Dynamics of simplicial systems

Charles Fougeron

May 24th, 2021

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

$$G: X \to \frac{1}{X} - \left[\frac{1}{X}\right]$$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x = [a_1, a_2, \dots]$$

$$G: X \to \frac{1}{X} - \left[\frac{1}{X}\right]$$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x = [a_1, a_2, \dots]$$

$$rac{
ho_n}{q_n} := rac{1}{a_1 + rac{\cdot \cdot}{a_{n-1} + rac{1}{a_n}}}$$

$$G: X \to \frac{1}{X} - \left[\frac{1}{X}\right]$$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x = [a_1, a_2, \dots]$$

$$rac{q_n}{q_n} := rac{1}{a_1 + rac{1}{a_{n-1} + rac{1}{a_n}}}$$

$$T: [1:x] \to [1:x-[x]]$$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x = [a_1, a_2, \dots]$$

$$\frac{
ho_n}{q_n} := \frac{1}{a_1 + \frac{\ddots}{a_{n-1} + \frac{1}{a_n}}}$$

$$T : [1 : x] \to [1 : x - 1]$$
 for $1 < x$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x = [a_1, a_2, \dots]$$

$$rac{
ho_n}{q_n} := rac{1}{a_1 + rac{\cdot}{a_{n-1} + rac{1}{a_n}}}$$

$$T : [x_1 : x_2] \to [x_1 : x_2 - x_1]$$

for $x_1 < x_2$

$$x \in [0, 1]$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x \rightarrow \sigma_1^{a_1} \sigma_2^{a_2} \sigma_1^{a_3} \dots$$

$$rac{
ho_n}{q_n} := rac{1}{ \mathsf{a}_1 + rac{\cdot}{ \cdot} \cdot} = rac{1}{ \mathsf{a}_{n-1} + rac{1}{ \cdot} \cdot}$$

$$T : [x_1 : x_2] \to [x_1 : x_2 - x_1]$$

for $x_1 < x_2$

$$\boldsymbol{x} \in [0,1]^2$$

Rational approximation

$$|x - \frac{p}{q}| \le \frac{1}{q^2}$$

Development

$$x \rightarrow \sigma_1^{a_1} \sigma_2^{a_2} \sigma_1^{a_3} \dots$$

$$rac{
ho_n}{q_n} := rac{1}{a_1 + rac{\cdot}{a_{n-1} + rac{1}{2}}}$$

$$T : [x_1 : x_2] \to [x_1 : x_2 - x_1]$$

for $x_1 < x_2$

$$\boldsymbol{x} \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \le \frac{1}{q^{1+1/2}}$$

Development

$$x \rightarrow \sigma_1^{a_1} \sigma_2^{a_2} \sigma_1^{a_3} \dots$$

$$rac{
ho_n}{q_n} := rac{1}{a_1 + rac{\cdot}{a_{n-1} + rac{1}{a_n}}}$$

$$T : [x_1 : x_2] \to [x_1 : x_2 - x_1]$$

for $x_1 < x_2$

$$x \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \le \frac{1}{q^{1+1/2}}$$

Development

$$x \to \sigma_1^{a_1} \sigma_2^{a_2} \sigma_1^{a_3} \dots$$

$$\frac{a_n}{a_n} := \frac{1}{a_1 + \frac{a_1}{a_{n-1} + \frac{1}{a_n}}}$$

$$T: [x_1 : x_2 : x_3] \rightarrow [x_1 : x_2 - x_1 : x_3 - x_2]$$

for $x_1 < x_2 < x_3$

$$x \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \leq \frac{1}{q^{1+1/2}}$$

Development

$$x \to \sigma_1^{a_1} \sigma_2^{a_2} \sigma_1^{a_3} \dots$$

$$rac{
ho_n}{q_n} := rac{1}{a_1 + rac{\cdot}{a_{n-1} + rac{1}{a_n}}}$$

$$T: [x_1 : x_2 : x_3] \rightarrow [x_1 : x_2 - x_1 : x_3 - x_2]$$

$$[x_1 : x_2 : x_3 - x_2]$$
for $x_1 < x_2 < x_3$

$$x \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \le \frac{1}{q^{1+1/2}}$$

