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Abstract. Let ψ : N Ñ R` be a function satisfying φpnq{n Ñ 8 as n Ñ 8.
We investigate from a multifractal analysis point of view the growth rate of the

sums
řn
k“1 log akpxq relative to ψpnq, where ra1pxq, a2pxq, a3pxq ¨ ¨ ¨ s denotes

the continued fraction expansion of x P p0, 1q. The upper (resp. lower) fast
Khintchine spectrum is defined by the Hausdorff dimension of the set of all

points x for which the upper (resp. lower) limit of 1
ψpnq

řn
k“1 log akpxq is 1.

The precise formulas of these two spectra are completely determined, which
strengthens a result of Liao and Rams (2016).

1. Introduction

Let G : r0, 1q Ñ r0, 1q be the Gauss map, defined as Gp0q :“ 0 and

Gpxq :“ 1{x´ t1{xu, @x P p0, 1q,

where t¨u stands for the integer part of a number. For x P p0, 1q, put a1pxq :“ t1{xu

and anpxq :“ a1pG
n´1pxqq for n ě 2, where Gk denotes the kth iteration of G.

Then x admits a unique continued fraction expansion of the form

x “
1

a1pxq `
1

a2pxq `
1

a3pxq `
. . .

(1.1)

where a1pxq, a2pxq, a3pxq, ¨ ¨ ¨ are positive integers, and are called the partial quo-
tients of x. See [13, 16] for more information of continued fractions.

The Khintchine exponent of x is defined as the growth rate of the geometric
average of partial quotients, namely,

kpxq :“ lim
nÑ8

log a1pxq ` ¨ ¨ ¨ ` log anpxq

n

if the limit exists. Khintchine [15] proved that for Lebesgue almost all x P p0, 1q,
kpxq “ log c, where c “ 2.6854... is called the Khintchine constant, see [1] for details.
Furthermore, Fan et al. [7] studied from a multifractal analysis point of view the set
of points with a given Khintchine exponent that is different from log c, and showed
that the dimensional function (called the Khintchine spectrum)

r0,8s Q α ÞÑ Kpαq :“ dimH

 

x P p0, 1q : kpxq “ α
(

,
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is real analytic, strictly increasing in r0, log cq and strictly decreasing in rlog c,8q;
while it is neither convex nor concave, see [6, 12] for general results. We point out
that Kp8q “ 1{2, see for example [12, Theorem 7.1]. This means that there are
uncountably many points with infinite Khintchine exponent and then leads to the
question of detailed analyses of numbers with infinite Khintchine exponent.

For this purpose, let ψ : NÑ R` be a function satisfying φpnq{nÑ8 as nÑ8

and write

Epψq :“

"

x P p0, 1q : lim
nÑ8

log a1pxq ` ¨ ¨ ¨ ` log anpxq

ψpnq
“ 1

*

.

The Hausdorff dimension of Epψq is called the fast Khintchine spectrum, and then
completely determined by Fan et al. [8].

Theorem 1.1 ([8, Theorem 1.1]). Assume that ψ : N Ñ R` is non-decreasing.
Then

dimHEpψq “
1

β ` 1
, with β :“ lim sup

nÑ8

ψpn` 1q

ψpnq
.

We remark that the assumption on the monotonicity of ψ is necessary. In fact,
Epψq is non-empty if and only if ψ has a monotonicity in a certain sense, see [8,
Lemma 3.1] for precise statements. Indeed, the limit in Epψq means that ψpnq
should keep pace with the sum log a1pxq ` ¨ ¨ ¨ ` log anpxq for sufficiently large n,
but the sum is non-decreasing, so ψpnq must be ultimately “increasing”.

