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Goal

Use the dynamics of the triangle map (a type of
multi-dimensional continued fraction algorithm) to create an
almost internal symmetry on the space of all partitions of a
given integer N .



Outline

1. Partitions

2. The Farey Tree, Farey map and its links to partitions

3. The Triangle Map and its link to partitions

4. Method to Generate Many New Partition Identities

5. Why the triangle map? Questions.



Partitions

p(n) is the number of ways of writing n as the sum of less than
or equal t positive integers (ordering not mattering).
p(7) = 15 since

7 6 + 1 5 + 2
5 + 1 + 1 4 + 3 4 + 2 + 1

4 + 1 + 1 + 1 3 + 3 + 1 3 + 2 + 2
3 + 2 + 1 + 1 3 + 1 + 1 + 1 + 1 2 + 2 + 2 + 1

2 + 2 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1.

(7) (6, 1) (5, 2) (5, 12)
(4, 3) (4, 2, 1) (4, 13) (32, 1)
(3, 22) (3, 2, 12) (3, 14) (23, 1)
(22, 13) (2, 15) (17).



Partitions

(7) (6, 1) (5, 2) (5, 12)
(4, 3) (4, 2, 1) (4, 13) (32, 1)
(3, 22) (3, 2, 12) (3, 14) (23, 1)
(22, 13) (2, 15) (17).

(7)× [1] (6, 1)× [1, 1] (5, 2)× [1, 1] (5, 1)× [1, 2]
(4, 3)× [1, 1] (4, 2, 1)× [1, 1, 1] (4, 1)× [1, 3] (3, 1)× [2, 1]
(3, 2)× [1, 2] (3, 2, 1)× [1, 1, 2] (3, 1)× [1, 4] (2, 1)× [3, 1]
(2, 1)× [2, 3] (2, 1)× [1, 5] (1)× [7].



Partitions

λ = (λ0, . . . , λm)× [k0, . . . , km] ` N

means

N = k0λ0 + . . .+ kmλm

= (k0, . . . , km) ·

 λ0
...
λm


The λi are the parts and the ki are the multiplicities.



Partitions

There are many remarkable identities.

For example, Andrew and Eriksson’s Integer Paritions starts
with discussing Euler’s identity:

“Every number has as many integer partitions into odd parts as
into distinct parts.”



Partitions

Two Questions

1. How to find possible identities

2. How to prove them



Partitions

To a given partition

(λ1, . . . , λm)× [k1, . . . , km]

we associate the Young shape, a diagram k1 + · · ·+ km rows
such that there are k1 rows with λ1 squares on top of k2 rows
with λ2 squares, and so on.



Partitions

For example, the Young shape for

(5, 3, 2)× [3, 2, 1] ` 23

is



Partitions

Flip a Young shape, turning the rows into columns, to get the
conjugate partition
Flipping the Young shape of the partition (5, 3, 2)× [3, 2, 1] ` 23
of the previous example gives us the Young shape

∼C

which represents the conjugate partition

(5, 3, 2)× [3, 2, 1] ∼C (6, 5, 3)× [2, 1, 21]



Partitions

(λ1, λ2)× [k1, k2] ∼C (k1 + k2, k1)× [λ2, λ1 − λ2]

and in general

(λ1, . . . , λm)× [k1, . . . , km]
∼C

(k1 + . . .+ km, k1 + . . .+ km−1, . . . , k1)
×

[λm, λm−1 − λm, . . . , λ1 − λ2]



Question

What do partitions have to do with multi-dimensional
continued fractions algorithms?

What do partitions have to do with division algorithms in
general?



Gauss map

For λ0 > λ1 > 0, the Gauss map is

G(λ0, λ1) = (λ1, λ0 − nλ1)

if
λ0 − nλ1 ≥ 0 > λ0 − (n+ 1)λ1.



Gauss map

Iterate the Gauss map, keeping track of relevant integer n. Its
link to continued fractions is that

λ1
λ0

=
1

n0 + 1
n1+

1
n2+...