Development

$$x \rightarrow \sigma_1^{a_1} \sigma_2^{a_2} \sigma_1^{a_3} \dots$$

$$\frac{\rho_n}{q_n} := \frac{1}{a_1 + \frac{\cdot}{a_{n-1} + \frac{1}{a_n}}}$$

$$T: [x_1: x_2: x_3] \to [x_1: x_2 - x_1: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_1]$$
for $x_1 < x_2 < x_3$

$$x \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \leq \frac{1}{q^{1+1/2}}$$

Development

$$\mathbf{x} \rightarrow w_1 w_2 w_3 \dots$$

$$rac{oldsymbol{
ho}_n}{oldsymbol{q}_n} := rac{1}{oldsymbol{a}_1 + rac{\cdot}{oldsymbol{a}_{n-1} + rac{1}{oldsymbol{a}_n}}}$$

$$T: [x_1: x_2: x_3] \to [x_1: x_2 - x_1: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_1]$$
for $x_1 < x_2 < x_3$

$$\mathbf{x} \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \leq \frac{1}{q^{1+1/2}}$$

Development

$$\mathbf{x} \rightarrow w_1 w_2 w_3 \dots$$

$$ightharpoonup \lim_{n\to\infty} \frac{p_n}{q_n} \stackrel{?}{=} \mathbf{x}$$

$$T: [x_1: x_2: x_3] \to [x_1: x_2 - x_1: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_1]$$
for $x_1 < x_2 < x_3$

$$\mathbf{x} \in [0,1]^2$$

Rational approximation

$$|\mathbf{x} - \frac{\mathbf{p}}{q}| \leq \frac{1}{q^{1+1/2}}$$

Development

$$\mathbf{x} \rightarrow w_1 w_2 w_3 \dots$$

- Ergodicity of T

$$T: [x_1: x_2: x_3] \to [x_1: x_2 - x_1: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_2]$$

$$[x_1: x_2: x_3 - x_1]$$
for $x_1 < x_2 < x_3$

Poincaré

Maps on
$$\mathrm{P}\mathbb{R}^3_+$$
 for $x_1 < x_2 < x_3$

 $T_R(\mathbf{x}) = [x_1 : x_2 : x_3 - x_2]$

$$T_P(\mathbf{x}) = [x_1 : x_2 - x_1 : x_3 - x_2]$$

Brun

Selmer

$$T_S(\mathbf{x}) = [x_1 : x_2 : x_3 - x_1]$$

Poincaré

Maps on $P\mathbb{R}^3_+$ for $x_1 < x_2 < x_3$

Theorem (Nogueira 1995)

For almost all **x**, approximations do not converge to **x**.

Brun

Selmer

$$T_S(\mathbf{x}) = [x_1 : x_2 : x_3 - x_1]$$

$$T_B(\mathbf{x}) = [x_1 : x_2 : x_3 - x_2]$$

Poincaré

Maps on $P\mathbb{R}^3_+$ for $x_1 < x_2 < x_3$

Theorem (Nogueira 1995)

For almost all **x**, approximations do not converge to **x**.

Selmer

Theorem (Schweiger 2000)

Approximations converge and T_S is ergodic.

Brun

Theorem (Broise 1994)

Approximations converge and T_B is ergodic.

Poincaré

Selmer

Finite subshift Law of random walk with memory

Poincaré

Selmer

Finite subshift Law of random walk with memory

Ergodicity criterion

Theorem (F.)

If an algorithm does not contains a stable subgraph then it is ergodic and its canonical suspension admits a unique measure of maximal entropy.

