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The regular continued fraction

It is well known that every real number x can be written as a finite (in case x ∈ Q)
or infinite (regular) continued fraction of the form:

x = a0 +
1

a1 +
1

a2 +
. . . +

1

an +
. . .

= [a0; a1, a2, . . . , an, . . . ], (1)

where a0 ∈ such that x− a0 ∈ [0, 1), and an ∈ for n ≥ 1.
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N -expansions
In 2008, Ed Burger and his co-authors introduced new continued fraction
expansions, which are a nice variation on the RCF-expansion from (1).

Let N ∈ N≥2 be a fixed positive integer, and define the map TN : [0, 1) → [0, 1)
by:

TN (x) =
N

x
−
⌊
N

x

⌋
, x ̸= 0; TN (0) = 0.

Setting d1 = d1(x) = ⌊N/x⌋, and dn = dn(x) = d1
(
Tn−1
N (x)

)
, whenever

Tn−1
N (x) ̸= 0, we find:

x =
N

d1 +
N

d2 +
. . . +

N

dn + Tn
N (x)

. (2)

Taking finite truncations yield the convergents, which converge to x.

A number of properties resembling those of the RCF-expansion, although in some
cases there is (or seems to be) an unexpected variation to the standard case.
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N -expansions

0 1

1

· · ·

2
3

2
4

2
5

2
6

2
7

........................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................

................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................

Figure: The map TN for N = 2.
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N -expansions with a finite digit set

In his MSc-thesis from 2015, Niels Langeveld considered N -expansions on an
interval not containing 0.

To be more precise: let N ∈≥2 and α ∈ such that 0 < α ≤
√
N − 1, then we

define Iα := [α, α+ 1] and I−α := [α, α+ 1) and investigate the continued fraction
map Tα : Iα → I−α , defined as:

Tα(x) :=
N

x
− d(x),

where d(x) :=
⌊
N
x − α

⌋
.

Note that due to the fact that α > 0 there are only finitely many values of partial
quotients d possible. Furthermore, all expansions are infinite.
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As an example, N = 2, α = αmax =
√
2− 1:

√
2 − 1

√
2

√
2

2(
√

2 − 1)2 −
√

2

..................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................
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N -expansions with a finite digit set

This new N -expansion (with a finite digit set) could be viewed as a small and
insignificant variation of the N -expansions with infinitely many digits . . . but
actually the situation is suddenly dramatically different and more difficult!

Suddenly, for certain values of N and α “gaps” in the interval Iα appear. As an
example, take N = 51, α = 6. In this case there are only 2 digits (viz. 1 and 2),
and setting for n ≥ 0: rn = Tn

α (α+ 1), ℓn = Tn
α (α), and in general for a digit i:

fi = fi(N) =

√
4N + i2 − i

2
,

as the fixed point of Tα with digit i, then we immediately see two gaps popping up:
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N -expansions with a finite digit set

∆1∆2

α α+ 1p2 f1f2r2 r1 ℓ1 ℓ2

Figure: N = 51, α = 6

Definition

A maximal open interval (a, b) ⊂ Iα is called a gap of Iα if for almost every x ∈ Iα
there is an n0 ∈ N for which Tn

α (x) /∈ (a, b) for all n ≥ n0.
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Figure: Orbit simulation for N = 9, α = 1.99
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Some ergodic properties
Since inf |T ′

α| > 1, applying Theorem 1 from the classical 1973 paper by Lasota
and Yorke immediately yields the following assertion:

Lemma

If µ is an absolutely continuous invariant probability measure for Tα, then there
exists a function h of bounded variation such that

µ(A) =

∫
A

h dλ, λ− a.e., with λ the Lebesgue measure,

i.e. any absolutely continuous invariant probability measure has a version of its
density function of bounded variation.

One have the following result:

Theorem

Let N ∈≥2. Then there is a unique absolutely continuous invariant probability
measure µα such that Tα is ergodic with respect to µα.
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Motivation

Consider N ∈ N≥2 and α ∈ such that 0 < α ≤
√
N − 1, define Iα := [α, α+ 1]

and I−α := [α, α+ 1) and the continued fraction map Tα : Iα → I−α , defined as:

Tα(x) :=
N

x
− d(x),

where d : Iα → is defined by d(x) :=
⌊
N
x − α

⌋
.

