One World Numeration Seminar, May 2022 Best Diophantine approximations in the complex plane with Gaussian integers

Nicolas Chevallier

Adolf Hurwitz algorithm

Definition

 $(p,q)\in\mathbb{Z}[i]^2$, q
eq 0, is a best approximation vector of $z\in\mathbb{C}$ if for all $(p',q')\in\mathbb{Z}[i]^2$,

$$0 < |q'| < |q| \implies |q'z - p'| > |qz - p|$$

 $0 < |q'| \le |q| \implies |q'z - p'| \ge |qz - p|$

$$\frac{p_n}{q_n} = a_0 + \frac{1}{a_1 + \frac{1}{a_1 + \frac{1}{a_n +$$

Theorem (R. Lakein, 1973)

If z is not in countable union of lines and circles, all the vectors (p_n, q_n) are best approximation vectors of z.

• For almost all complex numbers *z*, the sequence of fractions found by Hurwitz algorithm is a subsequence of the sequence of all best approximations vectors.

• **Problem:** Find all the best approximation vectors to a given complex number.

Minkowski-Voronoï continued fractions, Buchmann, A Generalization of Voronoi's Unit Algorithm I: *J. of number theory 20* (1985)

Let *E* be a discrete subset in $\mathbb{R}_{\geq 0}^d$ that doesn't contain 0. $\mathbb{R}_{>0}^d$ is equipped with the partial order

 $(x_1,\ldots,x_d) \leq (y_1,\ldots,y_d)$ iff for all $i, x_i \leq y_i$.

- A point x in E is minimal if there is no $y \in E$ such that y < x.
- Voronoï used sequence of 'successive' minimal points.

5/45

- Voronoï : find the fundamental units of the ring R of integers in a totally real extension K of Q of degree 3.
- He used the discrete subsets $E = \{ (|\sigma_1(x)|, |\sigma_2(x)|, |\sigma_3(x)|) : x \in R \} \subset \mathbb{R}^3_{\geq 0}.$
- Buchmann extended Voronoi's work to some quartic, quintic and sextic fields.
- For $\theta \in \mathbb{R}$ and $E = \{(|p q\theta|, |q|) : p, q \in \mathbb{Z}\} \setminus \{0\}$ Voronoi's algorithm leads to the usual continued fraction algorithm.
- You can also use Voronoi's algorithm with $E = \{(|x_1|, |x_2|) : x \in \Lambda \setminus \{0\}\}, \Lambda$ unimodular lattice in \mathbb{R}^2 . This leads to the natural extension of the Gauss map $x \to \{\frac{1}{x}\}$.

Definition

A Gauss lattice in a finite dimensional $\mathbb C\text{-vector}$ space V is a subset Λ such that

- Λ is submodule over the Gaussian integers,
- Λ is a discrete subset of V,
- Λ generates the vector space V.

 $\Lambda = \mathbb{Z}[i]e_1 + \cdots + \mathbb{Z}[i]e_n$ where (e_1, \ldots, e_n) is a basis of the \mathbb{C} -vector space V.

Let Λ be Gauss lattice in $\mathbb{C}^2.$ Minimal vectors in Λ are defined with

$$E = E(\Lambda) = \{(|x_1|, |x_2|) : (x_1, x_2) \in \Lambda \setminus \{0\}\} \subset \mathbb{R}^2_{\geq 0}.$$

Definition of minimal vectors in \mathbb{C}^2

For
$$u = (u_1, u_2) \in \mathbb{C}^2$$
,
 $C(u) = \{(x_1, x_2) \in \mathbb{C}^2 : |x_1| \le |u_1| \text{ and } |x_2| \le |u_2|\}$

Definition

Let Λ be a Gauss lattice in \mathbb{C}^2 .

 A non zero vector u = (u₁, u₂) ∈ Λ is a minimal vector in Λ if for every non zero v ∈ Λ, v ∈ C(u) ⇒ |v₁| = |u₁| and |v₂| = |u₂|.

• Two minimal vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are consecutive if $|u_2| < |v_2|$ and if there is no minimal vector $w = (w_1, w_2)$ in Λ with $|u_2| < |w_2| < |v_2|$.

