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I. Khintchine Spectrum
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Continued fractions

Every irrational number x ∈ (0, 1) admits a continued fraction expansion of
the form:

x =
1

a1(x) +
1

a2(x) +
. . . +

1

an(x) +
. . .

=: [a1(x), a2(x), · · · , an(x), · · · ],

where an(x) are positive integers, and are called the partial quotients. See
Khintchine (1964) for more information of continued fractions.
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Khintchine exponent

For x ∈ (0, 1)\Q, we define the Khintchine exponent of x as the growth
rate of the geometric average of partial quotients, namely,

k(x) := lim
n→∞

log a1(x) + · · ·+ log an(x)

n

if the limit exists. For example,
√
5−1
2

= [1, 1, · · · , 1, · · · ], we have k(
√
5−1
2

) = 0;

e− 2 = [1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, · · · ], we have k(e− 2) =∞.

In fact, for any α ∈ [0,∞], there exists x ∈ (0, 1)\Q such that k(x) = α.
Moreover, the level set {x ∈ (0, 1)\Q : k(x) = α} is uncountable and dense,
but is of first Baire category.
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Theorem (Khintchine, 1935)

For Lebesgue almost all x ∈ (0, 1),

k(x) = γ,

where γ is given by

γ :=
∞∑
n=1

log n

log 2
· log

(
1 +

1

n(n+ 2)

)
≈ 0.987849.
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The dimensional function

[0,∞] 3 α 7→ K(α) := dimH

{
x ∈ (0, 1) : k(x) = α

}
is called the Khintchine spectrum.

Theorem (Fan, Liao, Wang & Wu, 2009)

The Khintchine spectrum satisfies the following properties:

it is real analytic in (0,∞);

it has a unique maximum at point γ;

it is strictly increasing in [0, γ) and strictly decreasing in [γ,∞);

it is neither convex nor concave;

limα→∞K(α) = 1/2.
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Figure 1. The graph of K(·)
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Proposition (Iommi & Jordan, 2015)

K(∞) =
1

2
.
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II. Fast Khintchine Spectrum
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Fast Khintchine exponent

Let ψ : N → R+ be a function satisfying ψ(n)/n → ∞ as n → ∞. The
fast Khintchine exponent of x, relative to ψ, is defined by

kψ(x) := lim
n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)

if the limit exists. For example, let φ(n) := n log n, then kφ(e− 2) = 1/3.
For Lebesgue almost all x ∈ (0, 1), kψ(x) = 0.
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The dimensional function

[0,∞] 3 α 7→ Kψ(α) := dimH

{
x ∈ (0, 1) : kψ(x) = α

}
is called the fast Khintchine spectrum relative to ψ. Clearly, Kψ(0) = 1.

Theorem (Fan, Liao, Wang & Wu, 2013)

Let 0 < α <∞. Assume that ψ : N→ R+ is non-decreasing. Then

Kψ(α) =
1

β + 1
, with β := lim sup

n→∞

ψ(n+ 1)

ψ(n)
.

For the case α =∞, we will see below that

Kψ(∞) =
1

B + 1
.
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Upper bound of Kψ(α)

Define qn(x) by the the recursive formula:

qn(x) = an(x)qn−1(x) + qn−2(x)

with the conventions q−1 ≡ 0 and q0 ≡ 1. Then

n∏
k=1

ak(x) ≤ qn(x) < 2n
n∏
k=1

ak(x),

and so

kψ(x) = lim
n→∞

log qn(x)

ψ(n)
.
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If kψ(x) = α, then

lim sup
n→∞

log qn+1(x)

log qn(x)
= lim sup

n→∞

ψ(n+ 1)

ψ(n)
= β.

Equivalently,

µ(x) := 1 + lim sup
n→∞

log qn+1(x)

log qn(x)
= β + 1,

where µ(x) is the irrationality exponent of x in Diophantine approximation.
It follows form a result of Jarńık (1929) that

Kψ(α) ≤ dimH

{
x ∈ (0, 1) : µ(x) = β + 1

}
=

2

β + 1
,

which is strictly greater than the desired upper bound of Kψ(α).

Lulu Fang (NJUST) Upper and Lower Fast Khintchine Spectra October 5, 2021 14 / 25



Note that
{
x ∈ (0, 1) : kψ(x) = α

}
⊆
{
x ∈ (0, 1) : k(x) = ∞

}
, so we

guess that the Hausdorff dimension of the intersection of{
x ∈ (0, 1) : µ(x) = β + 1

}
and

{
x ∈ (0, 1) : k(x) =∞

}
will approximate the required upper bound of Kψ(α).