In 2017, by investigating the above continued fraction map Tα : Iα → I−α , Cor and
Niels found that there exists a plateau in entropy simulation graph in case N = 2,

(in fact, with α ∈ (
√
33−5
2 ,

√
2− 1)), and also gives many important results for it.
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Matching

Definition

We say matching holds for α if there are K,M ∈ N≥2 such that
TK
N,α(α) = TM

N,α(α+ 1). The numbers K,M are called the matching exponents,
KM is called the matching index and an interval (c, d) such that for all α(c, d) we
have the same matching exponents is called a matching interval.

Cor and Niels get

Theorem

Let N = 2 and α ∈
(√

33−5
2 ,

√
2− 1

)
, then T 3(α) = T 3(α+ 1).
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Natural extensions

A way to find the invariant density of the absolutely continuous invariant measure
of T (α), is:

1. Constructing a natural extension domain such that T (x, y) is almost bijective
and minimal from a measure theoretic point of view,

2. Simply projecting this map onto the first coordinate.

Here they use the ‘standard’ natural extension map T (x, y) =
(
T (x), N

d1(x)+y

)
,

where N = 2.
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Natural extensions

A way to find the invariant density of the absolutely continuous invariant measure
of T (α), is:

1. Constructing a natural extension domain such that T (x, y) is almost bijective
and minimal from a measure theoretic point of view,
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N -expansions with a finite digit set

Cor and Niels guessed the shape of the domain of natural extension from
simulation.

...............................................................................................................................
.......................

....T

A

F

B
C

D

E

α α+ 1 α α+ 1T (α + 1)
T2(α + 1)

T (α)T2(α)
A

F

B
C

D

E

∆1∆2∆3

∆4

T (∆1)

T (∆2)
T (∆3)
T (∆4)
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N -expansions with a finite digit set

By projecting T (x, y) onto the first coordinate, Cor and Niels obtained the
following result:

Theorem

For N = 2 and α ∈
(√

33−5
2 ,

√
2− 1

)
, the natural extension can be build (see the

Figure on the above page). Moreover the invariant density is given by:

f(x) = H
( D

2 +Dx
1(α,T (α+1)) +

E

2 + Ex
1(T (α+1),T 2(α))

+
F

2 + Fx
1(T 2(α),α+1) −

A

2 +Ax
1(α,T 2(α+1))

− B

2 +Bx
1(T 2(α+1),T (α)) −

C

2 + Cx
1(T (α),α+1)

)
,

with A =
√
33−5
2 , B =

√
2−1, C =

√
33−3
6 , D = 2

√
2−2, E =

√
33−3
2 , F =

√
2 and

H−1 = log
(

1
32 (3 + 2

√
2)(7 +

√
33)(

√
33− 5)2

)
≈ 0.25 the normalizing constant.
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N -expansions with a finite digit set

Cor and Niels provide a more elegant proof to show that the entropy is constant
based on the so-called quilting (Figure in next page) of natural extensions.

Theorem

Let (Tα,Ωα,Bα, µ) and (Tβ ,Ωβ ,Bβ , µ) be two dynamical systems as in our setting.
Furthermore let D1 = Ωα\Ωβ and A1 = Ωβ\Ωα. If there is a k ∈ N such that
T k
α (D1) = T k

β (A1) then the dynamical systems are isomorphic.

Since isomorphic systems have the same entropy, by using Rohlin’s formula to calculate
the entropy for α =

√
2− 1, it will give the following corollary.

Corollary

For N = 2, the entropy function is constant on
(√

33−5
2

,
√
2− 1

)
and the value is

approximately 1.14.
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E

α

α + 1

T (α + 1)

T2(α + 1)
T (α)

T2(α)

β

β + 1
T (β + 1)

T2(β + 1) T (β)

T2(β)

TU Delft, DIAM (2022) Matching of orbits of certain N -expansions with a finite set of digits 19 / 48



Questions :

The following questions about entropy arise:

i. For every integer N ≥ 2 such plateaux exist, is there an interval in (0,
√
N − 1)

for which the entropy function is constant?

ii. For every integer N ≥ 2 for which α ∈ (0,
√
N − 1) do we have matching?
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N -expansions with a finite digit set

