
A Spectral Theory of Regular Sequences

Michael Coons

Abstract. A few years ago, Michael Baake and I introduced a probability

measure associated to Stern’s diatomic sequence, an example of a regular

sequence—sequences which generalise constant length substitutions to infinite

alphabets. In this talk, I will discuss extensions of these results to more general

regular sequences as well as further properties of these measures.

This is joint work with several people, including Michael Baake, James Evans,

Zachary Groth and Neil Manibo.
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k-regular sequences

Definition (Allouche and Shallit, 1992)
Let k > 2 be an integer. A real sequence f is called k-regular provided

its k-kernel, kerk(f ) :=
{

(f (k`n + r))n>0 : ` > 0, 0 6 r < k`
}
, generates

a R-vector space Vk(f ) of finite dimension over R.

Equivalently, a sequence f is k-regular provided there exist a positive

integer d , a finite set of matrices Af = {A0, . . . ,Ak−1} ⊆ Rd×d , and

vectors v,w ∈ Rd such that

f (n) = wTAi0 · · ·Ais v,

where (n)k = is · · · i0 is the base-k expansion of n.
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Stern’s sequence

Stern’s sequence, (s(n))n>0, is defined by the relations s(0) = 0,

s(1) = 1, and for n > 0, by

s(2n) = s(n), and s(2n + 1) = s(n) + s(n + 1).

Stern’s sequence is 2-regular and has linear representation

vT = wT = (1 0), A0 =

(
1 1

0 1

)
, A1 =

(
1 0

1 1

)
.
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Stern’s sequence

Stern’s sequence, (s(n))n>0, is defined by the relations s(0) = 0,

s(1) = 1, and for n > 0, by

s(2n) = s(n), and s(2n + 1) = s(n) + s(n + 1).

Stern’s sequence is 2-regular and has linear representation

vT = wT = (1 0), A0 =

(
1 1

0 1

)
, A1 =

(
1 0

1 1

)
.

It has some interesting properties:

• Wilf’s favourite sequence!

• the ratios (s(n)/s(n + 1))n>0 enumerate the nonnegative rationals,

in reduced form, and without repeats!

• The maximum values between powers of 2 are Fibonacci numbers.
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Stern’s sequence

Stern’s sequence, (s(n))n>0, is defined by the relations s(0) = 0,

s(1) = 1, and for n > 0, by

s(2n) = s(n), and s(2n + 1) = s(n) + s(n + 1).

Stern’s sequence is 2-regular and has linear representation

vT = wT = (1 0), A0 =

(
1 1
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)
, A1 =
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How complicated are integer sequences?

Traditionally, combinatorial sequences (f (n))n>0 are classified depending

on the diffeo-algebraic properties of their generating functions

F (z) =
∑
n>0

f (n)zn.

Some major classes are

• rational functions,

• irrational algebraic functions,

• D-finite functions (solutions to homogeneous linear differential

equations),

• transcendental functions, and

• D-algebraic functions (solutions to algebraic differential equations).

*Adapted from Stanley to apply to complexity problems in enumerative combinatorics.
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Three questions...

Question (Maximal values)
Characterise the maximal values of regular sequences.

In particular, where do they occur?

Question (Spectrum of values)
Characterise the image of a regular sequence.

What values can it take? Do they satisfy some sort of density property?

Question (Distribution of values)
Characterise the distribution of values of regular sequences.

How are the values distributed?
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Maximal values: the finiteness conjecture

Recall, the joint spectral radius of a finite set of matrices

M := {M1,M2, . . . ,Mk}, by the real number

ρ∗ = ρ∗(M) := lim
n→∞

max
16i1,i2,...,in6k

∥∥Mi1Mi2 · · ·Min

∥∥1/n.
Definition (Finiteness property)
The finite set of matrices M is said to satisfy the finiteness property

provided there is a finite product Mi0 · · ·Mim−1 of matrices from M such

that

ρ(Mi0 · · ·Mim−1)1/m = ρ∗(M).

Conjecture (Lagarias and Wang, 1995)
The finiteness property holds for all finite sets of integer matrices.
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Spectrum of values: Zaremba’s conjecture

For x ∈ (0, 1) we write the ordinary continued fraction expansion of x as

x = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

· · ·

.

The convergents of the number x are the rationals pn/qn := [a1, . . . , an]

and can be computed using the well-known relationship(
a1 1

1 0

)(
a2 1

1 0

)
· · ·

(
an 1

1 0

)
=

(
qn qn−1
pn pn−1

)
.

Let Dk the set of all denominators of convergents of real numbers

x ∈ (0, 1) whose partial quotients are bounded above by k .

Conjecture (Zaremba, 1972)
There is a positive integer k such that Dk = N.

11



The Zaremba sequence

We define the 2-regular Zaremba sequence, (q(n))n>1, by its linear

representation given by wT = v = (1 0) and

B0 =

(
1 1

1 0

)
, and B1 =

(
2 1

1 0

)
.
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M. Coons,

Mahler takes a regular view of Zaremba,

Integers 18A (2018), #A6, 1–15.
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(left) The ratio x−2
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A geometric approach to regular sequences
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. . .via measures

One can easily show that
∑2n−1

m=0 s(2n + m) = 3n, holds for all n ∈ N0.

