Dyadic approximation in the Cantor set

Sam Chow

University of Warwick

Joint with Demi Allen (Bristol) and Han Yu (Cambridge)

Dyadic approximation in the Cantor set

Sam Chow

Diophantine approximation

By Dirichlet's theorem, or by continued fractions, if $\alpha \in \mathbb{R}$ then

$$\left|\alpha - \frac{a}{n}\right| < \frac{1}{n^2}$$

has infinitely many solutions $(a, n) \in \mathbb{Z} \times \mathbb{N}$. More succinctly

$$\|\mathbf{n}\alpha\|_{\mathbb{R}/\mathbb{Z}} < n^{-1}$$
 i.o.

By Hurwitz's theorem, if $\alpha \in \mathbb{R}$ then

$$\|n\alpha\| < \frac{1}{\sqrt{5}n} \qquad \text{i.o.},$$

and in the case $\alpha = \frac{1+\sqrt{5}}{2}$ the factor $\frac{1}{\sqrt{5}}$ cannot be sharpened.

University of Warwick

Sam Chow

Dyadic approximation in the Cantor set

Metric diophantine approximation

Given $\psi : \mathbb{N} \to [0, \infty)$, does a typical real number α have infinitely many rational approximations a/n such that $\left|\alpha - \frac{a}{n}\right| < \frac{\psi(n)}{n}$?

Theorem 1 (Khintchine 1924)

If $\psi : \mathbb{N} \to [0, \infty)$ is decreasing^a then the Lebesgue measure of $W(\psi) = \{ \alpha \in [0, 1] : \|n\alpha\| < \psi(n) \text{ i.o.} \}$ is $\begin{cases} 0, & \text{if } \sum_n \psi(n) < \infty \\ 1, & \text{if } \sum_n \psi(n) = \infty. \end{cases}$

^aThe monotonicity condition in the original paper was slightly different.

University of Warwick

Borel–Cantelli lemmas

Khintchine's theorem is explained by the Borel–Cantelli lemmas in probability theory. Observe that

$$W(\psi) = \limsup_{n \to \infty} A_n, \qquad A_n = \bigcup_{a=0}^n \left(\frac{a - \psi(n)}{n}, \frac{a + \psi(n)}{n}\right) \cap [0, 1].$$

For any probability measure ν on [0,1], the Borel–Cantelli lemmas:

I. If
$$\sum_{n=1}^{\infty} \nu(A_n) < \infty$$
 then $\nu(W(\psi)) = 0$.
II. If $\sum_{n=1}^{\infty} \nu(A_n) = \infty$ and
 $\sum_{n,m \leq N} \nu(A_n \cap A_m) \ll \left(\sum_{n \leq N} \nu(A_n)\right)^2$,
then $\nu(W(\psi)) > 0$.

The latter can be upgraded to full measure if we can establish these estimates uniformly with $\nu_{\mathcal{I}}$ in place of ν , where \mathcal{I} is an arbitrary subinterval of [0, 1].

Image: Image:

A question of Mahler (1984)

"At the age of 80 I cannot expect to do much more mathematics. I may, however, state a number of questions where perhaps further research might lead to interesting results... How close can irrational elements of Cantor's set be approximated by rational numbers?"

		1	
1/3			
1/9			
1/27			
141			

The middle-third Cantor set, K, contains infinitely many rational numbers, since it comprises numbers that can be written using only 0, 2 in ternary. Its Hausdorff dimension is $\gamma := \frac{\log 2}{\log 3}$.

The Cantor measure

The Cantor measure, μ , is a probability measure that assigns a weight of 2^{-N} to each level N subinterval (of length 3^{-N}) in the construction of the Cantor set K. If E is Borel then $\mu(E)$ is the Hausdorff γ -measure of $E \cap K$. All we need is that μ is supported on K and Ahlfors-David regular:

$$\mu(B(z,r)) \asymp r^{\gamma}$$
 $(z \in K, 0 < r < 1).$

Previous work

Theorem 2 (Weiss 2001)

If $\varepsilon > 0$ then $\mu(\{\alpha : \|n\alpha\| < n^{-1-\varepsilon} \text{ i.o.}\}) = 0.$

Theorem 3 (Levesley-Salp-Velani 2007)

If $\psi : \mathbb{N} \to [0,\infty)$ then $\mu(\{\alpha : \|3^n \alpha\| < \psi(3^n) \text{ i.o.}\}) = \begin{cases} 0, & \text{if } \sum_n \psi(3^n)^{\gamma} < \infty \\ 1, & \text{if } \sum_n \psi(3^n)^{\gamma} = \infty. \end{cases}$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへで

Sam Chow

Dyadic approximation in the Cantor set

Why triadic rationals are easier

The idea in Levesley–Salp–Velani is to estimate¹

$$\mu\left(\bigcup_{a=0}^{3^n} B\left(\frac{a}{3^n}, \frac{\psi(3^n)}{3^n}\right)\right) = \sum_{a=0}^{3^n} \mu\left(B\left(\frac{a}{3^n}, \frac{\psi(3^n)}{3^n}\right)\right),$$

and then apply the Borel–Cantelli lemmas. Only the balls centred at triadic rationals **in** the Cantor set have measure; the others avoid the Cantor set entirely. Thus, the measure has order of magnitude $2^{n+1}(\psi(3^n)/3^n)^{\gamma} \simeq \psi(3^n)^{\gamma}$.

