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Adolf Hurwitz algorithm

z ∈ C, bze is the nearest Gaussian integer (Z[i ] = Z + iZ)
Adolf Hurwitz map TH(z) = 1

z − b
1

z e

a0 = bze,z0 = z − a0, zn+1 = TH(zn), an+1 = b 1zn e, zn = 1

an+1+zn+1

z = a0 + z0 = a0 +
1

a1 + z1
= a0 +

1

a1 + 1

a2+z2

. . .
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De�nition

(p, q) ∈ Z[i ]2, q 6= 0, is a best approximation vector of z ∈ C if for
all (p′, q′) ∈ Z[i ]2,

0 < |q′| < |q| =⇒ |q′z − p′| > |qz − p|
0 < |q′| ≤ |q| =⇒ |q′z − p′| ≥ |qz − p|

pn
qn

= a0 +
1

a1 + 1

. . .

an−1 + 1

an

Theorem (R. Lakein, 1973)

If z is not in countable union of lines and circles, all the vectors

(pn, qn) are best approximation vectors of z .
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For almost all complex numbers z , the sequence of fractions
found by Hurwitz algorithm is a subsequence of the sequence
of all best approximations vectors.

Problem: Find all the best approximation vectors to a given
complex number.
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Minkowski-Voronoï continued fractions, Buchmann,

A Generalization of Voronoi's Unit Algorithm I: J. of number theory 20 (1985)

Let E be a discrete subset in Rd
≥0 that doesn't contain 0.

Rd
≥0 is equipped with the partial order

(x1, . . . , xd) ≤ (y1, . . . , yd) i� for all i , xi ≤ yi .

A point x in E is minimal if there is no y ∈ E such that y < x .

Voronoï used sequence of `successive' minimal points.
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Voronoï : �nd the fundamental units of the ring R of integers
in a totally real extension K of Q of degree 3.

He used the discrete subsets
E = {(|σ1(x)|, |σ2(x)|, |σ3(x)|) : x ∈ R} ⊂ R3

≥0.

Buchmann extended Voronoï's work to some quartic, quintic
and sextic �elds.

For θ ∈ R and E = {(|p − qθ|, |q|) : p, q ∈ Z} \ {0} Voronoï's
algorithm leads to the usual continued fraction algorithm.

You can also use Voronoï's algorithm with
E = {(|x1|, |x2|) : x ∈ Λ \ {0}}, Λ unimodular lattice in R2.
This leads to the natural extension of the Gauss map x → { 1x }.
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Lattices over Gaussian integers

De�nition

A Gauss lattice in a �nite dimensional C-vector space V is a subset
Λ such that

Λ is submodule over the Gaussian integers,

Λ is a discrete subset of V ,

Λ generates the vector space V .

Λ = Z[i ]e1 + · · ·+ Z[i ]en where (e1, . . . , en) is a basis of the
C-vector space V .

Let Λ be Gauss lattice in C2. Minimal vectors in Λ are de�ned with

E = E (Λ) = {(|x1|, |x2|) : (x1, x2) ∈ Λ \ {0}} ⊂ R2

≥0.
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De�nition of minimal vectors in C2

For u = (u1, u2) ∈ C2,

C (u) = {(x1, x2) ∈ C2 : |x1| ≤ |u1| and |x2| ≤ |u2|}

De�nition

Let Λ be a Gauss lattice in C2.

A non zero vector u = (u1, u2) ∈ Λ is a minimal vector in Λ if
for every non zero v ∈ Λ, v ∈ C (u)⇒ |v1| = |u1| and
|v2| = |u2|.
Two minimal vectors u = (u1, u2) and v = (v1, v2) are
consecutive if |u2| < |v2| and if there is no minimal vector
w = (w1,w2) in Λ with |u2| < |w2| < |v2|.
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Minimal vectors in a lattice Λ ⊂ C2

If u = (u1, u2) and v = (v1, v2) are two minimal vectors in a lattice
then either{

|u1| = |v1|
|u2| = |v2|

or

{
|u1| < |v1|
|u2| > |v2|

or

{
|u1| > |v1|
|u2| < |v2|

.

