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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

0
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

01

Michael Drmota Automatic Sequences along Primes and Squares



⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

0110
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

01101001
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

0110100110010110
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

01101001100101101001011001101001
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·

t0 = 0, t2n+k = 1−tk (0 6 k < 2n)
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·

t0 = 0, t2n+k = 1−tk (0 6 k < 2n)

t(n) = s2(n) mod 2

n =

ℓ−1
∑

i=0

εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}, sq(n) =

ℓ−1
∑

i=0

εi(n)
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·

t0 = 0, t2n+k = 1−tk (0 6 k < 2n) or t2k = tk , t2k+1 = 1−tk

t(n) = s2(n) mod 2

n =

ℓ−1
∑

i=0

εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}, sq(n) =

ℓ−1
∑

i=0

εi(n)

Michael Drmota Automatic Sequences along Primes and Squares



⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·

# {0 6 n < N : t(n) = 0} ∼
N

2
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⋆ Thue-Morse sequence

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·

# {0 6 n < N : t(n) = 0} ∼
N

2

The letters 0 and 1 appear with asymptotic frequency 1
2 :

dens(t(n),0) = dens(t(n),1) =
1

2
.
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⋆ Thue-Morse sequence

TM sequence is not periodic and cubeless.

TM sequence is almost periodic:

Every appearing consecutive block appears infinitely many times

with bounded gaps.

Subword complexity is linear: pk 6 10
3 k

pk ... subword complexity (number of different consecutive blocks

of length k that appear in the TM sequence).

Zero topological entropy of the corresponding dynamical

system:

h = limk→∞
1
k log pk = 0

Linear subsequences (tan+b)n>0 have the same properties.

The TM sequence and its linear subsequences are automatic

sequences.
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⋆ Thue-Morse sequence

Automaton that generates the Thue-Morse sequence:

t(n) =
∑

j>0 εj(n) mod 2

s1 / 0 s2 / 1

1

1

0 0
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (r(n))n>0:
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (r(n))n>0:

000100100001110100010010111000100001001000011101111 · · ·
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (r(n))n>0:

000100100001110100010010111000100001001000011101111 · · ·

r0 = 0, r2k = rk , r2k+1 =

{

rk if k is even,

1 − rk if k is odd.
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⋆ Rudin-Shapiro sequence

Rudin-Shapiro sequence (r(n))n>0:

000100100001110100010010111000100001001000011101111 · · ·

r0 = 0, r2k = rk , r2k+1 =

{

rk if k is even,

1 − rk if k is odd.

r(n) =
∑

i>0

εi(n)εi+1(n) mod 2

n =

ℓ−1
∑

i=0

εi(n)q
i εi(n) ∈ {0,1, . . . ,q − 1}
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⋆ Rudin-Shapiro sequence

Automaton that generates the Rudin-Shapiro sequence:

r(n) =
∑

j>0 εj(n)εj+1(n) mod 2

s1 / 0 s2 / 0

1
0

0

s3 / 1 s4 / 1

0 0

1

1

1
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·

Michael Drmota Automatic Sequences along Primes and Squares



⋆ Thue-Morse sequence along primes

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2010):

# {0 6 n < N : t(pn) = 0} ∼
N

2
or dens(t(pn),0) =

1

2
.
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2010):

# {0 6 n < N : t(pn) = 0} ∼
N

2
or dens(t(pn),0) =

1

2
.

Solution of a Conjecture of Gelfond (1968)
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⋆ Thue-Morse sequence along primes

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2010):

# {0 6 n < N : t(pn) = 0} ∼
N

2
or dens(t(pn),0) =

1

2
.

Solution of a Conjecture of Gelfond (1968)

The same property holds for the Rudin-Shapiro sequence r(n)
(Mauduit and Rivat (2015)).
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101 · · ·
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2009):

# {0 6 n < N : t(n2) = 0} ∼
N

2
or dens(t(n2),0) =

1

2
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2009):

# {0 6 n < N : t(n2) = 0} ∼
N

2
or dens(t(n2),0) =

1

2

Solution of a Conjecture of Gelfond (1968)
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⋆ Thue-Morse sequence along squares

Thue-Morse sequence (t(n))n>0:

011010011001011010010110011010011001011001101· · ·

Mauduit and Rivat (2009):