The first Borel–Cantelli lemma now yields the convergence statement. For the divergence statement, they also needed to show that the twofold intersections of the events $||3^n\alpha|| < \psi(3^n)$ are quasi-independent on average.

 $^1 {\rm Let}{}^{\rm s}$ assume, as we may, that $\psi(3^n) < 1/2.$

University of Warwick

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A

A conjecture of Velani

Conjecture (Velani)

$$\begin{aligned} \mathsf{f} \ \psi &: \mathbb{N} \to [0, \infty) \text{ then} \\ \mu(\{\alpha : \|2^n \alpha\| < \psi(2^n) \text{ i.o.}\}) &= \begin{cases} 0, & \text{if } \sum_n \psi(2^n) < \infty \\ 1, & \text{if } \sum_n \psi(2^n) = \infty. \end{cases} \end{aligned}$$

Let's try to guess what the measure of

$$A_n = \{\alpha : \|2^n \alpha\| < \psi(2^n)\} = \bigcup_{a} B\left(\frac{a}{2^n}, \frac{\psi(2^n)}{2^n}\right)$$

is. Roughly speaking, if K_N is the $N^{\rm th}$ Cantor level and

$$\operatorname{dist}\left(\frac{\mathsf{a}}{2^{n}},\mathsf{K}_{\mathsf{N}}\right) < 3^{-\mathsf{N}} \asymp \frac{\psi(2^{n})}{2^{n}}$$

then we get measure $(\psi(2^n)/2^n)^{\gamma}$ around $a/2^n$. This should have probability $(2/3)^N$, so $\mu(A_n) \approx 2^n (2/3)^N (\psi(2^n)/2^n)^{\gamma} \approx \psi(2^n)$?

The x2 x3 phenomenon

Theorem 4 (Furstenberg 1967)

If
$$\alpha \in \mathbb{R} \setminus \mathbb{Q}$$
 then $\overline{\{2^m 3^n \alpha : m, n \in \mathbb{N}\}} = \mathbb{R}/\mathbb{Z}$

< □ > < 同 >

Theorem 5 (Stewart 1980)

With $D_b(\cdot)$ counting digit changes in base b, we have $D_2(n) + D_3(n) \ge \frac{(1 - o(1)) \log \log n}{\log \log \log n} \qquad (n \to \infty).$

Results

Theorem 6 (Allen–C.–Yu 2020, convergence theory)

If

$$\sum_{n} \psi(2^{n}), \sum_{n} 2^{-\frac{\log n}{\log \log n \cdot \log \log \log n}} \psi(2^{n})^{\gamma} < \infty$$
then $\mu(W_{2}(\psi)) = 0$, where $W_{2}(\psi) = \{\alpha : \|2^{n}\alpha\| < \psi(2^{n}) \text{ i.o.}\}.$

This beats the "elementary benchmark result", which assumes that $\sum_n \psi(2^n)^{\gamma} < \infty$. For example, the conclusion holds for $\psi(2^n) = n^{-1/\gamma}$.

Theorem 7 (Allen–C.–Yu 2020, divergence theory)

For
$$\psi(2^n) = 2^{-\log \log n / \log \log \log n}$$
, we have $\mu(W_2(\psi)) = 1$.

Sam Chow

Dyadic approximation in the Cantor set

University of Warwick

Image: A math a math

The truth about binary and ternary expansions

If we assume it's bounded above and below by positive constants, then we get a sharp convergence theory, and an almost-sharp (e.g. $\psi(2^n) = 1/n$) divergence theory. The upper bound is clear, and to motivate the lower bound imagine that *n* is a power of 2 whose ternary digits change 1/3 of the time.

A consequence of the Lang–Waldschmidt conjecture

Conjecture (Lang–Waldschmidt \leq 1978)

Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be non-zero integers with $\Lambda := \sum_i b_i \log a_i \neq 0$. Then $\log |\Lambda| \ge -Cn(\log A + \log B)$, where $A = \max_i |a_i|$ and $B = \max_i |b_i|$. The constant *C* is effective.

For c > 0 small, we prove $D_2(n) + D_3(n) \ge c \log \log n$ on this conjecture, stronger than Stewart's unconditional result by a log log log n factor and giving a small n^{δ} improvement in the approximation results. If c were large then we would have a sharp convergence theory!

The right scale

We wish to show that $\mu(\limsup_{n \to \infty} A_n) = 0$, where $A_n = \{ \alpha : ||2^n \alpha|| < \psi(2^n) \}.$

By Borel–Cantelli it suffices for $\sum_{n} \mu(A_n) < \infty$. What is $\mu(A_n)$?