In the present paper, we are concerned with the following sets:

Epψq :“

"

x P p0, 1q : lim sup
nÑ8

log a1pxq ` ¨ ¨ ¨ ` log anpxq

ψpnq
“ 1

*

and

Epψq :“

"

x P p0, 1q : lim inf
nÑ8

log a1pxq ` ¨ ¨ ¨ ` log anpxq

ψpnq
“ 1

*

,

where ψ is as defined above. Then Epψq “ EpψqXEpψq. The Hausdorff dimensions
of Epψq and Epψq are called upper and lower fast Khintchine spectra respectively.
Unlike the set Epψq, we will show below that Epψq and Epψq are always non-empty,
see Lemmas 2.5 and 2.8. These two spectra have been studied by Liao and Rams
[17, Theorem 1.2] under some restrictions on the growth rate of ψ (i.e., b, B ą 1,
see below for their definitions). Roughly speaking, their results can be applied to
functions with fast growth speed (e.g., exponential functions), but can not be used
to polynomial functions. However, for ψpnq “ np pp ą 1q, it follows from Theorem
1.1 that the upper and lower fast Khintchine spectra are not less than 1{2; applying
standard covering arguments, we see that these two spectra not greater than 1{2,
see for example [10, 14, 20]. Hence the Hausdorff dimensions of Epψq and Epψq are
1{2 for polynomial functions ψ, which indicates that the results of Liao and Rams
may be true for the cases b “ 1 and B “ 1. This is precisely what we are covering
in the present paper by giving the upper and lower fast Khintchine spectra without
any extra assumptions on ψ.

Theorem 1.2. Let ψ : NÑ R` be defined above. Then

dimHEpψq “
1

b` 1
and dimHEpψq “

1

B ` 1
,
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where b, B P r1,8s are given by

log b :“ lim inf
nÑ8

logψpnq

n
and logB :“ lim sup

nÑ8

logψpnq

n
.

As mentioned above, Liao and Rams [17] dealt with the cases b, B ą 1. However,
our approach works well for all cases of b and B instead of the remaining special
cases b “ 1 and B “ 1. Comparing with the methods of Liao and Rams, we no
longer treat log a1pxq ` ¨ ¨ ¨ ` log anpxq as a sum, but as a logarithm of the product
of partial quotients, i.e., logpa1pxq ¨ ¨ ¨ anpxqq. This is the difference between us and
Liao and Rams, and is also the main advantage of our method. The little change
helps to establish powerful results (see Lemmas 2.7 and 2.10) for calculating the
upper bounds of dimHEpψq and dimHEpψq, which is slightly better than that of
Liao and Rams since their proofs of this part heavily rely on b, B ą 1, see [17,
p. 71 & 75]. For the lower bounds of dimHEpψq and dimHEpψq, we also consider
the product of partial quotients as a whole, and then use Lemma 2.4 to obtain them
by constructing suitable sequences.

Liao and Rams [17] remarked that b ď B ď β, and one can construct some ψ
such that the values of b, B and β are all different. Here we give a concrete example
to show this. For k ě 1, let nk :“ 1!` 2!` ¨ ¨ ¨ ` k! and

ψpnq :“

"

5k´14n´p1!`3!`¨¨¨`p2k´1q!q31!`3!`¨¨¨`p2k´1q!, n2k´1 ă n ď n2k;

5k42!`4!`¨¨¨`p2kq!3n´p2!`4!`¨¨¨`p2kq!q, n2k ă n ď n2k`1.

Then b “ 3, B “ 4 and β “ 15 since

lim
kÑ8

řk
j“1p2jq!
ř2k
j“1 j!

“ lim
kÑ8

řk
j“1p2j ` 1q!
ř2k`1
j“1 j!

“ 1 and lim
kÑ8

ψpn2k ` 1q

ψpn2kq
“ 15.

In other words, these three fast Khintchine spectra can be all different, which is
a new phenomenon in continued fractions and in symbolic systems with countably
many symbols, since the multifractal spectra in symbolic systems with finitely many
symbols are always the same when limit is replaced by limsup or liminf, see [2, 3, 4, 9]
more information.

2. Proof of Theorem 1.2

Before proving Theorem 1.2, we first give several useful lemmas. The first result
is due to  Luczak [19], see also [14, 20] for general results.

Lemma 2.1 ([19]). Let a, c P p1,8q. Then

dimH

!

x P p0, 1q : anpxq ě ac
n

,@n ě 1
)

“ dimH

!

x P p0, 1q : anpxq ě ac
n

, i.m. n P N
)

“
1

c` 1
,

where “i.m.” denotes “infinitely many”.