Farey map

For λ0 > λ1 > 0, the Farey map is

(λ0, λ1)
F0−→ (λ1, λ0 − λ1) if λ0 < 2λ1
F1−→ (λ0 − λ1, λ1) if λ0 > 2λ1

Via matrices

F0

(
λ0
λ1

)
=

(
0 1
1 −1

)(
λ0
λ1

)
=

(
λ1

λ0 − λ1

)

F1

(
λ0
λ1

)
=

(
1 −1
0 1

)(
λ0
λ1

)
=

(
λ0 − λ1
λ1

)



Farey and Gauss map

G(λ0, λ1) = F0 ◦ Fn−1
1 (λ0, λ1)

The rhetoric is

Gauss = fast = multiplicative

Farey = slow = additive



Farey map and partitions

Suppose
(λ0, λ1)× [k0, k1) ` N.

We have

N = (k0, k1) ·
(
λ0
λ1

)
= (k0, k1)F

−1
i Fi ·

(
λ0
λ1

)



Farey map and partitions

F0 =

(
0 1
1 −1

)
, F1 =

(
1 −1
0 1

)
F−10 =

(
1 1
1 0

)
, F−11 =

(
1 1
0 1

)

Key is that both F−10 and F−11 have non-zero entries.



Farey Tree and Map

The extended Farey map:

(λ0, λ1)×[k0, k1]
F̃0−→ (λ1, λ0 − λ1)× [k0 + k1, k0] if λ0 < 2λ1
F̃1−→ (λ0 − λ1, λ1)× [k0, k0 + k1] if λ0 > 2λ1

This is actually the natural extension of the Farey map.



Farey Tree and Map

Via matrices

F̃0


λ0
λ1
k0
k1

 =

(
F0 0

0 (F−10 )T

)
λ0
λ1
k0
k1



=


0 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 0




λ0
λ1
k0
k1



=


λ1

λ0 − λ1
k0 + k1
k0





Farey Tree and Map

F̃1


λ0
λ1
k0
k1

 =

(
F1 0

0 (F−11 )T

)
λ0
λ1
k0
k1



=


1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1




λ0
λ1
k0
k1



=


λ0 − λ1
λ1
k0

k0 + k1





Farey Tree and Map

Paths:

(19, 8)× [1, 0]
F̃1−→ (11, 8)× [1, 1]

F̃0−→ (8, 3)× [2, 1]

F̃1−→ (5, 3)× [2, 3]

F̃0−→ (3, 2)× [5, 2]

F̃0−→ (2, 1)× [7, 5]



Farey Tree and Map

Thus there is a link between continued fractions and partitions
of integers into two distinct parts.

Still seems of limited interest, though.



The Triangle Map

Multi-dimensional Continued Fractions are attempts to
generalize the Euclidean algorithm for two numbers to the case
of three or more numbers.



The Triangle Map

Roots of Multi-dimensional Continued Fractions:

1. Generalize the fact that a number has an eventually
periodic continued fraction expansion if and only if it is a
quadratic irrational.

2. Finding best Diophantine approximations of n-tuples of
reals by n-tuples of rationals

3. As a rich source of dynamical systems, starting with Gauss
on continued fractions all the way to the current work on
interval exchange maps.



The Triangle Map

The difficulty:

Big Number > Middle Number > Little Number > 0

Each method for dividing middle number and little number into
big number gives a different multi-dimensional continued
fraction algorithm.



The Triangle Map

A dynamical system on simplices.
Earlier work
(TG) (2001)
S. Assaf, L. Chen, T. Cheslack-Postava, B. Cooper, A. Diesl,
TG, M. Lepinski and A. Schuyler (2005)

A. Messaoudi, A. Nogueira, and F. Schweiger (2009)

V. Berthé, W. Steiner and J. Thuswaldner (2021)

Fougeron and A. Skripchenko (2021)

C.Bonanno, A. Del Vigna and S. Munday (2021)

C. Bonanno and A. Del Vigna (2021)

H. Ito (2023)



The Triangle Map

Set

4 := {(x0, x1, . . . , xn) ∈ Rn+1 : x0 > x1 > · · · > xn > 0}
40 := {x0, . . . , xn) ∈ 4 : x1 + xn > x0}
41 := {x0, . . . , xn) ∈ 4 : x1 + xn < x0}
4D := {x0, . . . , xn) ∈ 4 : x1 + xn = x0}