# {0 6 n < N : t(n2) = 0} ∼
N

2
or dens(t(n2),0) =

1

2

Solution of a Conjecture of Gelfond (1968)

The same property holds for the Rudin-Shapiro sequence r(n)
(Mauduit and Rivat (2018)).
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3 u32 = a,
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3 u32 = a, 61 = (2021)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3 u32 = a, 61 = (2021)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3 u32 = a, 61 = (2021)3
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⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.
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1

1

0 0

0

2

22

32 = (1012)3 u32 = a, 61 = (2021)3

Michael Drmota Automatic Sequences along Primes and Squares



⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3 u32 = a, 61 = (2021)3 u61 = b

Michael Drmota Automatic Sequences along Primes and Squares



⋆ Automatic sequences

Definition

A sequence (a(n))n>0 is called a q-automatic sequence, if a(n) is the

output of an automaton when the input is the q-ary expansion of n.

s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

32 = (1012)3 u32 = a, 61 = (2021)3 u61 = b

(a(n))n>0 : aaaaabaabaabaaabbaaabaaabbaaabaaabbaaaaaaba . . .
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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

Michael Drmota Automatic Sequences along Primes and Squares



s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0





32 = (1012)3 : M2 ◦ M1 ◦ M0 ◦ M1





1

0

0



 =





1

0

0




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0





32 = (1012)3 : Mx ◦ M2 ◦ M1 ◦ M0◦M1





1

0

0



 =





0

1

0




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0





32 = (1012)3 : Mx ◦ M2 ◦ M1◦M0 ◦ M1





1

0

0



 =





0

1

0




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0





32 = (1012)3 : Mx ◦ M2◦M1 ◦ M0 ◦ M1





1

0

0



 =





1

0

0




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0





32 = (1012)3 : Mx◦M2 ◦ M1 ◦ M0 ◦ M1





1

0

0



 =





0

1

0




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s1/a s2 /a

s3 /b

1

1

1

0 0

0

2

22

M0 =





1 0 0

0 1 0

0 0 1



 M1 =





0 1 0

1 0 0

0 0 1



 M2 =





0 0 1

1 0 0

0 1 0





S(n) := Mε0(n)Mε1(n) · · ·Mεℓ−1(n)

a(n) = f (S(n)e1) e1 =
(

1 0 0
)T
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⋆ Automatic sequences

For every q-automatic sequence a(n) (on an alphabet A) there

exists the logarithmic density (for every letter α ∈ A)

logdens(a(n), α) = lim
N→∞

1

log N

∑

16n6N

1

n
· I[a(n)=α]

which is also computable.

If the densities

dens(a(n), α) = lim
N→∞

1

N
#{n 6 N : a(n) = α}

exist then they coincide with the logarithmic densities.

It can be effectively decided whether densities exist (as for the

Thue-Morse sequence t(n) and the Rudin-Shapiro sequence

r(n)).
The matrix M = M0 + · · ·+ Mq−1 plays an important role:

∑

n<qλ

S(n) =
∑

n<qλ

Mε0(n)Mε1(n) · · ·Mεℓ−1(n)
=

(

M0 + · · ·+ Mq−1

)λ
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⋆ Automatic sequences

We will say that an automatic sequence is primitive and prolongable

if the directed graph of the corresponding minimal automaton is

strongly connected and the initial state has a 0-labeled loop.

Lemma

For every primitive and prolongable automatic sequence a(n) the

densities

dens(a(n), α) = lim
N→∞

1

N
#{n 6 N : a(n) = α}

exist

Proof with matrix product representation and Perron-Frobenius theory.
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⋆ Automatic sequences

Proof

b(n) = S(n)e1. The j-component of b(n) equals 1 if we stop in state j .

M = M0 + · · ·+ Mq−1 is primitive matrix;

q is dominant eigenvalue;

P projection to dominant eigen-direction.

∑

n<qλ

b(n) = Mλe1 = qλPe1 + O(qλ(1−ε))

=⇒ Pe1 is vector of (rational) frequencies.
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⋆ Automatic sequences

Example. Leading digit, q > 3

a(n) ... leading digits of n in the q-ary expansion.

a(n) = ℓ ⇐⇒ ℓqk
6 n < (ℓ+ 1)qk for some k > 0

1

ℓqk
#{n < ℓqk : a(n) = ℓ} =

1

ℓqk

qk − 1

q − 1
∼

1

ℓ(q − 1)

1

(ℓ+ 1)qk
#{n < (ℓ+1)qk : a(n) = ℓ} =

1

(ℓ+ 1)qk

qk+1 − 1

q − 1
∼

q

(ℓ+ 1)(q −

Hence, no densities exist!!