In this paper we proved, that for every integer N ≥ 2 such matching and plateaux
exist, and give them explicitly.

i.The number of such plateaux will be a function of N .

ii. The matching
T 3
α(α) = T 3

α(α+ 1),

always exists in α ∈ (0,
√
N − 1).
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N -expansions with a finite digit set

Figure: Number of plataux for N = 2, . . . , 200 (left) and N = 2, . . . , 10.000 (right)
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N -expansions with a finite digit set

Map: Let Tα : [α, α+ 1] → [α, α+ 1) be the Gauss map defined as defined as:

Tα(x) :=
N

x
− d(x),

where d : Iα → is defined by d(x) :=
⌊
N
x − α

⌋
.

Digit set: Here the (finite) set of partial quotients (i.e. digits) for Tα is denoted by

{d, d+ 1, . . . , d+ i}

.

Partition: P =
⋃
Ik of [α, α+ 1], where Ik = {x | d1(x) = k}, k = d, · · · ,.
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N -expansions with a finite digit set

Lemma

Let N ∈ N, N ≥ 2, and 0 < α ≤
√
N − 1, we have that d ∈ {1, 2, . . . , N − 1} and

lim
α↓0

d = N − 1.

Proof : From α < N/(α+ 1)− d, it follows that α2 + (d+ 1)α+ d−N < 0.
Since α, d > 0 it follows that d < N . Furthermore, if α tends to 0 it follows that d
tends to N − 1. Note that if α = 0, we have that d = N .

The following result gives bounds on the number i+ 1 of possible digits.

Lemma

For all N ∈, N ≥ 2, and 0 < α ≤
√
N − 1, d ≥ 1, one has d

α ≤ i < d+1
α + 2,

where i+ 1 is the number of possible digits. Furthermore, lim
α↓0

i = +∞.
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N -expansions with a finite digit set

Now define AN,d,i be the set of all α ∈ (0,
√
N − 1] with digit set

{d, d+ 1, . . . , d+ i}. Furthermore, we define the sets XN,d,i and XN,d,i,k as
follows, for k = d, . . . , d+ i− 1:

XN,d,i = {α ∈ AN,d,i

∣∣∣Tα(α) ∈ Iod , Tα(α+ 1) ∈ Iod+i}; (3)

XN,d,i,k = {α ∈ XN,d,i

∣∣∣T 2
α(α) ∈ Ik, T

2
α(α+ 1) ∈ Ik+1}. (4)

where

XN,d,i =

{
N

d+ 1 + α
<

N

α
− (d+ i) < α+ 1, α <

N

α+ 1
− d <

N

d+ i+ α

}
.

Actually, it means that we let the first second digit of α and α+ 1 are,
respectively, α : d+ i, d, and α+ 1 : d, d+ i
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N -expansions with a finite digit set

We obtained the following result (Matching):

Theorem

Let N ≥ 2 be an integer, and let d, i ∈, i ≥ 2, be such, that N = d(d+i)
i−1 . Then for

any α ∈ XN,d,i, one has that T 2
α(α) ∈ Ik and T 2

α(α+ 1) ∈ Ik+1 for some
k ∈ {d, . . . , d+ i− 1}. Moreover, T 3

α(α) = T 3
α(α+ 1).
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N -expansions with a finite digit set

Proof : By definition of XN,d,i and Tα, one has for α ∈ XN,d,i that
T 2
α(α) =

N
N
α −(d+i)

− d, and that T 2
α(α+ 1) = N

N
α+1−d

− (d+ i). Then,

N

T 2
α(α)

=
N

N
N
α −(d+i)

− d
= − N(N − (d+ i)α)

Nd− (d2 + di+N)α
,

N

T 2
α(α+ 1)

=
N

N
N

α+1−d
− (d+ i)

= − N(N − d(α+ 1))

(d+ i− α− 1)N − d(d+ i)(α+ 1))
,

Then one easily finds that:
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N -expansions with a finite digit set

N

T 2(α)
−
(

N

T 2(α+ 1)
− 1

)
=

(
d2 + di−N(i− 1)

)
·RN,d,i,α,

where RN,d,i,α satisfies:

RN,d,i,α =

(
(α2 + α)d2 + ((−2α− 1)N + diα(α+ 1)) + (N − α(i− α− 1))N

)
(−d2α+ (−iα+N)d−Nα)((−α− 1)d2 + (−iα+N − i)d+N(i− α− 1))

.