Lemma

If u = (u1, u2) is a minimal vector with |u1| > 0 there exists a

minimal vector v = (v1, v2) such that u and v are consecutive.
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Minimal vectors in a lattice Λ ⊂ C2

For u = (u1, u2), v = (v1, v2) ∈ C2,

C (u, v) = {(x1, x2) ∈ C2 : |x1| ≤ |u1| and |x2| ≤ |v2|}

Lemma

Two minimal vectors u = (u1, u2) and v = (v1, v2) are consecutive

i� |u2| < |v2| and zero is the only vector of Λ in the interior of the

cylinder C (u, v).
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Minimal vectors in a lattice Λ ⊂ C2

Sequence of �all� minimal vectors,

(un(Λ))n∈D = (un1, un2)n∈D

D interval ⊂ Z.

un(Λ) and un+1(Λ) are consecutive.

For all x = (x1, x2) minimal in Λ, there exists n ∈ D such that
|un1| = |x1|, |un2| = |x2|.

rn(Λ) = |un1| ↓ and qn(Λ) = |un2| ↑

It can happen that there exists linearly independent minimal
vectors x = (x1, x2) and y = (y1, y2) such that |x1| = |y1| and
|x2| = |y2|.
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Minimal vector and best approximation vector

(p, q) ∈ Z[i ]2 with q 6= 0 is a
best approximation vector of
z ∈ C if for all (a, b) ∈ Z[i ]2,{

0 < |b| < |q| ⇒ |a− bz | > |p − qz |
|b| = |q| ⇒ |a− bz | ≥ |p − qz |.

For z ∈ C, let

Λz = {(p−qz , q) : p, q ∈ Z[i ]}.

The vector (p − qz , q) with
q 6= 0, is minimal in Λz i�
(p, q) ∈ Z[i ]2 is a best
approximation vector of z :
for all (a, b) ∈ Z[i ]2,

0 < |b| < |q| ⇒ |a− bz | > |p − qz |
|b| = |q| ⇒ |a− bz | ≥ |p − qz | 12 / 45



Index of consecutive minimal vectors, real case
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Index of consecutive minimal vectors

Theorem

If u and v are two consecutive minimal vectors in a Gauss lattice Λ
in C2, then the sub lattice Z[i ]u + Z[i ]v is of index 1 or 2 in Λ.
Furthermore, when Z[i ]u + Z[i ]v is of index two,

Λ = 〈u, v〉J
def
= {gu + hv : (g , h) ∈ Z[i ]2 ∪ J2}

where J = 1

1+iZ[i ] \ Z[i ].
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Λ = Z[i ]e1 + Z[i ]e2 is unimodular if det(e1, e2) is a unit of Z[i ], i.e.
det(e1, e2) ∈ U4 = {±1,±i}

Theorem (Continued fraction algorithm part 1)

Let u = (u1, u2) and v = (v1, v2) be two consecutive minimal

vectors in a unimodular lattice Λ with |u2| < |v2|. Let

w1 = v1
u1

and w2 = u2
v2
.

If w1 6= 0 then there exists v ′ ∈ Λ a minimal vectors that follows

immediately v .
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Lexicographic preorder on C2: (x1, x2) ≺ (y1, y2) if |x2| < |y2| or,
|x2| = |y2| and |x1| ≤ |y1|.

Theorem (Continued fraction part 2)

If detC(u, v) = 1, then v ′ is any vector that is minimal for the

lexicographic preorder ≺ in the set{
z = −au + bv : a ∈ {1, 1 + i}, b ∈ Z[i ], | aw1

− b| < 1
}
.