Minimal vectors in a lattice $\Lambda \subset \mathbb{C}^2$

If $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are two minimal vectors in a lattice then either

$$\left\{ \begin{array}{ll} |u_1| = |v_1| \\ |u_2| = |v_2| \end{array} \text{ or } \left\{ \begin{array}{l} |u_1| < |v_1| \\ |u_2| > |v_2| \end{array} \text{ or } \left\{ \begin{array}{l} |u_1| > |v_1| \\ |u_2| < |v_2| \end{array} \right. \right. \right.$$

Lemma

If $u = (u_1, u_2)$ is a minimal vector with $|u_1| > 0$ there exists a minimal vector $v = (v_1, v_2)$ such that u and v are consecutive.

Minimal vectors in a lattice $\Lambda \subset \mathbb{C}^2$

For
$$u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{C}^2$$
,
 $C(u, v) = \{(x_1, x_2) \in \mathbb{C}^2 : |x_1| \le |u_1| \text{ and } |x_2| \le |v_2|\}$

Lemma

Two minimal vectors $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are consecutive iff $|u_2| < |v_2|$ and zero is the only vector of Λ in the interior of the cylinder C(u, v).

Minimal vectors in a lattice $\Lambda \subset \mathbb{C}^2$

• Sequence of "all" minimal vectors,

$$(u_n(\Lambda))_{n\in D} = (u_{n1}, u_{n2})_{n\in D}$$

D interval $\subset \mathbb{Z}$.

 $u_n(\Lambda)$ and $u_{n+1}(\Lambda)$ are consecutive.

For all $x = (x_1, x_2)$ minimal in Λ , there exists $n \in D$ such that $|u_{n1}| = |x_1|, |u_{n2}| = |x_2|.$

$$r_n(\Lambda) = |u_{n1}| \downarrow$$
 and $q_n(\Lambda) = |u_{n2}| \uparrow$

• It can happen that there exists linearly independent minimal vectors $x = (x_1, x_2)$ and $y = (y_1, y_2)$ such that $|x_1| = |y_1|$ and $|x_2| = |y_2|$.

Minimal vector and best approximation vector

• $(p,q) \in \mathbb{Z}[i]^2$ with $q \neq 0$ is a best approximation vector of $z \in \mathbb{C}$ if for all $(a,b) \in \mathbb{Z}[i]^2$,

$$\left\{ \begin{array}{l} 0 < |b| < |q| \Rightarrow |a - bz| > |p - qz \\ |b| = |q| \Rightarrow |a - bz| \ge |p - qz|. \end{array} \right.$$

• For
$$z\in\mathbb{C}$$
, let

$$\Lambda_z = \{(p-qz,q) : p,q \in \mathbb{Z}[i]\}.$$

The vector (p - qz, q) with $q \neq 0$, is minimal in Λ_z iff $(p, q) \in \mathbb{Z}[i]^2$ is a best approximation vector of z: for all $(a, b) \in \mathbb{Z}[i]^2$,

$$0 < |b| < |q| \Rightarrow |a - bz| > |p - qz$$

Index of consecutive minimal vectors, real case

Theorem

If u and v are two consecutive minimal vectors in a Gauss lattice Λ in \mathbb{C}^2 , then the sub lattice $\mathbb{Z}[i]u + \mathbb{Z}[i]v$ is of index 1 or 2 in Λ . Furthermore, when $\mathbb{Z}[i]u + \mathbb{Z}[i]v$ is of index two,

$$\Lambda = \langle u, v \rangle_J \stackrel{\text{def}}{=} \{gu + hv : (g, h) \in \mathbb{Z}[i]^2 \cup J^2\}$$

where $J = \frac{1}{1+i}\mathbb{Z}[i] \setminus \mathbb{Z}[i]$.

$$\begin{split} &\Lambda = \mathbb{Z}[i]e_1 + \mathbb{Z}[i]e_2 \text{ is unimodular if } \mathsf{det}(e_1,e_2) \text{ is a unit of } \mathbb{Z}[i] \text{, i.e.} \\ &\mathsf{det}(e_1,e_2) \in \mathbb{U}_4 = \{\pm 1,\pm i\} \end{split}$$

Theorem (Continued fraction algorithm part 1)

Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be two consecutive minimal vectors in a unimodular lattice Λ with $|u_2| < |v_2|$. Let

$$w_1 = \frac{v_1}{u_1}$$
 and $w_2 = \frac{u_2}{v_2}$.