Therefore, we define

µn :=
1

3n

2n−1∑
m=0

s(2n + m) δm/2n ,

and consider µ := limn→∞ µn.

Theorem (Lebesgue decomposition)
Any regular Borel measure µ on Rd has a unique decomposition

µ = µpp + µac + µsc

where µpp ⊥ µac ⊥ µsc and also |µ| = |µpp|+ |µac|+ |µsc|.
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Theorem (Baake and C. 2018)
The sequence (µn)n∈N0

of probability measures on T converges weakly

to a probability measure µ. In particular, one has µ0 = δ0 and µn =

∗n
m=1

1
3

(
δ0 + δ2−m + δ−2−m

)
for n > 1. The weak limit as n→∞ is given

by the convergent infinite convolution product

µ = ∗
m>1

1
3

(
δ0 + δ2−m + δ−2−m

)
.

Its Fourier transform µ̂ is given by µ̂(k) =
∏

m>1
1
3

(
1 + 2 cos(2πk/2m)

)
for k ∈ Z. Moreover, this infinite product is also well-defined on R, where

it converges compactly. Furthermore, µ is purely singular continuous.

The generating function of the Stern sequence satisfies

S(z) =
∑
n>0

s(n+1)zn =
∏
j>0

(
1 + z2

j

+ z2
j+1
)

=
∏
j>0

z2
j
(
z−2

j

+ z0 + z2
j
)
.
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General existence of ghost measures, I

Suppose f is a k-regular sequences with digit matrices, B0, . . . ,Bk−1 and

set B := B0 + · · ·+ Bk−1. Let

Σf (n) :=
kn+1−1∑
m=kn

f (m)

µf ,n :=
1

Σf (n)

kn+1−kn−1∑
m=0

f (kn + m) δm/kn(k−1).

Theorem (C., Evans and Mañibo)
Let f be a real-valued k-regular sequence. Suppose that ρ(B) is the

unique dominant eigenvalue of B, ρ(B) > ρ∗({B0, . . . ,Bk−1}) and that

the asymptotical behaviour of Σf (n) is determined by ρ(B). If the limit

Ff (x) of the sequence µf ,n([0, x ]) is a function of bounded variation, then

Ff (x) = µf ([0, x ]) is the distribution function of a measure µf , which is

continuous with respect to Lebesgue measure.

We call µf a Ghost Measure and Ff (x) a Ghost Distribution.
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Why a Ghost Measure?

Before moving on, we explain the name ghost measure. Neither Baake

and Coons nor Coons, Evans and Mañibo give a name to their

construction. The inspiration for ours comes from Berkeley’s critique of

infinitesimals in The Analyst, when he says that they are

... neither finite quantities nor quantities infinitely small, nor

yet nothing. May we not call them the ghosts of departed

quantities?

The values f (n) are (usually) much smaller than the sum of all terms, so

the individual pure points of the µN disappear in the averaging as N

tends to infinity. The measure µN is the ethereal imprint that is left

behind, the ghost of the departed pure points of the µN .

*From James Evans, The ghost measures of affine regular sequences,
Houston J. Math., to appear.
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Proof via relation to dilation equations

Daubechies and Lagarias,

Two-scale difference equations I, II, SIAM J. Math. Anal., 1991 and 1992.

We define the matrix-valued function Fρ : R→ Rd by

Fρ(x) · ρ =
k−1∑
a=0

BT
a · Fρ(kx − a), where Fρ(x) =

{
0 for x 6 0

vρ for x > 1.

The function Fρ exists and is unique since ρ > ρ∗. The function Fρ is

Hölder continuous with exponent α for any α < logk(ρ/ρ∗).

We have the relationship,

Ff (x) = µf ([0, x ]) =
wT
(

Fρ
( 1+(k−1)x

k

)
− Fρ

(
1
k

))
wT
(
vρ − Fρ

(
1
k

)) .
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Zaremba, Salem, and

the fractal nature of ghost distributions
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M. Coons,

Mahler takes a regular view of Zaremba,

Integers 18A (2018), #A6, 1–15.
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The points
(

k+1
211 ,

1
2·411

∑k
j=0 q(211 + j)

)
, for k = 0, . . . , 211 − 1.
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In the early 1940s, Salem gave a geometric construction of (the graphs

of) a family of strictly increasing singular continuous functions from [0, 1]

to [0, 1]. Consider Salem’s example, which is the unique attractor of the

iterated function system Ss = {S0,S1} : [0, 1]2 → [0, 1]2, where

S0

(
x

y

)
=

(
1/2 0

0 2/5

)(
x

y

)
, S1

(
x

y

)
=

(
1/2 0

0 3/5

)(
x

y

)
+

(
1/2

2/5

)
.
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Figure 1: The line segment from (0, 0) to (1, 1) after applying Ss , Salem’s

iterated function system, 0, 4 and 10 times.
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Figure 2: Salem’s attractor (left) and the Zaremba ghost distribution (centre),

and their point-wise difference, Salem minus Zaremba (right).
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From dilation equations to iterated function systems

Let k > 2 be an integer and f be a k-regular sequence where the spectral

radius ρ(B) is the unique dominant eigenvalue of B and ρ(B) > ρ∗(B),

and suppose that F(x) is the solution of the associated dilation equation.