Moreover with u′ = v = (u′
1
, v ′

2
w ′
2
) and

v ′ = −au + bv = (u′
1
w ′
1
, v ′

2
), we have

w ′1 = b − a

w1

, w ′2 =
1

b − aw2

. (1)
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Continued fraction, proof of part 1 and 2

u = (u1, u2) and v = (v1, v2) two consecutive minimal vectors of Λ

w1 = v1/u1, w2 = u2/v2

C(v1) = {(z1, z2) ∈ C2 : |z1| < |v1| = |u1w1|}.

If w1 6= 0, C(v1) ∩ Λ 6= ∅.
The successor v ′ is any minimal element in C(v1) ∩ Λ for the
lexicographic preorder ≺.
v ′ = −au + bv , a, b ∈ Z[i ],

detu,v (v , v ′) = det

(
0 −a
1 b

)
= 1 or 1 + i according to the

index of v , v ′. Therefore a = 1 or 1 + i .

| − au1 + bv1| = | − au1 + bu1w1| < |u1w1| ⇔ | − a
w1

+ b| < 1.
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Theorem (Continued fraction part 3)

If detC(u, v) = 1 + i , then v ′ is any vector that is minimal for the

lexicographic preoder ≺ in the set{
z = − 1

1+i (u + v) + bv : b ∈ Z[i ], | 1

(1+i)w1
+ 1

(1+i) − b| < 1
}
.

Moreover with u′ = v = (u′
1
, v ′

2
w ′
2
) and

v ′ = −au + bv = (u′
1
w ′
1
, v ′

2
), we have

w ′1 = b − 1

(1+i)w1
− 1

(1+i) , w ′2 =
1

b − 1

(1+i)w2 − 1

(1+i)

.
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Döblin, Lenstra, Bosma, Jager, Wiedijk

Theorem

For almost all real numbers θ,

lim
N→∞

1

N
card{0 ≤ n < N : |(pn − qnθ)qn| ≤ t} =

∫ t

0

φ(s)ds

for all t ∈ [0,∞[, where

φ(s) = 1

ln 2 ×


1, s ∈ [0, 1

2
]

1−s
s , s ∈ [1

2
, 1]

0, s ≥ 1

This result is sometimes referred to as the Lenstra conjecture.
Döblin stated the above theorem in 1940, Compositio

Mathematica, 7. Doeblin only sketched the proof of this result and
it is di�cult to reconstitute a proof from his paper.
A complete proof was given by Bosma, Jager and Wiedijk, Nederl.
Akad. Wetensch. Indag. Math. 45 (1983), no. 3, 281�299.
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Döblin, Lenstra, Bosma, Jager, Wiedijk

for lattices in C2

Let z ∈ C and let (pn, qn)n be its sequence of best
approximations vectors. We want to study the limit
distribution of the sequence ((pn − qnz)qn)n.

The sequence of minimal vectors of
Λz = {(p − qz , q) : (p, q) ∈ Z[i ]2} is (pn − qnz , qn)n.

Let Λ be lattice in C2 and let (un(Λ) = (un1(Λ), un2(Λ)))n be
its sequence of minimal vectors. What is the limit distribution
of the sequence (un1(Λ)un2(Λ))n ?
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Döblin, Lenstra, Bosma, Jager, Wiedijk

for lattices in C2

Theorem

There exists a density Φ : C→ R+ such that for almost all

unimodular lattices Λ in C2 and all Borel sets B ⊂ C with

negiligible boundaries,

lim
N→∞

1

N
card{n ∈ {1, . . . ,N} : un1(Λ)un2(Λ) ∈ B} =

∫
B

Φ(z)dz .

Φ is Lipschitz

Φ = Cste > 0 on D(0, 1
2

)
Φ = 0 on C \ D.

21 / 45



Space of unimodular lattices

Ω1 = the set of all Gauss lattices in C2 whose bases have
determinants in U4 = {±1,±i}.
The space Ω1 can be identi�ed with SL(2,C)/SL(2,Z[i ])
using the map

M SL(2,Z[i ]) ∈ SL(2,C)/ SL(2,Z[i ])→ MZ[i ]2 ∈ Ω1.

µ the Haar measure on Ω1.