If $w_1 \neq 0$ then there exists $v' \in \Lambda$ a minimal vectors that follows immediately v.

Lexicographic preorder on \mathbb{C}^2 : $(x_1, x_2) \prec (y_1, y_2)$ if $|x_2| < |y_2|$ or, $|x_2| = |y_2|$ and $|x_1| \le |y_1|$.

Theorem (Continued fraction part 2)

If $\det_{\mathbb{C}}(u, v) = 1$, then v' is any vector that is minimal for the lexicographic preorder \prec in the set

$$\left\{z = -au + bv : a \in \{1, 1+i\}, \ b \in \mathbb{Z}[i], \ |\frac{a}{w_1} - b| < 1\right\}$$

Moreover with $u' = v = (u'_1, v'_2w'_2)$ and $v' = -au + bv = (u'_1w'_1, v'_2)$, we have

$$w'_1 = b - rac{a}{w_1}, \qquad w'_2 = rac{1}{b - aw_2}.$$
 (1)

Continued fraction, proof of part 1 and 2

 $u=(u_1,u_2)$ and $v=(v_1,v_2)$ two consecutive minimal vectors of Λ

$$w_1 = v_1/u_1, w_2 = u_2/v_2$$

 $\mathcal{C}(v_1) = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < |v_1| = |u_1w_1|\}.$

- If $w_1 \neq 0$, $\mathcal{C}(v_1) \cap \Lambda \neq \emptyset$.
- The successor v' is any minimal element in C(v₁) ∩ Λ for the lexicographic preorder ≺.

•
$$|-au_1+bv_1| = |-au_1+bu_1w_1| < |u_1w_1| \Leftrightarrow |-\frac{a}{w_1}+b| < 1.$$

Theorem (Continued fraction part 3)

If $\det_{\mathbb{C}}(u, v) = 1 + i$, then v' is any vector that is minimal for the lexicographic preoder \prec in the set

$$\left\{z = -rac{1}{1+i}(u+v) + bv: b \in \mathbb{Z}[i], \, |rac{1}{(1+i)w_1} + rac{1}{(1+i)} - b| < 1
ight\}.$$

Moreover with $u' = v = (u'_1, v'_2 w'_2)$ and $v' = -au + bv = (u'_1 w'_1, v'_2)$, we have

$$w_1' = b - rac{1}{(1+i)w_1} - rac{1}{(1+i)}, \qquad w_2' = rac{1}{b - rac{1}{(1+i)}w_2 - rac{1}{(1+i)}}.$$

Döblin, Lenstra, Bosma, Jager, Wiedijk

Theorem

For almost all real numbers θ ,

$$\lim_{N \to \infty} \frac{1}{N} \operatorname{card} \{ 0 \le n < N : |(p_n - q_n \theta)q_n| \le t \} = \int_0^t \phi(s) ds$$

for all $t \in [0,\infty[\text{, where}$

$$\phi(s) = rac{1}{\ln 2} imes \left\{ egin{array}{cc} 1, & s \in [0, rac{1}{2}] \ rac{1-s}{s}, & s \in [rac{1}{2}, 1] \ 0, & s \geq 1 \end{array}
ight.$$

This result is sometimes referred to as the Lenstra conjecture. Döblin stated the above theorem in 1940, *Compositio Mathematica*, 7. Doeblin only sketched the proof of this result and it is difficult to reconstitute a proof from his paper. A complete proof was given by Bosma, Jager and Wiedijk, *Nederl. Akad. Wetensch. Indag. Math.* 45 (1983), no.=3, 281–299.

Döblin, Lenstra, Bosma, Jager, Wiedijk for lattices in \mathbb{C}^2

- Let $z \in \mathbb{C}$ and let $(p_n, q_n)_n$ be its sequence of best approximations vectors. We want to study the limit distribution of the sequence $((p_n q_n z)q_n)_n$.
- The sequence of minimal vectors of $\Lambda_z = \{(p - qz, q) : (p, q) \in \mathbb{Z}[i]^2\} \text{ is } (p_n - q_n z, q_n)_n.$
- Let Λ be lattice in \mathbb{C}^2 and let $(u_n(\Lambda) = (u_{n1}(\Lambda), u_{n2}(\Lambda)))_n$ be its sequence of minimal vectors. What is the limit distribution of the sequence $(u_{n1}(\Lambda)u_{n2}(\Lambda))_n$?