Lemma

For 1 ≤ β ≤ ∞,

dimH

{
x ∈ (0, 1) : µ(x) = β + 1, k(x) =∞

}
=

1

β + 1
.
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III. Upper and Lower Fast Khintchine
Spectra
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Upper and Lower Fast Khintchine exponent

The upper and lower fast Khintchine exponent of x, relative to ψ, are defined
by

kψ(x) := lim sup
n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)

and

kψ(x) := lim inf
n→∞

log a1(x) + · · ·+ log an(x)

ψ(n)

respectively. Then for Lebesgue almost all x ∈ (0, 1), kψ(x) = kψ(x) = 0.
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The dimensional functions

[0,∞] 3 α 7→ Kψ(α) := dimH

{
x ∈ (0, 1) : kψ(x) = α

}
and

[0,∞] 3 α 7→ Kψ(α) := dimH

{
x ∈ (0, 1) : kψ(x) = α

}
are respectively called upper and lower fast Khintchine spectra relative to ψ.
Then Kψ(0) = Kψ(0) = 1. For a positive and finite α, these two spectra
have been studied by Liao and Rams (2016) under some restrictions on the
growth rate of ψ.
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Theorem (F., Shang & Wu, 2021)

Let 0 < α ≤ ∞. Then

Kψ(α) =
1

b+ 1
and Kψ(α) =

1

B + 1
,

where b, B ∈ [1,∞] are given by

log b := lim inf
n→∞

logψ(n)

n
and logB := lim sup

n→∞

logψ(n)

n
.

Remarks:

(i). For the case 0 < α < ∞, Liao & Rams (2016) obtained the
same result when b, B > 1.

(ii). Kψ(∞) = Kψ(∞) = 1/(B + 1).
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Upper bounds of Kψ(α) and Kψ(α)

Write Πn(x) :=
∏n
k=1 ak(x). If kψ(x) = α ∈ (0,∞), that is,

lim sup
n→∞

log Πn(x)

ψ(n)
= α,

then Πn(x) ≥ eαψ(n)/2 for infinitely many n’s. If kψ(x) =∞, then Πn(x) ≥
eψ(n) for infinitely many n’s. Hence{

x ∈ (0, 1) : kψ(x) = α
}
⊆
{
x ∈ (0, 1) : Πn(x) ≥ Aψ(n), i.m. n ∈ N

}
for some A > 1, where “i.m.” denotes “infinitely many”. Similarly,{

x ∈ (0, 1) : kψ(x) = α
}
⊆
{
x ∈ (0, 1) : Πn(x) ≥ Aψ(n), ∀n� 1

}
,

where “∀n� 1” denotes “for n sufficiently large”.
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Lemma

Let A ∈ (1,∞). Then

dimH

{
x ∈ (0, 1) : Πn(x) ≥ Aψ(n), i.m. n ∈ N

}
=

1

b+ 1

and

dimH

{
x ∈ (0, 1) : Πn(x) ≥ Aψ(n), ∀n� 1

}
=

1

B + 1
.
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 Luczak-type result: for a, c ∈ (1,∞),

dimH

{
x ∈ (0, 1) : Πn(x) ≥ ac

n

, i.m. n ∈ N
}

=
1

c+ 1

and

dimH

{
x ∈ (0, 1) : Πn(x) ≥ ac

n

, ∀n� 1
}

=
1

c+ 1
.
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A concrete example showing b < B < β

For k ≥ 1, let nk := 1! + 2! + · · ·+ k! and

ψ(n) :=



(
5

3

)k−1
4n−(1!+3!+···+(2k−1)!)31!+3!+···+(2k−1)!, n2k−1 < n ≤ n2k,

(
5

3

)k
42!+4!+···+(2k)!3n−(2!+4!+···+(2k)!), n2k < n ≤ n2k+1.

Then b = 3, B = 4 and β = 5.
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Recall that

log b :=lim inf
n→∞

logψ(n)

n
, logB :=lim sup

n→∞

logψ(n)

n
, β :=lim sup

n→∞

ψ(n+ 1)

ψ(n)
.

Since

lim
k→∞

∑k
j=1(2j)!∑2k
j=1 j!

= lim
k→∞

∑k
j=1(2j + 1)!∑2k+1

j=1 j!
= 1 and lim

k→∞

ψ(n2k + 1)

ψ(n2k)
= 5,

we have b = 3, B = 4 and β = 5.
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Thank You for Your Attention !
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