Note that if d2 + di−N(i− 1) = 0, so if N = d(d+i)
i−1

, we have that:

N

T 2
α(α)

=
N

T 2
α(α+ 1)

− 1.
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N -expansions with a finite digit set

Since the length of the interval [α, α+ 1) is 1, we see that for N = d(d+i)
i−1 we have

matching in 3 steps: T 3
α(α) = T 3

α(α+ 1). Furthermore, T 2
α(α) ∈ Ik and

T 2
α(α+ 1) ∈ Ik+1 for some k ∈ {d, . . . , d+ i− 1}.

Theorem is proved.

Note that an immediate consequence of the proof of Theorem is that for

N = d(d+i)
i−1 ,

XN,d,i =

d+i−1⋃
k=d

XN,d,i,k.

By simulation (Figure on the following page) to extension map

T (x, y) =
(
T (x), N

d1(x)+y

)
, we can also figure the shape of the domain of natural

extension.
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N -expansions with a finite digit set
Then, we proved and obtained:

Theorem

Let N ≥ 2 be an integer, and let d ≥ 1 and i ≥ 2 be integers, such that

N = d(d+i)
i−1 . Let α ∈ XN,d,i arbitrary, we get the natural extension graph for the

planar domain Ωα, which is a polygon bounded by the straight line segments
between the vertices (in clockwise order) (α,A), (T 2

α(α+ 1), A), (T 2
α(α+ 1), B),

(Tα(α), B), (Tα(α), C), (α+ 1, C), (α+ 1, F ), (T 2
α(α), F ), (T 2

α(α), E),
(Tα(α+ 1), E), (Tα(α+ 1), D), (α,D), and finally ‘back’ to (α,A), where Ωα is
illustrated for various α), where 0 < A < B < C < D < E < F .

Theorem

XN,d,i = (A,B), where

XN,d,i =

{
N

d+ 1 + α
<

N

α
− (d+ i) < α+ 1, α <

N

α+ 1
− d <

N

d+ i+ α

}
.
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N -expansions with a finite digit set

A
B

C

D

E
F

τ

A A
B

C

D

E
F

Ωα and T (Ωα) with (a): α ∈ XN,d,i,1; (b): α ∈ XN,d,i,2; (c): α ∈ XN,d,i,3, for
N = 2, d = 1, i = 3.
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N -expansions with a finite digit set

A
B

C

D

E
F

τ

A A
B

C

D

E
F

Ωα and T (Ωα) with (a): α ∈ XN,d,i,1;(b): α ∈ XN,d,i,2; (c): α ∈ XN,d,i,3, for
N = 2, d = 1, i = 3.
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N -expansions with a finite digit set

A
B

C

D

E
F

τ

A A
B

C

D

E
F

Ωα and T (Ωα) with (a): α ∈ XN,d,i,1;(b): α ∈ XN,d,i,2; (c): α ∈ XN,d,i,3, for
N = 2, d = 1, i = 3.
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N -expansions with a finite digit set

A
B
C

D

E
F

τ

A
B
C

D

E
F

Ωα and Tα(Ωα) with (a): α ∈ XN,d,i,1, d = 1, i = 3; (b): α ∈ XN,d,i,1,
d = 2, i = 7 for N = 3.
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N -expansions with a finite digit set

A’
C’B’

F’E’

D’

τ

A’
C’B’

F’E’

D’

Ωα and Tα(Ωα) with (a): α ∈ XN,d,i,1, d = 1, i = 3; (b): α ∈ XN,d,i,1,
d = 2, i = 7 for N = 3.
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N -expansions with a finite digit set

By projecting T (x, y) onto the first coordinate, we obtained the following result:

Theorem

Let N ≥ 2 be an integer, and let d ≥ 1 and i ≥ 2 be integers, such that

N = d(d+i)
i−1 . Let α ∈ XN,d,i arbitrary, the density fα(x) of the Tα-invariant

measure µα is given by

fα(x)