Döblin, Lenstra, Bosma, Jager, Wiedijk for lattices in \mathbb{C}^2

Theorem

There exists a density $\Phi : \mathbb{C} \to \mathbb{R}_+$ such that for almost all unimodular lattices Λ in \mathbb{C}^2 and all Borel sets $B \subset \mathbb{C}$ with negiligible boundaries,

$$\lim_{N\to\infty}\frac{1}{N}\operatorname{card}\{n\in\{1,\ldots,N\}:u_{n1}(\Lambda)u_{n2}(\Lambda)\in B\}=\int_{B}\Phi(z)dz.$$

 $\begin{array}{l} \Phi \ \text{is Lipschitz} \\ \Phi = \textit{Cste} > 0 \ \textit{on} \ \textit{D}(0, \frac{1}{2}) \\ \Phi = 0 \ \textit{on} \ \mathbb{C} \setminus \mathbb{D}. \end{array}$

Space of unimodular lattices

- Ω₁ = the set of all Gauss lattices in C² whose bases have determinants in U₄ = {±1, ±i}.
- The space Ω₁ can be identified with SL(2, C)/SL(2, Z[i]) using the map

 $M \operatorname{SL}(2, \mathbb{Z}[i]) \in \operatorname{SL}(2, \mathbb{C}) / \operatorname{SL}(2, \mathbb{Z}[i]) \to M\mathbb{Z}[i]^2 \in \Omega_1.$

• μ the Haar measure on Ω_1 .

• The flow
$$g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$

Idea of the proof 1

• If $u = (u_1, u_2)$ is a minimal vector of a lattice $\Lambda \in \Omega_1$ then $g_t u$ is a minimal vector of $g_t \Lambda$ and one has

$$e^t u_1 \times e^{-t} u_2 = u_1 u_2.$$

- Therefore the limit distribution of the sequence $(u_{n1}(\Lambda)u_{n2}(\Lambda))$ depends only on the flow trajectory.
- Therefore it is enough to prove the theorem for the lattices in a transversal (a cross section) T of the flow that cuts almost all flow trajectories.
- Main idea of the proof: use Birkhoff's theorem with the first return map R of the flow on a transversal T and a function f : T → C such that

$$f \circ R^n(\Lambda) = u_{n1}(\Lambda)u_{n2}(\Lambda)$$

for all $\Lambda \in T$.

If $B \subset \mathbb{C}$ is a Borel set then by Birkhoff's theorem

$$\lim_{N \to \infty} \frac{1}{N} \operatorname{card} \{ n \le N : u_{n1}(\Lambda) u_{n2}(\Lambda) \in B \} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_B \circ f \circ R^n(\Lambda)$$
$$= \int_T 1_B \circ f \, d\nu$$

where ν is the measure induced by the flow on the transversal T. So the function Φ is the density of the image of ν by the function f.

Transversal

Let $\mathbb{U}_4 = \{\pm 1, \pm i\}$ be the group of units in $\mathbb{Z}[i]$. Let T be the set of Gauss unimodular lattices Λ in \mathbb{C}^2 such that there exists two vectors $u = u_T(\Lambda) = (u_1, u_2)$ and $v = v_T(\Lambda) = (v_1, v_2)$ in Λ \mathbf{O} $r = |u_1| = |v_2| > |u_2|, |v_1|,$

2 the only nonzero vectors of Λ in the ball $B_{\infty}(0, r)$ are in $\mathbb{U}_4 u \cup \mathbb{U}_4 v$.

The vectors u and v are two consecutive minimal and unique up to multiplicative factors in \mathbb{U}_4 .