Note that the sum log a1pxq`¨ ¨ ¨` log anpxq is considered as logpa1pxq ¨ ¨ ¨ anpxqq,
so we need to study the product of partial quotients. Write Πnpxq :“ a1pxq ¨ ¨ ¨ anpxq.
The following result of Πnpxq is analogous to Lemma 2.1.
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Lemma 2.2. Let a, c P p1,8q. Then

dimH

!

x P p0, 1q : Πnpxq ě ac
n

,@n " 1
)

“ dimH

!

x P p0, 1q : Πnpxq ě ac
n

, i.m. n P N
)

“
1

c` 1
,

where “@n " 1” denotes “for sufficiently large n”.

Proof. It is sufficient to estimate the lower bound of the Hausdorff dimension of the
first set and the upper bound for the second set. Since Πnpxq ě anpxq, by Lemma
2.1, we deduce that

dimH

!

x P p0, 1q : Πnpxq ě ac
n

,@n " 1
)

ě
1

c` 1
.

Let 0 ă ε ă c´ 1 be fixed. We claim that
!

x P p0, 1q : Πnpxq ě ac
n

, i.m. n P N
)

Ď

!

x P p0, 1q : anpxq ě apc´εq
n

, i.m. n P N
)

.

(2.1)
In fact, if there exists N :“ Npx, εq P N such that anpxq ă apc´εq

n

for all n ą N ,
then

Πnpxq ă ΠN pxqa
pc´εqN`1

`¨¨¨`pc´εqn ă ΠN pxqa
pc´εqn`1

c´ε´1 ,

and hence Πnpxq ă ac
n

for sufficiently large n. It follows from (2.1) and Lemma
2.1 that

dimH

!

x P p0, 1q : Πnpxq ě ac
n

, i.m. n P N
)

ď
1

c´ ε` 1
.

Letting εÑ 0`, we obtain the desired upper bound. �

We point out that Kp8q “ 1{2, see [7, Theorem 1.2] and [12, Theorem 7.1].
However, the following lemma shows that the set of points for which the limsup of
their geometric averages is infinity is also of Hausdorff dimension 1{2.

Lemma 2.3. Write

Π8 :“

"

x P p0, 1q : lim sup
nÑ8

log Πnpxq

n
“ 8

*

.

Then

dimH Π8 “
1

2
.

Proof. For the lower bound, since

Π8 Ě
!

x P p0, 1q : Πnpxq ě ac
n

,@n " 1
)

,

by Lemma 2.2, we see that dimH Π8 ě 1{pc` 1q, and so dimH Π8 ě 1{2.
For the upper bound, let 0 ă ε ă 1 and s :“ 1{2` ε. Choose a sufficiently large

number K ą 1 such that
Kε ą 2Mε

where Mε is defined as Mε :“
ř

jě1 j
´p1`εq. For pσ1, ¨ ¨ ¨ , σnq P Nn, the set

Inpσ1, ¨ ¨ ¨ , σnq :“
 

x P p0, 1q : akpxq “ σk for all 1 ď k ď n
(

is called a cylinder of order n associated to pσ1, ¨ ¨ ¨ , σnq. It was shown in [13, p. 18]
that Inpσ1, ¨ ¨ ¨ , σnq is an interval and its length satisfies

|Inpσ1, ¨ ¨ ¨ , σnq| ď
1

pσ1 ¨ ¨ ¨σnq2
. (2.2)
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Denote by Hsp¨q the s-dimensional Hausdorff measure. Remark that Π8 is covered
by

8
č

N“1

8
ď

n“N

ď

pσ1,¨¨¨ ,σnqPCnpKq

Inpσ1, ¨ ¨ ¨ , σnq,

where CnpKq is given by CnpKq :“ tpσ1, ¨ ¨ ¨ , σnq P Nn : σ1 ¨ ¨ ¨σn ě Knu. By (2.2),
we conclude that

HspΠ8q ď lim inf
NÑ8

8
ÿ

n“N

ÿ

pσ1,¨¨¨ ,σnqPCnpKq

|Inpσ1, ¨ ¨ ¨ , σnq|
s

ď lim inf
NÑ8

8
ÿ

n“N

ÿ

pσ1,¨¨¨ ,σnqPCnpKq

1

pσ1 ¨ ¨ ¨σnq1`2ε

ď lim inf
NÑ8

8
ÿ

n“N

1

Kεn

ÿ

pσ1,¨¨¨ ,σnqPNn

1

pσ1 ¨ ¨ ¨σnq1`ε

ď lim inf
NÑ8

8
ÿ

n“N

ˆ

Mε

Kε

˙n

ď lim inf
NÑ8

8
ÿ

n“N

1

2n
“ 0,

which implies that dimH Π8 ď s. Since ε is arbitrary, we obtain dimH Π8 ď 1{2.
The proof is complete. �

The following result, given by Fan et al. [7, 8], provides a powerful method for
estimating the lower bound of the Hausdorff dimension of certain sets arising in
continued fraction expansions. See Liao and Rams [18] for a general result in the
setting of infinite iterated function systems.