The �ow gt =

(
et 0
0 e−t

)

22 / 45



Idea of the proof 1

If u = (u1, u2) is a minimal vector of a lattice Λ ∈ Ω1 then gtu
is a minimal vector of gtΛ and one has

etu1 × e−tu2 = u1u2.

Therefore the limit distribution of the sequence (un1(Λ)un2(Λ))
depends only on the �ow trajectory.

Therefore it is enough to prove the theorem for the lattices in
a transversal (a cross section) T of the �ow that cuts almost
all �ow trajectories.

Main idea of the proof: use Birkho�'s theorem with the �rst
return map R of the �ow on a transversal T and a function
f : T → C such that

f ◦ Rn(Λ) = un1(Λ)un2(Λ)

for all Λ ∈ T .
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Idea of the proof 2

If B ⊂ C is a Borel set then by Birkho�'s theorem

lim
N→∞

1

N
card{n ≤ N : un1(Λ)un2(Λ) ∈ B} = lim

N→∞

1

N

N∑
n=1

1B ◦ f ◦ Rn(Λ)

=

∫
T
1B ◦ f dν

where ν is the measure induced by the �ow on the transversal T .
So the function Φ is the density of the image of ν by the function f .
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Transversal

Let U4 = {±1,±i} be the group of units in Z[i ]. Let T be the set
of Gauss unimodular lattices Λ in C2 such that there exists two
vectors u = uT (Λ) = (u1, u2) and v = vT (Λ) = (v1, v2) in Λ

1 r = |u1| = |v2| > |u2|, |v1|,
2 the only nonzero vectors of Λ in the ball B∞(0, r) are in

U4u ∪ U4v .

The vectors u and v are two consecutive minimal and unique up to
multiplicative factors in U4.

The lattice L = Z[i ]u + Z[i ]v has index 1 or 2 in Λ. Therefore the
transversal T is the union of two disjoint pieces T1 and T2

according to the index of L.
Roughly,

T = {Λ ∈ Ω1 : λ1(Λ, |.|∞) = λ2(Λ, |.|∞)}

dimR T = 5
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The function f

Let Λ be in T and let uT (Λ) = (u1, u2) and vT (Λ) = (v1, v2) be
the two vectors in Λ associated with T by the de�nition.
The function f : T → C is de�ned by

f (Λ) = u1u2.

Since uT (Λ) is de�ne up to a factor in U4, f is de�ned only modulo
±1. But we can always suppose that arg u1 ∈ [0, π

2
[.
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Visiting times in the transversal

Let Λ be a unimodular lattice in C2. Let un(Λ) = (un1, un2), n ∈ Z,
be the sequence of all minimal vectors in Λ.

rn = |un1| ↘, qn = |un2| ↗ .
For every n, there is a time tn such that etnrn = e−tnqn+1,
therefore gtnC (un(Λ), un+1(Λ)) = B∞(0, etnrn) and gtnΛ ∈ T .

Conversely if Λ′ = gtΛ ∈ T then g−tuT (Λ′) and g−tvT (Λ′) are
two consecutive minimal vectors of Λ.
Therefore t = tn for some n.

If Λ ∈ T , then there exists n0 = n0(Λ) ∈ Z such that
uT (Λ) = un0(Λ) and vT (Λ) = un0+1(Λ).

R(Λ) = gtn0+1Λ and Rn(Λ) = gtn0+nΛ

f ◦ Rn(Λ) = f (gtn+n0
Λ) = u(n+n0)1u(n+n0)2
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Parametrizations of T1 and T2

Ψk : R× D2 → Ω1, k = 1, 2 be the maps de�ned by

Ψ1(θ,w1,w2) = Z[i ]u + Z[i ]v

Ψ2(θ,w1,w2) = Z[i ]u + 1

1+iZ[i ](u + v)

where

u = u(θ,w1,w2) = (u1, v2w2),

v = v(θ,w1,w2) = (u1w1, v2),

u1 = r exp iθ, v2 = r exp iθ′

r =
k1/4√
|1− w1w2|

, θ′ = (k − 1)π
4
− θ − arg(1− w1w2).