The lattice $L = \mathbb{Z}[i]u + \mathbb{Z}[i]v$ has index 1 or 2 in Λ . Therefore the transversal T is the union of two disjoint pieces T_1 and T_2 according to the index of L. Roughly,

$$\mathcal{T} = \{ \Lambda \in \Omega_1 : \lambda_1(\Lambda, |.|_\infty) = \lambda_2(\Lambda, |.|_\infty) \}$$

$$\dim_{\mathbb{R}} T = 5$$

Let Λ be in T and let $u_T(\Lambda) = (u_1, u_2)$ and $v_T(\Lambda) = (v_1, v_2)$ be the two vectors in Λ associated with T by the definition. The function $f : T \to \mathbb{C}$ is defined by

 $f(\Lambda)=u_1u_2.$

Since $u_T(\Lambda)$ is define up to a factor in \mathbb{U}_4 , f is defined only modulo ± 1 . But we can always suppose that $\arg u_1 \in [0, \frac{\pi}{2}]$.

Visiting times in the transversal

Let Λ be a unimodular lattice in \mathbb{C}^2 . Let $u_n(\Lambda) = (u_{n1}, u_{n2}), n \in \mathbb{Z}$, be the sequence of all minimal vectors in Λ .

$$r_n = |u_{n1}| \searrow, \ q_n = |u_{n2}| \nearrow$$

- For every *n*, there is a time t_n such that $e^{t_n}r_n = e^{-t_n}q_{n+1}$, therefore $g_{t_n}C(u_n(\Lambda), u_{n+1}(\Lambda)) = B_{\infty}(0, e^{t_n}r_n)$ and $g_{t_n}\Lambda \in \mathcal{T}$.
- Conversely if Λ' = g_tΛ ∈ T then g_{-t}u_T(Λ') and g_{-t}v_T(Λ') are two consecutive minimal vectors of Λ. Therefore t = t_n for some n.
- If Λ ∈ T, then there exists n₀ = n₀(Λ) ∈ Z such that u_T(Λ) = u_{n0}(Λ) and v_T(Λ) = u_{n0+1}(Λ).
 R(Λ) = g<sub>t_{n0+1}Λ and Rⁿ(Λ) = g<sub>t_{n0+n}Λ
 </sub></sub>

$$f \circ R^{n}(\Lambda) = f(g_{t_{n+n_{0}}}\Lambda) = u_{(n+n_{0})1}u_{(n+n_{0})2}$$

Parametrizations of T_1 and T_2

$$\Psi_k : \mathbb{R} imes \mathbb{D}^2 o \Omega_1, \ k = 1, 2$$
 be the maps defined by
 $\Psi_1(\theta, w_1, w_2) = \mathbb{Z}[i]u + \mathbb{Z}[i]v$
 $\Psi_2(\theta, w_1, w_2) = \mathbb{Z}[i]u + \frac{1}{1+i}\mathbb{Z}[i](u+v)$

where

$$u = u(\theta, w_1, w_2) = (u_1, v_2 w_2),$$

$$v = v(\theta, w_1, w_2) = (u_1 w_1, v_2),$$

$$u_1 = r \exp i\theta, v_2 = r \exp i\theta'$$

$$r = \frac{k^{1/4}}{\sqrt{|1 - w_1 w_2|}}, \ \theta' = (k - 1)\frac{\pi}{4} - \theta - \arg(1 - w_1 w_2).$$

Then for all Λ in T_k there exists exactly one element $(\theta, w_1, w_2) \in [0, \frac{\pi}{2}[\times \mathbb{D}^2 \text{ such that } \Lambda = \Psi_k(\alpha, w_1, w_2).$

The function $f : \Lambda \in T \rightarrow u_1 u_2$

Let
$$\Lambda = \Psi_1(\theta, w_1, w_2) = \mathbb{Z}[i]u + \mathbb{Z}[i]v \in T_1.$$

 $u = u(\theta, w_1, w_2) = (u_1, v_2 w_2),$
 $v = v(\theta, w_1, w_2) = (u_1 w_1, v_2).$

$$1 = \det(u, v) = u_1 v_2 (1 - w_1 w_2)$$

$$f(\Lambda) = u_1 v_2 w_2 = \frac{w_2}{1 - w_1 w_2}.$$

If
$$\Lambda \in T_2$$
, $f(\Lambda) = \frac{(1+i)w_2}{1-w_1w_2}$.