Lemma 2.4 ([7, 8]). Let tsnu be a sequence of real numbers with sn ě 1 for all
n ě 1 and

lim
nÑ8

řn
k“1 log sk
n

“ 8. (2.3)

Write

Eptsnuq :“
 

x P p0, 1q : sn ď anpxq ď 2sn,@n ě 1
(

.

Then

dimH Eptsnuq “
ˆ

2` lim sup
nÑ8

log sn`1

log s1 ` ¨ ¨ ¨ ` log sn

˙´1

.

In what follows, we will calculate the Hausdorff dimensions of Epψq and Epψq
respectively.

2.1. Hausdorff dimension of Epψq. Let ϕ,ϕ1 : N Ñ R` be functions. We say
that ϕ is limsup-equivalent to ϕ1 if

lim sup
nÑ8

ϕ1pnq

ϕpnq
“ 1.

Similarly, ϕ is said to be liminf-equivalent to ϕ1 if limsup is replaced by liminf.
Note that ϕ is liminf-equivalent to ϕ1 if and only if ϕ1 is limsup-equivalent to ϕ.
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Recall that ψ : NÑ R` is a function satisfying ψpnq{nÑ8 as nÑ8 (without
any monotonicity). We will show that Epψq is always non-empty. To this end, we
first give a necessary and sufficient condition for Epψ, αq to be non-empty.

Lemma 2.5. Epψq is non-empty if and only if ψ is limsup-equivalent to a non-
decreasing function.

Proof. For the “only if” part, we assume that Epψq is non-empty. Take x P Epψq,
namely,

lim sup
nÑ8

log a1pxq ` ¨ ¨ ¨ ` log anpxq

ψpnq
“ 1,

and define φ : NÑ R` as φpnq :“ log a1pxq` ¨ ¨ ¨ ` log anpxq` 1. Then φ : NÑ R`
is non-decreasing and

lim sup
nÑ8

φpnq

ψpnq
“ 1,

which means that ψ is limsup-equivalent to the non-decreasing function φ.
For the “if” part, we assume that ψ is limsup-equivalent to a non-decreasing

function φ : NÑ R`. Then

lim sup
nÑ8

φpnq

ψpnq
“ 1. (2.4)

Since ψpnq{nÑ8 as nÑ8, we can find a strictly increasing sequence tnku such
that for each k ě 1,

ψpnq

n
ě k2, @n ě nk.

Let αn :“ k ` 1 if nk ď n ă nk`1 with the convention n0 ” 1. Then αn Ñ 8 as
nÑ8 and

lim
nÑ8

logα1 ` ¨ ¨ ¨ ` logαn
ψpnq

“ 0. (2.5)

Now define a new function pφ : NÑ R` as pφpnq :“ φpnq ` logpα1 ¨ ¨ ¨αnq. Then pφ is

non-decreasing and pφpnq{nÑ8 as nÑ8. Define a point x P p0, 1q as

px :“ ra1, a2, ¨ ¨ ¨ , an, ¨ ¨ ¨ s with an “ te
pφpnq´pφpn´1qu,

with the convention pφp0q “ 0. Then anppxq “ an and hence

lim
nÑ8

log a1pxq ` ¨ ¨ ¨ ` log anpxq

pφpnq
“ 1

since pφpnq{n Ñ 8 as n Ñ 8. Combining this with (2.4) and (2.5), we see that
px P Epψq, and so Epψq is non-empty. �

Lemma 2.6. Epψq is always non-empty.

Proof. By Lemma 2.5, it is sufficient to show that ψ is limsup-equivalent to a non-
decreasing function. Indeed, let φpnq :“ minkěntψpkqu. Then φ is non-decreasing,
φpnq Ñ 8 as nÑ8, φpnq ď ψpnq and so

lim sup
nÑ8

φpnq

ψpnq
ď 1.

