Automorphisms and Factors of Finite Topological Rank Systems

One World Numeration Seminar

June 1, 2021

Bastián Espinoza

Universidad de Chile Université de Picardie Jules Verne

- 2. $\mathcal S\text{-}\mathsf{adic}$ representations and finite topological rank systems
- 3. Automorphisms and factors of finite topological rank systems
- 4. Open problems

2. S-adic representations and finite topological rank systems

3. Automorphisms and factors of finite topological rank systems

4. Open problems

- A system is a pair (X, T), where X is a compact metrizable space and T: X → X an homeomorphism.
- We will consider only minimal systems (X, T), *i.e.* s.t. every orbit orb_T(x) := {T^kx : k ∈ ℤ} is dense in X.
- For $n \ge 0$, let $\sigma_n \colon \mathcal{A}_{n+1}^+ \to \mathcal{A}_n^+$ be a substitution *i.e.* a map s.t. $\sigma_n(uv) = \sigma_n(u)\sigma_n(v)$ for all words $u, v \in \mathcal{A}_{n+1}^+$. We write $\sigma_{[n,N]} = \sigma_n \cdots \sigma_{N-1}$.
- If $\sigma := (\sigma_n)_{n \ge 0}$ satisfy $\lim_{n \to \infty} \min_{a \in \mathcal{A}_{n+1}} |\sigma_{[0,n)}(a)| = \infty$, then we call it a **directive sequence**.
- Solution σ_n is proper if there exist a, b ∈ A_n s.t. σ_n(c) starts with a and ends with b for all c ∈ A_{n+1}.

The *n*-th *S*-adic subshift X⁽ⁿ⁾_σ is the set of all sequences x ∈ A^ℤ_n s.t. for any ℓ ≥ 0, x_[-ℓ,ℓ] occurs in σ_n · · · σ_N(a) for some N ≥ n and a ∈ A_{N+1}. Alternatively, x ∈ X⁽ⁿ⁾_σ iff x ∈ ∪_{k∈ℤ} T^kσ_{[n,N)}(A^ℤ_N) for all N ≥ n. We set X_σ := X⁽⁰⁾_σ.

Example: Let $\mathcal{A} = \{0, 1\}$, σ be the Fibonacci substitutions (*i.e.* $0 \mapsto 01$, $1 \mapsto 0$) and $\sigma = (\sigma)_{n \ge 0}$. Then $\sigma^2(0) = 010$, $\sigma^2(1) = 01$ and $\sigma^4(0) = 01001010$, $\sigma^4(1) = 01001$.

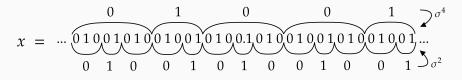


Figure: The point x belongs to $\sigma^2(\mathcal{A}^{\mathbb{Z}})$ and $\sigma^4(\mathcal{A}^{\mathbb{Z}})$.

- The pair $(X_{\sigma}^{(n)}, T)$ is a system, where $T((x_n)_{n \in \mathbb{Z}}) = (x_{n+1})_{n \in \mathbb{Z}}$ is the shift.
- **2** When σ is constant, X_{σ} is the usual substitutive subshift associated to σ .
- A contraction of σ is a directive sequence of the form
 σ' = (σ_{[0,n1}), σ_{[n1,n2}),...). Since σ and σ' generate the same S-adic subshift X_σ, we usually identify σ with its contractions.

2. $\mathcal S\text{-}\mathsf{adic}$ representations and finite topological rank systems

- 3. Automorphisms and factors of finite topological rank systems
- 4. Open problems

$\mathcal S\text{-}\mathsf{adic}$ representations and their importance

One of the things that make the S-adic representations interesting is that it is possible to characterize many classes of zero entropy subshifts as particular S-adic subshifts and study them using this representation.