Conditions to be in T

- Let $u = (u_1, u_2)$ and $v = (v_1, v_2) \in \mathbb{C}^2$ and let $\Lambda = \mathbb{Z}u + \mathbb{Z}v$. Suppose that $|u_1| > |v_1|$ and $|v_2| > |u_2|$. Let $C(u, v) = \{(z_1, z_2) : |z_1| \le |u_1|, |z_2| \le |v_2|\}$ For $g, h \in \mathbb{C}^*$. $gu-hv \notin C(u,v) \iff |gu_1-hv_1| > |u_1|$ or $|gu_2-hv_2| > |v_2|$ $\iff \left|\frac{g}{h} - \frac{v_1}{u_1}\right| > \frac{1}{|h|} \text{ or } \left|\frac{h}{g} - \frac{u_2}{v_2}\right| > \frac{1}{|g|}$ $\iff \mathsf{d}(w_1, \frac{g}{h}) > \frac{1}{|h|} \text{ or } \mathsf{d}(w_2, \frac{h}{\sigma}) > \frac{1}{|\sigma|}$ with $w_1 = \frac{v_1}{u_1}$ and $w_2 = \frac{u_2}{v_2}$.
- Suppose that $det(u, v) \in \mathbb{U}_4$ and that $|u_1| = |v_2|$. $\Lambda \in \mathcal{T}_1$ iff for all nonzero $g, h \in \mathbb{Z}[i]$,

$$d(w_1, \frac{g}{h}) > \frac{1}{|h|}$$
 or $d(w_2, \frac{h}{g}) > \frac{1}{|g|}$

Theorem

Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ be two vectors in \mathbb{C}^2 such that $|u_1| > |v_1|$ and $|v_2| > |u_2|$.

• The only elements of $\mathbb{Z}[i]u + \mathbb{Z}[i]v$ in the cylinder

$$C(u,v) = \{(z_1,z_2) : |z_1| \le |u_1|, |z_2| \le |v_2|\}$$

are in $\{0\} \cup \mathbb{U}_4 u \cup \mathbb{U}_4 v$ iff $gu - hv \notin C(u, v)$ for all nonzero $g, h \in \mathbb{Z}[i]^2$ with $|g| \times |h| \leq \sqrt{2}$.

2 The only elements of $\langle u, v \rangle_J$ in the cylinder C(u, v) are in $\{0\} \cup \mathbb{U}_4 u \cup \mathbb{U}_4 v$ iff $gu - hv \notin C(u, v)$ for all $(g, h) \in (\frac{1}{1+i}\mathbb{Z}[i])^2$ with $|g| = |h| = \frac{1}{\sqrt{2}}$.

32/45

Theorem

The Haar measure and the flow g_t induce on the transversal T a measure ν with density

$$\varphi(\theta, w_1, w_2) = \frac{32}{|1 - w_1 w_2|^4}$$

where (θ, w_1, w_2) are the coordinates associated with the parametrizations Ψ_k , k = 1, 2.

The constant 32 depends on the normalization of the Haar measure.

Summary for T_1

 $heta \in [0, rac{\pi}{2}[, w_1, w_2 \in \mathbb{D} \text{ satisfy}$

$$\max(\mathsf{d}(w_1,\frac{a}{b}) > \frac{1}{|b|}, \mathsf{d}(w_2,\frac{b}{a}) > \frac{1}{|a|})$$

for all nonzero $a,b\in\mathbb{Z}[i]$ such that $|ab|\leq\sqrt{2}.$

$$f(\theta, w_1, w_2) = \frac{w_1}{1 - w_1 w_2}$$

٠

Find the image by f of the measure ν with density

$$arphi(heta, w_1, w_2) = rac{1}{ert 1 - w_1 w_2 ert^4}.$$

Contribution of T_1

$$\begin{split} F_1 &= \{(g,h) \in \mathbb{Z}[i]^2 : 0 < |g||h| \le \sqrt{2}\},\\ \mathcal{W}_1 &= \{(w_1,w_2) \in \mathbb{D}^2 : \forall (g,h) \in F_1, \, \mathsf{d}(w_1,\frac{g}{h}) > \frac{1}{|h|} \text{ or } \mathsf{d}(w_2,\frac{h}{g}) > \frac{1}{|g|}\}.\\ \text{For any Borel set } \omega \subset \mathbb{C}, \end{split}$$