In addition, we also obtain a useful observation:

φpnq ‰ ψpnq ùñ φpnq “ min
kěn

tψpkqu “ min
kěn`1

tψpkqu “ φpn` 1q.
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We claim that

φpnq “ ψpnq, i.m. n P N.
In fact, if there exists N P N such that φpnq ‰ ψpnq, i.e., φpnq ă ψpnq for all n ě N ,
then

φpNq “ φpN ` 1q, φpN ` 1q “ φpN ` 2q, ¨ ¨ ¨ ,

which is in contradiction with the fact that φpnq Ñ 8 as nÑ8. Hence

lim sup
nÑ8

φpnq

ψpnq
ě 1.

Therefore, ψ is limsup-equivalent to the non-decreasing function φ. �

Now we are ready to give the proof of Theorem 1.2 for the case Epψq, which is
divided into two parts: the upper bound and the lower bound of dimHEpψq.

Upper bound: For any 0 ă ε ă 1, we have

Epψq Ď
!

x P p0, 1q : Πnpxq ě ep1´εqψpnq, i.m. n P N
)

. (2.6)

This leads to study the Hausdorff dimension of the limsup set.

Lemma 2.7. Let A P p1,8q. Write

F pψq :“
!

x P p0, 1q : Πnpxq ě Aψpnq, i.m. n P N
)

.

Then

dimH F pψq “
1

b` 1
,

where b P r1,8s is defined as in Theorem 1.2.

Proof. The proof is divided into three parts: b “ 1, 1 ă b ă 8 and b “ 8.
For the case b “ 1, since ϕpnq{n Ñ 8 as n Ñ 8, we get that F pψq is a subset

of Π8. By Lemma 2.3,

dimH F pψq ď dimH Π8 “
1

2
“

1

b` 1

For any ε ą 0, by the definition of b, we obtain ψpnq ď p1` εqn for infinitely many
n’s, and so

!

x P p0, 1q : Πnpxq ě Ap1`εq
n

,@n " 1
)

Ď F pψq,

It follows from Lemma 2.2 that dimH F pψq ě 1{p2 ` εq. Letting ε Ñ 0`, we get
the desired lower bound.

For the case 1 ă b ă 8, let 0 ă ε ă b ´ 1. By the definition of b, we have: (i)
ψpnq ď pb` εqn for infinitely many n’s; (ii) ψpnq ě pb´ εqn for sufficiently large n.
Then

F pψq Ě
!

x P p0, 1q : Πnpxq ě Apb`εq
n

,@n " 1
)

and

F pψq Ď
!

x P p0, 1q : Πnpxq ě Apb´εq
n

, i.m. n P N
)

.

Applying Lemma 2.2, we see that

1

b` ε` 1
ď dimH F pψq ď

1

b´ ε` 1
.

Since ε is arbitrary, we obtain dimH F pψq “ 1{pb` 1q.
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For the case b “ 8, let C ą 1 be large, we have ψpnq ě Cn for sufficiently large
n, and so

F pψq Ď
!

x P p0, 1q : Πnpxq ě AC
n

, i.m. n P N
)

.

It follows from Lemma 2.2 that dimH F pψq ď 1{pC ` 1q. Letting C Ñ 8, we get
that dimH F pψq “ 0. �

Combining (2.6) and Lemma 2.7, we deduce that

dimHEpψq ď
1

b` 1
.

Lower bound: For the lower bound of dimHEpψq, Liao and Rams [17, p. 71–74]
only write their proof for the case b ą 1, but we remark that their method is indeed
valid for b ě 1. We will list the outline of their proof, for the sake of completeness.
For the case b “ 8, we have dimHEpψq ě 0. So we assume that 1 ď b ă 8.

Let φpnq :“ minkěntψpkqu. As in the proof of Lemma 2.6, we have seen that
φpnq ď ψpnq and φ is non-decreasing. Moreover,

lim
nÑ8

φpnq

n
“ 8.

Let ε ą 0 be fixed. Now we define a sequence tBnuně1 as follows:

B1 :“ eφp1q and Bn :“ min
!

eφpnq, Bb`εn´1

)

, @n ě 2.