∑

ℓqk6n<(ℓ+1)qk

1

n
∼ log

(

1 +
1

ℓ

)

=⇒ logdens(a(n), ℓ) = logq

(

1 +
1

ℓ

)
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⋆ Automatic sequences

initial state

strongly 
connected
final 
component 1

strongly 
connected
final 
component 2

a a

a

n
n

n

(1)

(2)

Suppose that a
(1)
n and a

(2)
n are produced by the two final components.

If the densities for a
(1)
n and a

(2)
n exist and are equal then an has the

same densities.

If the densities for a
(1)
n and a

(2)
n exist but are not equal then an has

logarithmic densities.
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⋆ Automatic sequences

Theorem

For every automatic sequence a(n) the logarithmic densities

logdens(a(n), α) exist and are computable.

Furthermore, if the densities of those automatic sequences that

correspond to the final strongly connected components coincide then

the densities dens(a(n), α) exist and are computable rational numbers.
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⋆ Automatic sequences along primes

Theorem (Adamczewski+D.+Müllner 2020+)

For every automatic sequence a(n) the logarithmic densities

logdens(a(pn), α) of the subsequence along prime numbers exist and

are computable.

Furthermore, if the densities along primes on those automatic

sequences that correspond to the final strongly connected components

coincide then the densities dens(a(p), α) exist and are computable

rational numbers.

Theorem (Adamczewski+D.+Müllner 2020+)

For any automatic sequence a(n) there exists a computable positive

integer m such that, for all α, logdens(a(pn), α) is equal to the

logarithmic density of a(n) along the integers n satisfying (n,m) = 1.
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⋆ Automatic sequences along squares

Theorem (Adamczewski+D.+Müllner 2020+)

For every automatic sequence a(n) the logarithmic densities

logdens(a(n2), α) of the subsequence along squares exist and are

computable.

Furthermore, if the densities along squares on those automatic

sequences that correspond to the final strongly connected components

coincide then the densities dens(a(n2), α) exist and are also

computable. If the input base q is prime, then these densities are

rational numbers.
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⋆ Automatic sequences along primes squares

Equivalently one can say that for all automatic sequences a(n) the

following two limits exist:

lim
N→∞

1

log N

∑

n6N

1

n
a(n)Λ(n) and lim

N→∞

1

log N

∑

n6N

1

n
a(n2).

And it can be decided when the logarithmic means can be replaced by

the usual means:

lim
N→∞

1

N

∑

n6N

a(n)Λ(n) and lim
N→∞

1

N

∑

n6N

a(n2).

Λ(n) denotes the von Mangoldt Λ-function

(Λ(n) = log p for prime powers n = pk and Λ(n) = 0 else.)
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⋆ Paper folding sequence

(a(n)) = 1|1|0|1|100|1|1100100| · · ·

primes: m = 2 (it suffices to consider odd numbers)

dens(a(pn),0) = dens(a(pn),1) =
1

2

squares:

dens(a(n2),1) = 1, dens(a(n2),0) = 0.
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⋆ Automatic sequences along subsequences

We call a strictly increasing subsequences (nℓ)ℓ>0 of the positive

integers regularly varying sequences, if

nℓ = ℓγL(ℓ) ,

where γ > 1 and L(n) is slowly varying in the sense that

lim
ℓ→∞

L(⌈δℓ⌉)

L(ℓ)
= 1 (for all 0 < δ < 1)

The sequence of primes, polynomial sequences, and

Piatetski-Shapiro sequences (i.e., ⌊nc⌋, where c > 1) are regularly

varying sequences.
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⋆ Automatic sequences along subsequences

Theorem (Adamczewski+D.+Müllner 2020+)

Suppose that (nℓ)ℓ>0 is a regularly varying sequence and suppose that

for any primitive and prolongable automatic sequence ã(n) the

densities along the subsequence (nℓ) exit:

dens(ã(nℓ), α) := lim
N→∞

{ℓ 6 N : ã(nℓ) = α}

N

Then the two following properties hold.