= H
( D

N + Dx
1(α,T (α)+1)(x) +

E

N + Ex
1
(T (α)+1),T2(α)

(x) +
F

N + Fx
1
(T2(α),α+1)

(x)

−
A

N + Ax
1
(α,T2(α)+1)

(x) −
B

N + Bx
1
(T2(α)+1),T (α))

(x) −
C

N + Cx
1(T (α),α+1)(x)

)
.

where

H
−1

= 2 log A + 2 log(B + 1) − log
(
N − (A + 1)d

)
− log

(
N − (d + i)B

)
,

.
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N -expansions with a finite digit set

Theorem

Let N ≥ 2 be an integer, and let d ≥ 1 and i ≥ 2 be integers, such that

N = d(d+i)
i−1 . Let α, β ∈ [A,B] = XN,d,i, α < β arbitrary. Then the dynamical

systems (Ωα, B̄α, µ̄α, Tα) and (Ωβ , B̄β , µ̄β , Tβ) are metrically isomorphic.
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N -expansions with a finite digit set

A

B

C

D

E

F

A0

A1

A2

D2

D1

D0

αβ

α+ 1
β + 1

Tα(β)
Tα(α)

T2
α(β)

T2
α(α)

Tβ(β + 1)
Tβ(α + 1)

T2
β (β + 1)

T2
β (α + 1)
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N -expansions with a finite digit set

A
B

C

T (α) = N
α+d+1

D

E
F

△d△d+i, · · · ,△d+1 △d+i △d+i−1, · · · ,△d

A
B

C

T (α + 1) = N
α+d+i

D

E
F

Figure: ΩB (left) and ΩA (right).
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N -expansions with a finite digit set
By using Rohlin’s formula to calculate the entropy for α = B, we get the entropy
is constant.

Theorem

Let N ≥ 2 be an integer, and let d, i ∈, i ≥ 2, be such, that N = d(d+i)
i−1 . Then for

any α ∈ [A,B] = XN,d,i, one has that the entropy function h(Tα) is constant on

[A,B] = XN,d,i, and is given by:

h(Tα) = logN − 2H

((
Li2(−Ex

N
) + (log x) log(Ex

N
+ 1)

)∣∣∣B+1

B

−
(
Li2(−Ax

N
) + (log x) log(Ax

N
+ 1)

)∣∣∣D
B

−
(
Li2(−Cx

N
) + (log x) log(Cx

N
+ 1))

)∣∣∣B+1

D

)
,

where
H−1 = 2 logA+ log(A+ 1) + log(B + 1)− log

(
N − (A+ 1)d

)
− log

(
N − (d+ i)B

)
is

the normalising constant for the Tα-invariant measure µα for α ∈ XN,d,i.
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N -expansions with a finite digit set

In case N = 2, our method yields only one plateau with equal entropy which
follows from our method. This is the interval
[A,B] = [

√
33−5
2 ,

√
2− 1] = [0.3722813 · · · , 0.4142136 · · · ], which was already

found by Cor and Niels, where it was also determined that for α ∈ [A,B] we have
that h(Tα) = 1.137779584292255 · · · and H = 3.965116120651161 · · · .
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Example

In case N = 8 it follows from our method that there are five plateaux of equal
entropy; see Table 1.

(d, i) Plateau intervals Approximation of interval Hα h(Tα)

(2, 2)

[√
57−5
2

,

√
33−3
2

]
[1.2749,1.3723] 18.377877038370 0.9212748062044

(4, 6)

[
3
√

17−11
2

,

√
41−5
2

]
[0.6847,0.7016] 11.239480662654 1.8212263472923

(5, 11)

[
3
√

97−29
2

,

√
57−7
2

]
[0.2733,0.2749] 9.9626774452815 2.7933207303296

(6, 22)

[√
321−17

2
, 2

√
3−3
2

]
[0.4582,0.4641] 9.2212359716540 2.2547418855378

(7, 57)

[
3
√

473−65
2

,

√
17−4
2

]
[0.1228,0.1231] 8.7715446381451 3.3495778601659

Table: The pairs of integers d ≥ 1, i ≥ 2, the related plateau intervals [A,B] and constant
entropy h(Tα) for α ∈ [A,B]. Here N = 8.
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Thank you for your attention!
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