C.: The mother of all continued fractions, Colloq. Math. 84/85 (2000), part 1, 109–123.
- [7] Dajani, K., Kraaikamp, C., Van der Wekken, N.: Ergodicity of N-continued fraction expansions, J. Number Theory 133 (9) (2013), 3183 – 3204.

[8] Hardy, G. H., Wright, E.M.: An Introduction to the Theory of Numbers, Revised by D.R. Heath-Brown and J.H. Silverman. Foreword by Andrew Wiles. (6th ed.). Oxford: Oxford University Press. (2008) [1938]. 2 30 9