Lemma 1

Let $N \in \mathbb{N}$ with $3^{-N} \leq \psi(2^n)/(5 \cdot 2^n)$, and let C_N be the set of $b/3^N$ in the Cantor set. Then

$$\mu(A_n) \leqslant 2^{-N} |C_N \cap 5A_n|.$$

The idea is that $a/2^n$ and $b/3^N$ need to be close to get positive measure within a 3^{-N} -ball centred at $b/3^N$. Such a ball has Cantor measure $O(2^{-N})$, since $\mu(B(z, r)) \ll r^{\gamma}$ for all z, and we recall $\gamma = \frac{\log 2}{\log 3} = \dim_H(K)$.

University of Warwick

Image: A math a math

A coarser scale

From the previous slide, it suffices to count dyadic rationals $a/2^n$ within about $\psi(2^n)/2^n$ of the Cantor set. We're currently unable to do this unconditionally, so we examine a coarser scale.

Lemma 2

If
$$3^{-N} \simeq \frac{\psi(2^n)}{2^n} \leqslant 3^{-M} \ll \frac{1}{2^n}$$
 then
 $|C_N \cap 5A_n| \ll |C_M \cap 5A_n(M)|,$
where $A_n(M) = \bigcup_a B(a/2^n, 3^{-M}).$

To count solutions to

$$\left|\frac{a}{2^n}-\frac{b}{3^N}\right|<\frac{5\psi(2^n)}{2^n},$$

where $b/3^N \in K$, we write $b = b_1 b_2$, where b_1 comprises M ternary digits. The triangle inequality forces $a/2^n$ to lie within about 3^{-M} of $b_1/3^M$.

Sam Chow

The benchmark result

Choose
$$M \leq N$$
 so that $3^{-N} \simeq \psi(2^n)/2^n$ and $3^{-M} \simeq 2^{-n}$, giving
 $\mu(A_n) \ll 2^{-N} |C_N \cap 5A_n| \ll 2^{-N} |C_M \cap 5A_n(M)|$
 $\ll 2^{M-N} = (3^{M-N})^{\gamma} \ll (2^n/3^N)^{\gamma} \ll \psi(2^n)^{\gamma}.$

Proposition 8 (Basic convergence assertion)

If $\psi : \mathbb{N} \to [0,\infty)$ and $\sum_n \psi(2^n)^{\gamma} < \infty$ then $\mu(W_2(\psi)) = 0$.

We beat this by working at an intermediate scale.

Sam Chow

Dyadic approximation in the Cantor set

University of Warwick

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ >

Prelude to Fourier analysis

To estimate $|C_M \cap 5A_n(M)| = 2|L_M \cap 5A_n(M)|$, where L_M is the set of $b/3^M$ with no 1's in ternary, we use a smooth bump function ϕ for $5A_n(M)$ and Dirac masses for L_M .

- Recall 5A_n(M) = ∪_aB(a/2ⁿ, 5/3^M). Our φ : ℝ → [0,∞) is supported on [-2,2], is 1 on [-1,1], is Schwartz (has rapidly decaying derivatives of all orders), and in particular has the rapid Fourier decay property φ̂(t) ≪ (1 + |t|)⁻⁹⁹.
- For x ∈ ℝ, the Dirac translate δ_x is a distribution (generalised function) with the property that if f is Schwartz then

$$\int_{\mathbb{R}} \delta_x(\alpha) f(\alpha) \, \mathrm{d}\alpha = f(x).$$

Fourier series and Parseval's identity

The upshot is that

$$|C_M \cap 5A_n(M)| \leq 2 \int_{\mathbb{R}} f(\alpha)C(\alpha) \,\mathrm{d}\alpha,$$

where

$$C(\alpha) = \sum_{x \in L_M} \delta_x(\alpha), \quad f(\alpha) = \sum_{b=0}^{2^n - 1} \phi(2^{n+k}(\alpha - b2^{-n})), \quad \frac{5}{3^M} \approx \frac{1}{2^{n+k}}.$$

As f, C are supported on a unit interval, we can 1-periodically extend them and expand as Fourier series, applying Parseval to give

$$\sum_{w\in\mathbb{Z}}\hat{f}(w)\hat{C}(w).$$

University of Warwick

Sam Chow

The passage to digit changes

The rapid decay of $\hat{\phi}$ enables us to restrict attention to a finite sum, and meanwhile (writing $e(z) = e^{2\pi i z}$)

$$\hat{C}(w) = \int_0^1 C(\alpha) e(-w\alpha) \, \mathrm{d}\alpha = \sum_{\varepsilon_1, \dots, \varepsilon_M \in \{0, 2\}} \prod_{j \le M} e(-w\varepsilon_j/3^j)$$
$$= 2^M \prod_{j \le M} \frac{1 + e(-2w/3^j)}{2}$$

is small unless w has few ternary digit changes. We also get a $\sum_{b=0}^{2^n-1} e(-wb/2^n)$ factor from $\hat{f}(w)$, which forces w to be a multiple of 2^n and have fewer binary digit changes, so Stewart's theorem wins the day: the zero frequency dominates and we get the expected count (if our scale is not too fine).

University of Warwick

/⊒ > < ∃ >

Thanks very much for your attention!

Sam Chow

Dyadic approximation in the Cantor set