Then the graph

Ff := {(x ,F(x)) : x ∈ [0, 1]} ⊂ [0, 1]d+1

of F(x) is a section of a self-affine set. In particular, Ff is the attractor of

the iterated function system Sf = {S0, . . . ,Sk−1} : [0, 1]d+1 → [0, 1]d+1

where, for j ∈ {0, 1, . . . , k − 1}, we have

Sj

y0
...

yd

 =

(
1/k 01×(k−1)

0(k−1)×1 ρ−1 Bj

)y0
...

yd

+

(
j/k∑j−1

a=0 ρ
−1 Bavρ

)
.
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The IFS and ghost distribution of Zaremba’s sequence
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x
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0 1/4 0


x

y

z

+

1/2

3/8

1/4

 .
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Lebesgue decomposition of regular ghost measures
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General existence of ghost measures, II

Theorem (C., Evans and Mañibo)
Let f be a nonnegative real-valued k-regular sequence with reduced rep-

resentation g = (w,B0, . . . ,Bk−1, x). If the spectral radius ρ(B) is the

unique simple maximal eigenvalue of B and there is a linear cone K fixed

by each Bi , then µf = µg exists.

Let f be a nonnegative real-valued k-regular sequence of degree d with

d × d linear representation (u,A0, . . . ,Ak−1, v) and suppose that

A :=
∑k−1

i=0 Ai has a unique (not necessarily simple) maximal eigenvalue

ρ. Then there is a nonnegative k-regular sequence g of degree dg 6 d

with dg × dg linear representation (w,B0, . . . ,Bk−1, x) such that

• Σg (N) = ρN for all N > 0,

• x is a ρ-eigenvector of B :=
∑k−1

i=0 Bi , and

• ρ has equal algebraic and geometric multiplicities as a B-eigenvalue.

Moreover, if the ghost measure µf exists, so does µg , and they are equal.
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Spectral purity of ghost measures

Theorem (Lebesgue decomposition)
Any regular Borel measure µ on Rd has a unique decomposition

µ = µpp + µac + µsc

where µpp ⊥ µac ⊥ µsc and also |µ| = |µpp|+ |µac|+ |µsc|.

Theorem (C., Evans and Mañibo)
The measure µf provided by the above theorem is spectrally pure. That

is, µf is either discrete, or singular continuous, or absolutely continuous,

with respect to Lebesgue measure.

The proof follows by showing D-ergodicity. Recall that a set Z is

D-invariant if Z + d = Z for all d ∈ D and a regular Borel measure µ is

D-ergodic if µ(Z ) ∈ {0, 1} for every D-invariant set Z . The countable

subgroup of T we use is D := 1
k−1 · Z

[
1
k

]
(mod 1).
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Determining the spectral type

Given a finite set of matrices {B1, . . . ,Bk}, in our case associated to a

nonnegative k-regular sequence f , we have a fundamental inequality,

ρ

k
6 ρ∗ 6 ρ := ρ(B1 + B2 + · · ·+ Bk).

• The ghost measure µf is continuous if and only if ρ∗ < ρ. That is,

µf is pure point if and only if ρ∗ = ρ.

• If µf is continuous and ρ/k < ρ∗, then µf is singular continuous.

• Suppose that ρ∗ = ρ/k and additionally that there is a d > 0 such

that

max
16i1,i2,...,in6`

∥∥Bi1Bi2 · · ·Bin

∥∥ 6 d(ρ∗)n,

for each n > 1. Then µf is absolutely continuous.
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Continuous ghost measures have a level-set construction

Define the set of intervals

Ik :=

{
I`,m =

[
m − k`

k`(k − 1)
,
m + 1− k`

k`(k − 1)

)
: ` > 0, k` 6 m < k`+1

}
.

Proposition (Level-set construction)
Let f be a nonnegative real-valued k-regular sequence with reduced lin-

ear representation (w,B0, . . . ,Bk−1, x) and suppose that µf exists and is

continuous. If ν is the measure on [0, 1) defined by

ν(I`,m) =
wTB(m)k x

ρ`

for all I`,m ∈ Ik , then ν = µf .
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Example: Stern sequence
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so µs is singular continuous.
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Examples: 2-Zaremba sequence
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Some questions and further work

• Work out the characterisation of the absolutely continuous case.

• To what extent does specialising to the (nonnegative) integer case

of regular sequences help? (possibility of Diophantine-type gaps?)

ρ̄ 6
ρ

k
6 ρ∗ 6 ρ

• Determine multifractal spectrum of singular continuous ghost

measures.

• Explore the possibility of “effective” versions of certain Fα sets.
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Thank you, Merci, Danke.
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