Then: (i) Bn ď Bn`1 ď Bb`εn for all n ě 1; (ii) Bn ď eφpnq ď eψpnq for all n ě 1;
(iii) Bn “ eψpnq for infinitely many n’s. See Liao and Rams [17, p. 72] for the proofs.
Hence

lim sup
nÑ8

logBn`1

logBn
ď b` ε and lim sup

nÑ8

logBn
ψpnq

“ 1. (2.7)

By the definition of Bn, we claim that

lim
nÑ8

logBn
n

“ 8. (2.8)

In fact, since limnÑ8 φpnq{n “ 8, it follows from the definition of Bn that

lim inf
nÑ8

logBn
n

“ pb` εq ¨ lim inf
nÑ8

logBn´1

n
,

which means that(2.8) holds. Write

b1 :“ B1 and bn :“
Bn
Bn´1

,@n ě 2.

Then bn ě 1 and Bn “ b1 ¨ ¨ ¨ bn. By the second equation of (2.7), we have Eptbnuq Ď
Epψq, and so dimHEpψq ě dimH Eptbnuq. Combining this with (2.7), (2.8) and
Lemma 2.4, we deduce that

dimHEpψq ě

ˆ

2` lim sup
nÑ8

log bn`1

log b1 ` ¨ ¨ ¨ ` log bn

˙´1

ě
1

b` 1` ε
.

Therefore, dimHEpψq ě 1{pb` 1q as ε is arbitrary.
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2.2. Hausdorff dimension of Epψq. Being similar to Lemma 2.5, we obtain an
analogous result for Epψq.

Lemma 2.8. Epψq is non-empty if and only if ψ is liminf-equivalent to a non-
decreasing function.

Proof. The proof is very similar to that of Lemma 2.5. For the “if” part, we remark
that if ψ is liminf-equivalent to ϕ, then

lim
nÑ8

ϕpnq

n
“ 8.

So there is no need to make a modification in constructing the point px as in the
proof of Lemma 2.5. �

The result of Lemma 2.8 helps to show that Epψq is non-empty.

Lemma 2.9. Epψq is always non-empty.

Proof. Let ϕpnq :“ max1ďkďntψpkqu. Then ϕ is non-decreasing and ϕpnq ě ψpnq,
where the latter implies that

lim inf
nÑ8

ϕpnq

ψpnq
ě 1.

Note that

ϕpnq ‰ ψpnq ùñ ϕpnq “ max
1ďkďn

tψpkqu “ max
1ďkďn´1

tψpkqu “ ϕpn´ 1q,

so we see that ϕpnq “ ψpnq for infinitely many n’s and then

lim inf
nÑ8

ϕpnq

ψpnq
ď 1.

Therefore, ψ is liminf-equivalent to the non-decreasing function ϕ. By Lemma 2.8,
Epψq is non-empty. �

We are now in a position to calculate the Hausdorff dimension of Epψq. The proof
is divided into two parts: the upper bound and the lower bound of dimHEpψq

Upper bound: For any 0 ă ε ă 1, we obtain

Epψq Ď
!

x P p0, 1q : Πnpxq ě ep1´εqψpnq, @n " 1
)

.

This leads to study the Hausdorff dimension of the latter set.

Lemma 2.10. Let A P p1,8q. Write

pF pψq :“
!

x P p0, 1q : Πnpxq ě Aψpnq, @n " 1
)

.

Then

dimH
pF pψq “

1

B ` 1
,

where B P r1,8s is defined as in Theorem 1.2.

Proof. The proof is very similar to that of Lemma 2.7, so the details are left to
interested readers. See also the proof of Theorem 4.4 of [11]. �
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By Lemma 2.10, we deduce that

dimHEpψq ď
1

B ` 1
.

Lower bound: For the lower bound of dimHEpψq, we point out that the method
of Liao and Rams [17, p. 75–78] does not work for the case B “ 1. In particular,
they need the following key condition in their proof:

lim inf
nÑ8

ψp1q ` ¨ ¨ ¨ψpnq

ψpnq
ă 8,

see Lemma 3.2 of [17]. However, it is impossible to be true for the power function
ψpnq “ np with p ą 1. We will make a modification of their original proof to
overcome these difficulties.