Applications

- Fractal dimensions
- Numeration and Normality
- ► Teichmüller dynamics

Farey algorithm

From simplex to simplicial system

$$T: \mathbb{R}^3_+ \to \mathbb{R}^3_+ \text{ and } T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b, x_c) & \text{if } x_a > x_c \\ (x_a, x_b, x_c - x_a) & \text{if } x_c > x_a \end{cases}$$

$$T: \mathbb{R}^3_+ \to \mathbb{R}^3_+ \text{ and } T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b, x_c) & \text{if } x_a > x_c \\ (x_a, x_b, x_c - x_a) & \text{if } x_c > x_a \end{cases}$$

$$T: \mathbb{R}^3_+ \to \mathbb{R}^3_+ \text{ and } T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b, x_c) & \text{if } x_a > x_c \\ (x_a, x_b, x_c - x_a) & \text{if } x_c > x_a \end{cases}$$

$$T: \mathbb{R}^3_+ \to \mathbb{R}^3_+ \text{ and } T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b, x_c) & \text{if } x_a > x_c \\ (x_a, x_b, x_c - x_a) & \text{if } x_c > x_a \end{cases}$$

We say that c loses and a wins

$$T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b - x_c, x_c) & \text{if } \min(x_a, x_b) > x_c \\ (x_a - x_b, x_b, x_c - x_b) & \text{if } \min(x_a, x_c) > x_b \\ (x_a, x_b - x_a, x_c - x_a) & \text{if } \min(x_b, x_c) > x_a \end{cases}$$

$$T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b - x_c, x_c) & \text{if } \min(x_a, x_b) > x_c \\ (x_a - x_b, x_b, x_c - x_b) & \text{if } \min(x_a, x_c) > x_b \\ (x_a, x_b - x_a, x_c - x_a) & \text{if } \min(x_b, x_c) > x_a \end{cases}$$

$$T(x_a, x_b, x_c) = \begin{cases} (x_a - x_c, x_b - x_c, x_c) & \text{if } \min(x_a, x_b) > x_c \\ (x_a - x_b, x_b, x_c - x_b) & \text{if } \min(x_a, x_c) > x_b \\ (x_a, x_b - x_a, x_c - x_a) & \text{if } \min(x_b, x_c) > x_a \end{cases}$$

 $x_b < x_a, x_c$

We say that b loses and a, c win

$$T(x_{a}, x_{b}, x_{c}) = \begin{cases} (x_{a}, x_{b} - x_{a}, x_{c} - x_{b}) & \text{if } x_{a} < x_{b} < x_{c} \\ (x_{a}, x_{b} - x_{c}, x_{c} - x_{a}) & \text{if } x_{a} < x_{c} < x_{b} \\ (x_{a} - x_{c}, x_{b}, x_{c} - x_{b}) & \text{if } x_{b} < x_{c} < x_{a} \\ \dots \end{cases}$$

Properties of random walks

Subgraph stability

Assume that $q_a, q_b \gg q_c$

Consider the stopping time \mathcal{L}_c corresponding to the length of the path before the letter c loses.

Lemma

For all $q \in \mathbb{R}^3_+$

$$\mathbb{P}_q(\mathcal{L}_c < \infty) \leq \frac{Kq_c}{\min(q_a, q_b)}.$$

Ergodicity criterion

Theorem

A simplicial system without stable subgraphs admits an unique ergodic measure absolutely continued w.r.t. Lebesgue and this measure induces the unique mesure of maximal entropy on the canonical suspension.

An application to normality

The continued fraction expansion of a number $x = [a_1, a_2, \dots]$ is called *normal* if for all finite word $w \in \mathbb{N}^*$

$$\lim_{n\to\infty}\frac{\|x[1\dots n]\|_w}{n}=\mu(w).$$

Theorem (Vandehey)

Normality of the continued fraction expansion of a number is preserved by homography.

Work in progress (with Carton, Berthé)

Generalisation to multidimensional continued fractions.

Thank you!