Class of system		Type of directive sequence
Sturmian		Belonging to $\{\sigma_0, \sigma_1\}^{\mathbb{N}-1}$
Substitutional		Constant
Linearly Recurrent	1	Proper, primitive and bounded
Interval Exchange	\Leftrightarrow	Infinite path in Rauzy graph
Dendric		Infinite path in a known graph
Toeplitz		Proper and constant length
Sublinear complexity		?

$${}^{1}\sigma_{i}$$
: $\{0,1\}^{+} \to \{0,1\}^{+}$ is defined by $\sigma_{i}(1-i) = i \cdot (1-i) \in \{0,1\}^{2}$ and $\sigma_{i}(i) = 1-i$.

Automorphisms and Factors of Finite Topolog

Finite topological rank systems

- We say that σ is **recognizable** if for all $x \in X_{\sigma}$ and $n \ge 1$ there is a unique pair $(y, k) \in X_{\sigma}^{(n)} \times \mathbb{Z}$ s.t. $x = T^k \sigma_{[0,n)}(y)$ and $k \in \{0, 1, \ldots, |\sigma_{[0,n)}(y_0)| 1\}$.
- The recognizable property is equivalent to the fact that
 {*T^k*σ_{[0,n)}([*a*]) : *a* ∈ *A_n*, *k* ∈ {0, 1, ..., |σ_{[0,n)}(*a*)| − 1}} is a partition of
 X for all *n* ≥ 1.
- We say that a minimal subshift (X, T) has topological rank at most *K* if it is generated by a *recognizable* and *proper* directive sequence
 σ = (σ_n: A⁺_{n+1} → A⁺_n)_{n≥0} s.t. sup_{n≥0} #A_n ≤ K.
- The examples of the previous slide have finite topological rank (with the exception of some Toeplitz subshifts).

Although the finite top. rank class contains a broad spectrum of minimal subshifts, it is possible to prove general theorems for it.

For example, in a finite top. rank system (X, T),

- there is zero entropy (Handelman and Boyle, 1994);
- there are finitely many ergodic measures (Bezuglyi, Kwiatkowski, Medynets, Solomyak, 2013);
- the rational dimension of its dimension group is finite (Herman, Putnam, Skau, 1999);
- there is criteria for deciding if a given complex number is a measurable or topological eigenvalue (Durand, Frank, Maass, 2019).

2. S-adic representations and finite topological rank systems

- 3. Automorphisms and factors of finite topological rank systems
- 4. Open problems

Automorphisms and asymptotic pairs

- Recall that $\operatorname{Aut}(X, T) = \{g \colon X \to X \colon g \text{ bicontinuous, } g \circ T = T \circ g\}$ and $\langle T \rangle := \{T^n \colon n \in \mathbb{Z}\}.$
- An asymptotic pair in (X, T) is a tuple (x, y) ∈ X × X satisfying lim_{n→∞} dist(Tⁿx, Tⁿy) = 0. We define the equivalence relation x ~ y iff (x, T^ky) is an asymptotic pair for some k ∈ Z, and AC(X, T) as the ~-equivalence classes which are not the orbit of a single point.
- Solution Aut(X, T)/⟨T⟩ acts faithfully on AC(X, T) when (X, T) is an infinite minimal subshift [DDMP16].
- (*X*, *T*) has **non-superlinear complexity** if $\liminf_{n\to\infty} p_X(n)/n < \infty$, where $p_X(n)$ is the number of words of length *n* occurring in *X*.

Theorem (Donoso, Durand, Maass, Petite (2016))

An infinite minimal subshift with non-superlinear complexity has finitely many asymptotic pairs up to shifts. Consequently, $Aut(X, T)/\langle T \rangle$ is finite.

Automorphisms and asymptotic pairs

It is possible to generalize the previous result:

Theorem (E., Maass (2019))

A minimal subshift of finite top. rank has finitely many asymptotic pairs. Consequently, $Aut(X, T)/\langle T \rangle$ is finite.

The main tool of the proof is the following purely combinatorial theorem.

