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Diophantine approximation

By Dirichlet’s theorem, or by continued fractions, if α ∈ R then∣∣∣α− a

n

∣∣∣ < 1

n2

has infinitely many solutions (a, n) ∈ Z× N. More succinctly

‖nα‖R/Z < n−1 i.o.

By Hurwitz’s theorem, if α ∈ R then

‖nα‖ < 1√
5n

i.o.,

and in the case α = 1+
√
5

2 the factor 1√
5

cannot be sharpened.
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Metric diophantine approximation

Given ψ : N→ [0,∞), does a typical real number α have infinitely

many rational approximations a/n such that
∣∣α− a

n

∣∣ < ψ(n)
n ?

Theorem 1 (Khintchine 1924)

If ψ : N→ [0,∞) is decreasinga then the Lebesgue measure of

W (ψ) = {α ∈ [0, 1] : ‖nα‖ < ψ(n) i.o.}
is {

0, if
∑

n ψ(n) <∞
1, if

∑
n ψ(n) =∞.

aThe monotonicity condition in the original paper was slightly different.
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Borel–Cantelli lemmas

Khintchine’s theorem is explained by the Borel–Cantelli lemmas in
probability theory. Observe that

W (ψ) = lim sup
n→∞

An, An =
n⋃

a=0

(a− ψ(n)

n
,
a + ψ(n)

n

)
∩ [0, 1].

For any probability measure ν on [0, 1], the Borel–Cantelli lemmas:

I. If
∑∞

n=1 ν(An) <∞ then ν(W (ψ)) = 0.

II. If
∑∞

n=1 ν(An) =∞ and∑
n,m6N

ν(An ∩ Am)�

∑
n6N

ν(An)

2

,

then ν(W (ψ)) > 0.

The latter can be upgraded to full measure if we can establish these estimates
uniformly with νI in place of ν, where I is an arbitrary subinterval of [0, 1].

Sam Chow University of Warwick

Dyadic approximation in the Cantor set 3/18



Setup and motivation x2 x3 and dyadic approximation Scales and Fourier analysis

A question of Mahler (1984)

“At the age of 80 I cannot expect to do much more mathematics.
I may, however, state a number of questions where perhaps further
research might lead to interesting results... How close can irrational
elements of Cantor’s set be approximated by rational numbers?”

The middle-third Cantor set, K , contains infinitely many rational
numbers, since it comprises numbers that can be written using
only 0, 2 in ternary. Its Hausdorff dimension is γ := log 2

log 3 .
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The Cantor measure

The Cantor measure, µ, is a probability measure that assigns a
weight of 2−N to each level N subinterval (of length 3−N) in the
construction of the Cantor set K . If E is Borel then µ(E ) is the
Hausdorff γ-measure of E ∩ K . All we need is that µ is supported
on K and Ahlfors–David regular:

µ(B(z , r)) � rγ (z ∈ K , 0 < r < 1).
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Previous work

Theorem 2 (Weiss 2001)

If ε > 0 then µ({α : ‖nα‖ < n−1−ε i.o.}) = 0.

Theorem 3 (Levesley–Salp–Velani 2007)

If ψ : N→ [0,∞) then

µ({α : ‖3nα‖ < ψ(3n) i.o.}) =

{
0, if

∑
n ψ(3n)γ <∞

1, if
∑

n ψ(3n)γ =∞.
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Why triadic rationals are easier

The idea in Levesley–Salp–Velani is to estimate1

µ

(
3n⋃
a=0

B
( a

3n
,
ψ(3n)

3n

))
=

3n∑
a=0

µ
(
B
( a

3n
,
ψ(3n)

3n

))
,

and then apply the Borel–Cantelli lemmas. Only the balls centred
at triadic rationals in the Cantor set have measure; the others avoid
the Cantor set entirely. Thus, the measure has order of magnitude

2n+1(ψ(3n)/3n)γ � ψ(3n)γ .

The first Borel–Cantelli lemma now yields the convergence
statement. For the divergence statement, they also needed to show
that the twofold intersections of the events ‖3nα‖ < ψ(3n) are
quasi-independent on average.

1Let’s assume, as we may, that ψ(3n) < 1/2.
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A conjecture of Velani

Conjecture (Velani)

If ψ : N→ [0,∞) then

µ({α : ‖2nα‖ < ψ(2n) i.o.}) =

{
0, if

∑
n ψ(2n) <∞

1, if
∑

n ψ(2n) =∞.

Let’s try to guess what the measure of

An = {α : ‖2nα‖ < ψ(2n)} =
⋃
a

B
( a

2n
,
ψ(2n)

2n

)
is. Roughly speaking, if KN is the Nth Cantor level and

dist
( a

2n
,KN

)
< 3−N � ψ(2n)

2n
,

then we get measure (ψ(2n)/2n)γ around a/2n. This should have
probability (2/3)N , so µ(An) ≈ 2n(2/3)N(ψ(2n)/2n)γ � ψ(2n)?
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The x2 x3 phenomenon

Theorem 4 (Furstenberg 1967)

If α ∈ R \Q then {2m3nα : m, n ∈ N} = R/Z.

Theorem 5 (Stewart 1980)

With Db(·) counting digit changes in base b, we have

D2(n) + D3(n) >
(1− o(1)) log log n

log log log n
(n→∞).
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Results

Theorem 6 (Allen–C.–Yu 2020, convergence theory)

If ∑
n

ψ(2n),
∑
n

2−
log n

log log n·log log log nψ(2n)γ <∞

then µ(W2(ψ)) = 0, where W2(ψ) = {α : ‖2nα‖ < ψ(2n) i.o.}.