(i) Then for every automatic sequence a(n) the logarithmic densities

logdens(a(nℓ), α) exist and can be explicitly computed.

(ii) Furthermore, if the densities along the subsequence nℓ

corresponding to those automatic sequences that are generated

by the final strongly connected components of the directed graph

are all equal then the densities dens(a(nℓ), α) exist and are equal

to them.
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⋆ Automatic sequences along subsequences

Proposition (Müllner 2017)

Let a(n) be a prolongable and primitive automatic sequence.

Then the density of a(n) = α exist along the subsequence of primes.

Proposition

Let a(n) be a prolongable and primitive automatic sequence.

Then the density of a(n) = α exist along the subsequence of squares.
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⋆ Reduction of automatic sequences

Lemma (Müllner 2017)

Let a(n) be a primitive and prolongable q-automatic sequences. Then

it can be represented in the form

a(n) = f (s(n),T (n)),

where s(n) is a pure synchronizing q-automatic sequence and T (n)
takes values in a finite group G with the following property. For every

j < q and every q there exists gj ,q ∈ G such that

T (n · q + j) = T (n) · gj ,s(n)

holds for all n ∈ N.

The synchronizing part can be handled with the help of residue class

considerations, however, for the group structure we need a

representation theoretic analysis.
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⋆ Carry propery

Ud ... set of unitrary d × d matrices, fλ(n) = f (n mod qλ)

Definition

A function f : N → Ud has the Carry property if there exists η > 0 such

that uniformly for (λ, α, ρ) ∈ N
3 with ρ < λ, the number of integers

0 ≤ ℓ < kλ such that there exists (n1,n2) ∈ {0, . . . ,qα − 1}2 with

f (ℓqα + n1 + n2)
H f (ℓqα + n1) 6= fα+ρ(ℓq

α + n1 + n2)
H fα+ρ(ℓq

α + n1)

is at most O(qλ−ηρ) where the implied constant may depend only on q

and f .
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⋆ Fourier propery

Definition

Given a non-decreasing function γ : R → R satisfying

limλ→∞ γ(λ) = +∞ and c > 0 we let Fγ,c denote the set of functions

f : N → Ud such that for (α, λ) ∈ N
2 with α ≤ cλ and t ∈ R:

∥

∥

∥

∥

∥

∥

q−λ
∑

u<qλ

f (uqα)e(−ut)

∥

∥

∥

∥

∥

∥

F

≤ q−γ(λ).

We say in this case that f has the Fourier property.
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⋆ Automatic sequences along primes

Theorem (Müllner 2017, generalization of Mauduit+Rivat 2015)

Let γ : R → R be a non-decreasing function satisfying

limλ→∞ γ(λ) = +∞, and f ∈ Fγ,c be a function satisfying the Carry

property for some η ∈ (0,1] and the Fourier property for some c ≥ 10.

Then for any θ ∈ R we have

∥

∥

∥

∥

∥

∥

∑

n≤x

Λ(n)f (n)e(θn)

∥

∥

∥

∥

∥

∥

2

≪ c1(q)(log x)c2(q)xq−ηγ(2⌊(log x)/(80 log q)⌋)/20.
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⋆ Automatic sequences along squares

Theorem (Generalization of Mauduit+Rivat 2018)

Let γ : R → R be a nondecreasing function satisfying

limλ→∞ γ(λ) = ∞, and letf ∈ Fγ,c be a function satisfying the Carry

property for some η ∈ (0,1] and the Fourier property for some c ≥ 18.

Then for any θ ∈ R, we have

∥

∥

∥

∥

∥

∥

∑

0<n≤x

f (n2)e(nθ)

∥

∥

∥

∥

∥

∥

2

≪d ,f ,q (log x)ω(q)+2
(

xq−
ηγ(2⌊(3 log x)/(100 log q)⌋)

56

)

,

where the absolute implied constant only depends on d , f and q.
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⋆ Automatic sequences along primes and squares

Application for

f (n) = D(T (n)),

where D : G → Ud is a unitary and irreducible representation of the

group G.

By Fourier analysis on G and by considering residue classes (for s(n))
leads to the (limiting) distributional behavior of

a(n) = f (s(n),T (n))

along primes and squares.
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Thank you!
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