For the case B “ 8, it is easy to see that dimHEpψq ě 0. Now we assume that
1 ď B ă 8. For any ε ą 0, since

logB “ lim sup
nÑ8

logψpnq

n
,

we have ψpnq ď pB ` ε{2qn for sufficiently large n. This implies that, for fixed
j P N,

ψpnqpB ` εqj´n ď pB ` ε{2qnpB ` εqj´n “ pB ` εqj
ˆ

B ` ε{2

B ` ε

˙n

Ñ 0 as nÑ8.

(2.9)
Let Tj “ supkě1

 

cj,k
(

for all j ě 1, where cj,k is defined as

cj,k :“

"

eψpkq, 1 ď k ď j;

eψpkqpB`εq
j´k

, k ě j ` 1.

By (2.9), the supremum in the definition of Tj is achieved. Moreover, cj,k “ cj`1,k

for all 1 ď k ď j and pcj,kq
B`ε “ cj`1,k for all k ě j ` 1, which yield that

Tj ď Tj`1 ď TB`εj for all j ě 1.
We claim that

lim inf
jÑ8

log Tj
ψpjq

“ 1. (2.10)

By the definition of Tj , we get that Tj ě cj,j “ eψpjq for all j ě 1, and so

lim inf
jÑ8

log Tj
ψpjq

ě 1.

For the opposite inequality, let tj :“ mintk ě 1 : cj,k “ Tju; that is the smallest
number k for which cj,k achieves the supremum in the definition of Tj . Then
tj ď tj`1, and tj Ñ8 as j Ñ8. Moreover,

cj,tj ą cj,k, @1 ď k ă tj and cj,tj ě cj,k, @k ą tj . (2.11)

We will show that Ttj “ eψptjq in the following three cases.

‚ For tj ă j, we see that ctj ,tj “ cj,tj , cj,k “ ctj ,k for all 1 ď k ă tj and
cj,k ą ctj ,k for all k ą tj . Combining this with (2.11), we get that

ctj ,tj ą ctj ,k, @1 ď k ă tj and ctj ,tj ą ctj ,k, @k ą tj ,

which gives Ttj “ ctj ,tj “ eψptjq by the definition of Ttj .

‚ For tj “ j, we have Ttj “ Tj “ cj,tj “ ctj ,tj “ eψptjq.
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‚ For tj ą j, we deduce that ctj ,k “ cj,k for all 1 ď k ď j, ctj ,k “

pcj,kq
pB`εqk´j

for all j ă k ď tj and ctj ,k “ pcj,kq
pB`εqtj´j

for all k ą tj .
Combining this with (2.11), we see that

ctj ,tj “ pcj,tj q
pB`εqtj´j

ą cj,tj ą cj,k “ ctj ,k, @1 ď k ď j,

ctj ,tj “ pcj,tj q
pB`εqtj´j

ą pcj,kq
pB`εqk´j

“ ctj ,k, @j ă k ă tj

and

ctj ,tj “ pcj,tj q
pA`εqtj´j

ě pcj,kq
pB`εqtj´j

“ ctj ,k, @k ą tj ,

which implies that Ttj “ ctj ,tj “ eψptjq.

Then

lim inf
jÑ8

log Tj
φpjq

ď lim inf
jÑ8

log Ttj
φptjq

“ 1

and so (2.10) holds.
Define c1 :“ T1 and

cn :“
Tn
Tn´1

, @n ě 2.

Then cn ě 1, Tn “ c1 ¨ ¨ ¨ cn and

lim inf
nÑ8

log c1 ` ¨ ¨ ¨ ` log cn
ψpnq

“ 1 (2.12)

by (2.10). Since ψpnq{nÑ8 as nÑ8, we see that

lim
nÑ8

log c1 ` ¨ ¨ ¨ ` log cn
n

“ 8. (2.13)

Note that Tn`1 ď TB`εn , so we deduce that

lim sup
nÑ8

log cn`1

log c1 ` ¨ ¨ ¨ ` log cn
ď B ` ε´ 1. (2.14)

Applying the sequence tcnu to Lemma 2.4, (2.12) implies that Eptcnuq is a subset
of Epψq. In view of (2.13) and (2.14), we conclude that

dimHEpψq ě dimH Eptcnuq “
ˆ

2` lim sup
nÑ8

log cn`1

log c1 ` ¨ ¨ ¨ ` log cn

˙´1

ě
1

B ` 1` ε
.

Since ε is arbitrary, we obtain the desired lower bound.
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