This beats the “elementary benchmark result”, which assumes that∑
n ψ(2n)γ <∞. For example, the conclusion holds for

ψ(2n) = n−1/γ .

Theorem 7 (Allen–C.–Yu 2020, divergence theory)

For ψ(2n) = 2− log log n/ log log log n, we have µ(W2(ψ)) = 1.
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The truth about binary and ternary expansions

This is D2(n)+D3(n)
log n against n.

If we assume it’s bounded above and below by positive constants,
then we get a sharp convergence theory, and an almost-sharp (e.g.
ψ(2n) = 1/n) divergence theory. The upper bound is clear, and to
motivate the lower bound imagine that n is a power of 2 whose
ternary digits change 1/3 of the time.
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A consequence of the Lang–Waldschmidt conjecture

Conjecture (Lang–Waldschmidt 6 1978)

Let a1, . . . , an, b1, . . . , bn be non-zero integers with
Λ :=

∑
i bi log ai 6= 0. Then log |Λ| > −Cn(logA + logB), where

A = maxi |ai | and B = maxi |bi |. The constant C is effective.

For c > 0 small, we prove D2(n) + D3(n) > c log log n on this
conjecture, stronger than Stewart’s unconditional result by a
log log log n factor and giving a small nδ improvement in the
approximation results. If c were large then we would have a sharp
convergence theory!
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The right scale

We wish to show that µ(lim sup
n→∞

An) = 0, where

An = {α : ‖2nα‖ < ψ(2n)}.
By Borel–Cantelli it suffices for

∑
n µ(An) <∞. What is µ(An)?

Lemma 1

Let N ∈ N with 3−N 6 ψ(2n)/(5 · 2n), and let CN be the set of
b/3N in the Cantor set. Then

µ(An) 6 2−N |CN ∩ 5An|.

The idea is that a/2n and b/3N need to be close to get positive
measure within a 3−N -ball centred at b/3N . Such a ball has
Cantor measure O(2−N), since µ(B(z , r))� rγ for all z , and we
recall γ = log 2

log 3 = dimH(K ).
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A coarser scale

From the previous slide, it suffices to count dyadic rationals a/2n

within about ψ(2n)/2n of the Cantor set. We’re currently unable
to do this unconditionally, so we examine a coarser scale.

Lemma 2

If 3−N � ψ(2n)
2n 6 3−M � 1

2n then

|CN ∩ 5An| � |CM ∩ 5An(M)|,
where An(M) = ∪aB(a/2n, 3−M).

To count solutions to ∣∣∣ a
2n
− b

3N

∣∣∣ < 5ψ(2n)

2n
,

where b/3N ∈ K , we write b = b1b2, where b1 comprises M
ternary digits. The triangle inequality forces a/2n to lie within
about 3−M of b1/3M .
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The benchmark result

Choose M 6 N so that 3−N � ψ(2n)/2n and 3−M � 2−n, giving

µ(An)� 2−N |CN ∩ 5An| � 2−N |CM ∩ 5An(M)|
� 2M−N = (3M−N)γ � (2n/3N)γ � ψ(2n)γ .

Proposition 8 (Basic convergence assertion)

If ψ : N→ [0,∞) and
∑

n ψ(2n)γ <∞ then µ(W2(ψ)) = 0.

We beat this by working at an intermediate scale.
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Prelude to Fourier analysis

To estimate |CM ∩ 5An(M)| = 2|LM ∩ 5An(M)|, where LM is the
set of b/3M with no 1’s in ternary, we use a smooth bump function
φ for 5An(M) and Dirac masses for LM .

Recall 5An(M) = ∪aB(a/2n, 5/3M). Our φ : R→ [0,∞) is
supported on [−2, 2], is 1 on [−1, 1], is Schwartz (has rapidly
decaying derivatives of all orders), and in particular has the
rapid Fourier decay property φ̂(t)� (1 + |t|)−99.

For x ∈ R, the Dirac translate δx is a distribution (generalised
function) with the property that if f is Schwartz then∫

R
δx(α)f (α) dα = f (x).
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Fourier series and Parseval’s identity

The upshot is that

|CM ∩ 5An(M)| 6 2

∫
R
f (α)C (α) dα,

where

C (α) =
∑
x∈LM

δx(α), f (α) =
2n−1∑
b=0

φ(2n+k(α−b2−n)),
5

3M
≈ 1

2n+k
.

As f ,C are supported on a unit interval, we can 1-periodically
extend them and expand as Fourier series, applying Parseval to give∑

w∈Z
f̂ (w)Ĉ (w).
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The passage to digit changes

The rapid decay of φ̂ enables us to restrict attention to a finite
sum, and meanwhile (writing e(z) = e2πiz)

Ĉ (w) =

∫ 1

0
C (α)e(−wα)dα =

∑
ε1,...,εM∈{0,2}

∏
j6M

e(−wεj/3j)

= 2M
∏
j6M

1 + e(−2w/3j)

2

is small unless w has few ternary digit changes. We also get a∑2n−1
b=0 e(−wb/2n) factor from f̂ (w), which forces w to be a

multiple of 2n and have fewer binary digit changes, so Stewart’s
theorem wins the day: the zero frequency dominates and we get
the expected count (if our scale is not too fine).
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Cheers

Thanks very much for your attention!
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