$$f_*\nu_1(\omega) = \int_{\mathbb{D}^2} 1_{\mathcal{W}_1}(w_1, w_2) 1_{\omega}(\frac{w_2}{1 - w_1 w_2}) \frac{1}{|1 - w_1 w_2|^4} dw_1 dw_2$$

the change of variable $(w_1, w_2) = \frac{1}{|1 - w_1 w_2|^4} dw_1 dw_2$

With the change of variable $(w_1, w_2) = \psi_i(z, w) = (w - \frac{1}{z}, \frac{1}{w})$,

$$f_*\nu_1(\omega) = \int_{\mathbb{C}^* \times \mathbb{C}^*} \mathbf{1}_{\mathcal{W}_1} (w - \frac{1}{z}, \frac{1}{w}) \mathbf{1}_{\omega}(z) \frac{1}{|1 - (w - \frac{1}{z})\frac{1}{w}|^4} |\operatorname{Jac} \psi_1(z, w)| dz dw$$
$$= \int_{\mathbb{C}^* \times \mathbb{C}^*} \mathbf{1}_{\mathcal{W}_1} (w - \frac{1}{z}, \frac{1}{w}) \mathbf{1}_{\omega}(z) dz dw$$
$$= \int_{\omega} (\int_{\mathbb{C}^*} \mathbf{1}_{\mathcal{W}_1} (w - \frac{1}{z}, \frac{1}{w}) dw) dz$$
$$\Longrightarrow \Phi_1(z) = \int_{\mathbb{C}^*} \mathbf{1}_{\mathcal{W}_1} (w - \frac{1}{z}, \frac{1}{w}) dw \text{ is the density of } f_*\nu_1 = 0$$

Experimental result, iterating the first return map

Histogram 100 bins, annulli $D(0, \frac{k+1}{100}) \setminus D(0, \frac{k}{100})$, $k = 0, \dots, 99$, N iterates, $\frac{100^2}{2k+1} \frac{\operatorname{card}\{0 \le n < N : \frac{k}{100} \le |u_{n1}u_{n2}| < \frac{k+1}{100}\}}{N}$

Density in [0, 1] of the limit distribution of $|u_{n1}u_{n2}|$

37 / 45

Nakada's reasonning,

Assume that

- For almost all $z \in \mathbb{C}$, $\lim_{n \to \infty} \frac{1}{n} \ln |q_n| = K$
- Legendre constant: There exists L > 0 such that, if $u = (u_1, u_2)$ is a primitive vector in a unimodular lattice Λ and if $|u_1u_2| < L$ then u is a minimal vector.
- For almost all $z \in \mathbb{C}$, for any k > 0,

$$\lim_{N \to \infty} \frac{\mathsf{card}\{\frac{p}{q} \in \mathbb{Q}[i] : \mathsf{gcd}(p,q) = 1, |q| \le N, |qz - p| < \frac{k}{|q|}\}}{\ln N} = Mk^2$$

Then for almost all $z \in \mathbb{C}$, for all $0 \leq t < L$

$$\lim_{N\to\infty} \operatorname{card}\{n \leq N : |q_n(q_n z - p_n)| \leq t\} = MKt^2$$

therefore, $\phi(t) = MKt$ is the density on the interval [0, L].

If t < L, any coprime (p, q) such that $|qz - p| < \frac{t}{|q|}$ is a best approximation of vector of z. Therefore,

$$\begin{aligned} &\frac{1}{N}\operatorname{card}\{n \in \mathbb{N} : n \leq N, \, |q_n||q_n z - p_n| < t\} \\ &= \frac{\ln|q_N|}{N} \frac{\operatorname{card}\{\frac{p}{q} \in \mathbb{Q}[i] : \operatorname{gcd}(p,q) = 1, |q| \leq |q_N|, |qz - p| < \frac{k}{|q|}\}}{\ln|q_N|} \\ &\to KMt^2 \end{aligned}$$

for almost all z.