Then for all Λ in Tk there exists exactly one element
(θ,w1,w2) ∈ [0, π

2
[×D2 such that Λ = Ψk(α,w1,w2).
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The function f : Λ ∈ T → u1u2

Let Λ = Ψ1(θ,w1,w2) = Z[i ]u + Z[i ]v ∈ T1.

u = u(θ,w1,w2) = (u1, v2w2),

v = v(θ,w1,w2) = (u1w1, v2).

1 = det(u, v) = u1v2(1− w1w2)

f (Λ) = u1v2w2 =
w2

1− w1w2

.

If Λ ∈ T2, f (Λ) =
(1+i)w2

1−w1w2

.
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Conditions to be in T

Let u = (u1, u2) and v = (v1, v2) ∈ C2 and let Λ = Zu + Zv .
Suppose that |u1| > |v1| and |v2| > |u2|. Let

C (u, v) = {(z1, z2) : |z1| ≤ |u1|, |z2| ≤ |v2|}

For g , h ∈ C∗,
gu−hv /∈ C (u, v) ⇐⇒ |gu1−hv1| > |u1| or |gu2−hv2| > |v2|

⇐⇒
∣∣g
h −

v1
u1

∣∣ > 1

|h| or
∣∣ h
g −

u2
v2

∣∣ > 1

|g |
⇐⇒ d(w1,

g
h ) > 1

|h| or d(w2,
h
g ) > 1

|g |

with w1 = v1
u1

and w2 = u2
v2
.

Suppose that det(u, v) ∈ U4 and that |u1| = |v2|.
Λ ∈ T1 i� for all nonzero g , h ∈ Z[i ],

d(w1,
g
h ) > 1

|h| or d(w2,
h
g ) > 1

|g |
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Geometry of numbers, C

Theorem

Let u = (u1, u2) and v = (v1, v2) be two vectors in C2 such that

|u1| > |v1| and |v2| > |u2|.
1 The only elements of Z[i ]u + Z[i ]v in the cylinder

C (u, v) = {(z1, z2) : |z1| ≤ |u1|, |z2| ≤ |v2|}

are in {0} ∪ U4u ∪ U4v i� gu − hv /∈ C (u, v) for all nonzero

g , h ∈ Z[i ]2 with |g | × |h| ≤
√
2.

2 The only elements of 〈u, v〉J in the cylinder C (u, v) are in

{0} ∪ U4u ∪ U4v i� gu − hv /∈ C (u, v) for all

(g , h) ∈ ( 1

1+iZ[i ])2 with |g | = |h| = 1√
2
.
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Conditions when w1 ∈ C = {z ∈ D : arg ∈ [0, π
2

]}
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Invariant measure

Theorem

The Haar measure and the �ow gt induce on the transversal T a

measure ν with density

ϕ(θ,w1,w2) =
32

|1− w1w2|4

where (θ,w1,w2) are the coordinates associated with the

parametrizations Ψk , k = 1, 2.

The constant 32 depends on the normalization of the Haar measure.
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Summary for T1

θ ∈ [0, π
2

[,
w1,w2 ∈ D satisfy

max(d(w1,
a

b
) >

1

|b|
, d(w2,

b

a
) >

1

|a|
)

for all nonzero a, b ∈ Z[i ] such that |ab| ≤
√
2.

f (θ,w1,w2) =
w1

1− w1w2

.

Find the image by f of the measure ν with density

ϕ(θ,w1,w2) =
1

|1− w1w2|4
.
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Contribution of T1

F1 = {(g , h) ∈ Z[i ]2 : 0 < |g ||h| ≤
√
2},

W1 = {(w1,w2) ∈ D2 : ∀(g , h) ∈ F1, d(w1,
g
h ) >

1

|h|
or d(w2,

h
g ) >

1

|g |
}.

