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Ergodicity criterion

Theorem (F.)

If an algortihm does not contains a stable subgraph then it is
ergodic and its canonical suspension admits a unique measure of

maximal entropy.

Applications

» Fractal dimensions

» Numeration and Normality

» Teichmuller dynamics
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Elementary operations

(Xa — Xcy Xp — Xy Xe)  if min(Xa, Xp) > Xc
T (Xa, Xps Xc) = § (Xa = Xby Xp, Xe — Xp) if min(xa, Xc) > xp

(Xay Xp — Xay Xe — Xa)  if min(Xxp, Xc) > X3

Xp < Xz, Xc

We say that b loses and a, ¢ win



Poincaré algorithm

(Xay Xp — Xay Xe — Xp) i x5 < Xp < Xc

(Xay Xb — Xcy Xe — Xa) i Xa < Xc < Xp
T(XaaXb7Xc) = .
(Xa — Xcy Xby Xe — Xp) I Xp < Xc < Xa
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Properties of random walks



Subgraph stability

Assume that q,, g > qc

Consider the stopping time L. corresponding to the length of the
path before the letter ¢ loses.

Lemma
For all g € R3.

Kqc

Pe(Le <o0) < ———..
alle <o) = min(qa; q»)



Ergodicity criterion

Theorem

A simplicial system without stable subgraphs admits an unique
ergodic measure absolutely continued w.r.t. Lebesgue and this
measure induces the unique mesure of maximal entropy on the
canonical suspension.



An application to normality

The continued fraction expansion of a number x = [a, a2,...] is
called normal if for all finite word w € N*

R L

Theorem (Vandehey)

Normality of the continued fraction expansion of a number is
preserved by homography.

Work in progress (with Carton, Berthé)

Generalisation to multidimensional continued fractions.
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