Theorem (Legendre's theorem)

Let $\Lambda \subset \mathbb{C}^2$ be a unimodular Gauss lattice. Let $u = (u_1, u_2) \in \Lambda$ be primitive. If $|u_1u_2| < \frac{1}{2}$ then u is minimal.

If u were not minimal there would exists a nonzero $v = (v_1, v_2) \in \Lambda$ with say $|v_1| < |u_1|$ and $|v_2| \le |u_2|$. If $v = \lambda u$ for some $\lambda \in \mathbb{C}$ then $|\lambda| = \frac{|v_1|}{|u_1|} < 1$. We can assume that $|\lambda| > 0$ is minimal. Now $\frac{1}{\lambda} = g + \alpha$ where $g \in \mathbb{Z}[i]$ and $|\alpha| < 1$. Now $\alpha \neq 0$ because u is primitive, hence $w = u - gv = \alpha v = \alpha \lambda u \in \Lambda$. Therefore u and v are linearly independent. By definition of the determinant we have

$$1 = |\det \Lambda| \le |\det(u, v)| = |u_1v_2 - u_2v_1| \le 2|u_1u_2| < 2\frac{1}{2} = 1,$$

a contradiction.

Theorem

We have

$$\sup |u_1||v_2| = \frac{\sqrt{2}}{3-\sqrt{3}}.$$

where the supremum is taken over all pairs $u = (u_1, u_2)$ and $v = (v_1, v_2)$ of consecutive minimal vectors in all unimodular lattices $\Lambda \subset \mathbb{C}^2$.

Theorem (Complex Dirichlet constant)

For every complex number z and for every real number Q > 1, there exist Gaussian integers p and q such that

$$\left\{ egin{array}{l} 0 < |q| < Q, \ |qz-p| \leq rac{\sqrt{2}}{3-\sqrt{3}} imes rac{1}{Q}, \end{array}
ight.$$

where $\frac{\sqrt{2}}{3-\sqrt{3}} = \frac{1}{\sqrt{6-3\sqrt{3}}} = 1.115355...$ Furthermore the set of complex numbers z for which the constant $\frac{\sqrt{2}}{3-\sqrt{3}}$ can be improved, is of zero Lebesgue measure.

Thank you for your attention

43/45

- Y. Cheung, N. Chevallier, Hausdorff dimension of singular vectors. Duke Math. J. 165 (2016), no. 12, 2273–2329
- Y. Cheung, N. Chevallier, Levy-Khintchin Theorem for best simultaneous Diophantine approximations, (2019-2022) arXiv.
- N. Chevallier, Gauss lattices and complex continued fractions. Pure Appl. Math. Q. 17 (2021), no. 5, 1785–1860.
- S. G. Dani, A. Nogueira Continued fractions for complex numbers and values of binary quadratic forms, *Transaction of the A.M.S.* **366**, (2014), 3553–3583
- H. Ei, S. Ito, H. Nakada, R. Natsui, On the construction of the natural extension of the Hurwitz complex continued fraction map, *Monatshefte Mathematik* **188**, (2019), 37–86
- D. Hensley, *Continued Fractions*, Word Scientific Publishing 2006
- R. B. Lakein, Approximation Properties of Some Complex Continued Fractions, *Monatshefte Mathematik* **77**, (1973), 396-403.

- Nakada, Hitoshi On metrical theory of Diophantine approximation over imaginary quadratic field. Acta Arith. 51 (1988), no. 4, 399–403.
- H. Nakada, On the Lenstra constant associated to the Rosen continued fractions, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 55-70
- H. Nakada, On the Legendre and the Lenstra constants for complex continued fractions introduced by J. Hurwitz. Acta Arith. 196 (2020), no. 3, 269–289.
- S. Lyu, C. Porter, C. Ling, Lattice Reduction over Imaginary Quadratic Fields with an Application to Compute-and-Forward, *arXiv:* 1806.03113v5 [cs.IT], 6 May 2019.
- N. Oswald, J. Steuding, Complex Continued Fractions : early work of the brothers Adolf and Juluis Hurwitz, Arch. Hist. Exact. Sci. 68, (2014), 499-528
- G.G. Robert, Complex Continued Fractions. Theoretical Aspects of Hurwitz's Algorithm, PhD Thesis, Aarhus, 167 p. (2018).