For any Borel set ω ⊂ C,

f∗ν1(ω) =

∫
D2

1W1(w1,w2)1ω( w2
1−w1w2

)
1

|1− w1w2|4
dw1dw2

With the change of variable (w1,w2) = ψi (z ,w) = (w − 1

z ,
1

w ),

f∗ν1(ω) =

∫
C∗×C∗

1W1(w − 1

z ,
1

w )1ω(z)
1

|1− (w − 1

z ) 1

w |4
| Jacψ1(z ,w)|dzdw

=

∫
C∗×C∗

1W1(w − 1

z ,
1

w )1ω(z)dzdw

=

∫
ω

(

∫
C∗

1W1(w − 1

z ,
1

w )dw)dz

=⇒ Φ1(z) =

∫
C∗

1W1(w − 1

z ,
1

w )dw is the density of f∗ν1
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Experimental result, iterating the �rst return map

Histogram 100 bins, annulli D(0, k+1

100
) \ D(0, k

100
,) k = 0, . . . , 99,

N iterates,
1002

2k + 1

card{0 ≤ n < N : k
100
≤ |un1un2| < k+1

100
}

N
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Density in [0, 1] of the limit distribution of |un1un2|
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Nakada's reasonning,

Assume that

For almost all z ∈ C, limn→∞
1

n ln |qn| = K

Legendre constant: There exists L > 0 such that, if
u = (u1, u2) is a primitive vector in a unimodular lattice Λ and
if |u1u2| < L then u is a minimal vector.

For almost all z ∈ C, for any k > 0,

lim
N→∞

card{pq ∈ Q[i ] : gcd(p, q) = 1, |q| ≤ N, |qz − p| < k
|q|}

lnN
= Mk2

Then for almost all z ∈ C, for all 0 ≤ t < L

lim
N→∞

card{n ≤ N : |qn(qnz − pn)| ≤ t} = MKt2

therefore, φ(t) = MKt is the density on the interval [0, L].
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If t < L, any coprime (p, q) such that |qz − p| < t
|q| is a best

approximation of vector of z . Therefore,

1

N
card{n ∈ N : n ≤ N, |qn||qnz − pn| < t}

=
ln |qN |
N

card{pq ∈ Q[i ] : gcd(p, q) = 1, |q| ≤ |qN |, |qz − p| < k
|q|}

ln |qN |
→ KMt2

for almost all z .
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Legendre's theorem for Gauss lattices

Theorem (Legendre's theorem)

Let Λ ⊂ C2 be a unimodular Gauss lattice. Let u = (u1, u2) ∈ Λ be

primitive. If |u1u2| < 1

2
then u is minimal.

If u were not minimal there would exists a nonzero v = (v1, v2) ∈ Λ
with say |v1| < |u1| and |v2| ≤ |u2|.
If v = λu for some λ ∈ C then |λ| = |v1|

|u1| < 1. We can assume that

|λ| > 0 is minimal.
Now 1

λ = g + α where g ∈ Z[i ] and |α| < 1. Now α 6= 0 because u
is primitive, hence w = u − gv = αv = αλu ∈ Λ.
Therefore u and v are linearly independent.
By de�nition of the determinant we have

1 = | det Λ| ≤ | det(u, v)| = |u1v2 − u2v1| ≤ 2|u1u2| < 21
2

= 1,

a contradiction.
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Dirichlet theorem in the space of lattices

Theorem

We have

sup |u1||v2| =

√
2

3−
√
3
.

where the supremum is taken over all pairs u = (u1, u2) and

v = (v1, v2) of consecutive minimal vectors in all unimodular

lattices Λ ⊂ C2.
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Theorem (Complex Dirichlet constant)

For every complex number z and for every real number Q > 1,
there exist Gaussian integers p and q such that{

0 < |q| < Q,

|qz − p| ≤
√
2

3−
√
3
× 1

Q ,

where
√
2

3−
√
3

= 1√
6−3
√
3

= 1.115355 . . . . Furthermore the set of

complex numbers z for which the constant
√
2

3−
√
3
can be improved,

is of zero Lebesgue measure.
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