Theorem

Let $\mathcal{W} \subseteq \mathcal{A}^+$ be a finite set of words and $\langle \mathcal{W} \rangle = \min_{w \in \mathcal{W}} |w|$. Then, there exists $\mathcal{B} \subseteq \mathcal{A}^{\langle \mathcal{W} \rangle}$ with no more than $122 \# \mathcal{W}^7$ elements s.t. if $x, y \in \mathcal{A}^{\mathbb{Z}}$ are factorizable over \mathcal{W} (i.e. $T^k x, T^\ell y \in \mathcal{W}^{\mathbb{Z}}$ for some $k, \ell \in \mathbb{Z}$), $x_{(-\infty,0)} = y_{(-\infty,0)}$ and $x_0 \neq y_0$, then $x_{[-\langle \mathcal{W} \rangle, 0)} \in \mathcal{B}$.

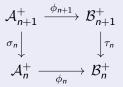
Symbolic factors and their top. rank

Theorem (E. 2020)

Let $\pi: (X_{\sigma}, T) \to (Y, T)$ be a factor between minimal subshifts, where $\sigma = (\sigma_n: \mathcal{A}_{n+1}^+ \to \mathcal{A}_n^+)_{n\geq 0}$ is a recognizable and proper directive sequence. Then, (up to a contraction of σ) there exist sequences of substitutions $\tau = (\tau_n: \mathcal{B}_{n+1}^+ \to \mathcal{B}_n^+)_{n\geq 0}, \ \phi = (\phi_n: \mathcal{A}_n^+ \to \mathcal{B}_n^+)_{n\geq 1}$ s.t.

- τ is a recognizable directive sequence generating (Y, T);
- $@ #\mathcal{B}_n \leq #\mathcal{A}_n \text{ for all } n \geq 0;$

• the following diagram commutes for any $n \ge 1$:



In particular, the top. rank of (Y, T) is at most the one of (X, T).

More on symbolic factors

Corollary

A minimal subshift (X, T) has finite top. rank iff

 $\liminf_{n\to\infty}\min\{\#\mathcal{W}:\mathcal{W}\subseteq\mathcal{A}^+,\ \langle\mathcal{W}\rangle\geq n,\ X\subseteq\bigcup_{k\in\mathbb{Z}}T^k\mathcal{W}^{\mathbb{Z}}\}<\infty,$

where $\langle \mathcal{W} \rangle := \min\{|w| : w \in \mathcal{W}\}.$ In particular, (X, T) has finite top. rank iff it is generated by a directive sequence $\boldsymbol{\tau} = (\tau_n : \mathcal{B}_{n+1}^+ \to \mathcal{B}_n^+)_{n \geq 0} \text{ s.t. } \liminf_{n \geq 0} \mathcal{B}_n < \infty.$

Corollary

Let $\pi: (X, T) \to (Y, T)$ be a factor, where (X, T) has finite top. rank and Y is totally disconnected. Then, (Y, T) has finite top. rank (in particular, it is a subshift).

More on symbolic factors

Corollary

A finite top. rank system is **coalescent**. Moreover, in any infinite chain of symbolic factors, $(X, T) \xrightarrow{\pi_1} (X_1, T) \xrightarrow{\pi_2} \dots$, there are only finitely many maps π_i which are not conjugacies.

Theorem

A symbolic factor $\pi: (X, T) \to (Y, T)$ between aperiodic minimal finite top. rank subshifts is almost k-to-1 for some finite $k \in \mathbb{N}$, this is, for all y in a residual subset of Y we have $\#\pi^{-1}(y) = k$.

Theorem

Let (X, T) be a finite top. rank subshift. Then, it has finitely many aperiodic symbolic factors up to conjugacy.

2. S-adic representations and finite topological rank systems

3. Automorphisms and factors of finite topological rank systems

4. Open problems

Let (X, T) be a finite top. rank system.

- We have a good description of totally disconnected factors of (X, T).
 What about the connected factors? We conjecture they are all equicontinuous.
- What can be said about the maximal equicontinuous factor of (X, T)? e.g. size of the fibers, structure theorem for it.
- Find an S-adic characterization of the class of non-superlinear-complexity minimal subshifts.

Automorphisms and Factors of Finite Topological Rank Systems

One World Numeration Seminar

June 1, 2021

Bastián Espinoza

Universidad de Chile Université de Picardie Jules Verne