When n = 2 and x0 = 1, we have

40

41

(0, 0) (1, 0)

(1, 1)

(12 ,
1
2)



The Triangle Map

4 := {(x0, . . . , xn) ∈ Rn+1 : x0 > x1 > · · · > xn > 0}
40 := {(x0, . . . , xn) ∈ 4 : x1 + xn > x0}
41 := {(x0, . . . , xn) ∈ 4 : x1 + xn < x0}
4D := {(x0, . . . , xn) ∈ 4 : x1 + xn = x0}

and define the slow-Triangle map T : 40 ∪41 →4 by

T (x0, . . . , xn) =

{
T0(x0, . . . , xn), if x1 + xn > x0
T1(x0, . . . , xn), if x1 + xn < x0

=

{
(x1, x2, . . . , xn, x0 − x1), if x1 + xn > x0
(x0 − xn, x1, x2, . . . , xn), if x1 + xn < x0



The Triangle Map

T


x0
x1
...
xn

 =



T0


x0
x1
...
xn

 , if x1 + xn > x0

T1


x0
x1
...
xn

 , if x1 + xn < x0



The Triangle Map

where

T0 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 −1 0 · · · 0

 and T1 =


1 0 0 · · · 0 −1
0 1 0 · · · 0 0

...
0 0 0 · · · 0 1


Thus for n = 2, we have

T0 =

0 1 0
0 0 1
1 −1 0

 and T1 =

1 0 −1
0 1 0
0 0 1





The Triangle Map

T−10 =



1 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
0 0 0 · · · 1 0


and T−11 =


1 0 0 · · · 0 1
0 1 0 · · · 0 0

...
0 0 0 · · · 0 1



Both T−10 and T−11 have non-zero entries.



The Triangle Map

The extended slow-Triangle map T̃ will act on

(λ0, . . . , λm)× [k0, . . . , km]

as the action of two 2(m+ 1)× 2(m+ 1) matrices on column
vectors in R2(m+1), with the matrices(

T0 0

0 (T−10 )>

)
,

(
T1 0

0 (T−11 )>

)
.



The Triangle Map

(λ0, . . . , λm)× [k0, . . . , km]

T̃0 ↓
(λ1, λ2 . . . , λm, λ0 − λ1)× [k0 + k1, k2, . . . , km, k0]

if λ1 + λm > λ0 and

(λ0, . . . , λm)× [k0, . . . , km]

T̃1 ↓
(λ0 − λm, λ1, . . . , λm)× [k0, . . . , km−1, k0 + km]

if λ1 + λm < λ0



The Triangle Map

(14, 7, 6, 5)× [1, 0, 0, 0]
T̃1−→ (9, 7, 6, 5)× [1, 0, 0, 1]

T̃0−→ (7, 6, 5, 2)× [1, 0, 1, 1]

T̃0−→ (6, 5, 2, 1)× [1, 1, 1, 1]

Key is that the matrices T−10 and T−11 have non-negative
entries, which means that the “multiplicities” never become
negative.



The Triangle Map

What if
λ0 = λ1 + λm

(λ0, . . . , λm)× [k0, . . . , km]

T̃D ↓
(λ1, λ2 . . . , λm)× [k0 + k1, k2, . . . , km−1, k0 + km]

The dimension drops.



Triangle Map and Integer Partitions

(14, 7, 6, 5)× [1, 0, 0, 0]
T̃1−→ (9, 7, 6, 5)× [1, 0, 0, 1]

T̃0−→ (7, 6, 5, 2)× [1, 0, 1, 1]

T̃0−→ (6, 5, 2, 1)× [1, 1, 1, 1]

T̃D−−→ (5, 2, 1)× [2, 1, 2]

T̃1−→ (4, 2, 1)× [2, 1, 4]

T̃1−→ (3, 2, 1)× [2, 1, 6]

T̃D−−→ (2, 1)× [3, 8]

T̃D−−→ (1)× [14]



Triangle Map

TD, while weird in dynamics, is natural here.

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃0−→ (5, 2, 1, 1)× [2, 1, 1, 1]

and

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃1−→ (5, 5, 2, 1)× [1, 1, 1, 2]

If you concatenate, you get

(6, 5, 2, 1)× [1, 1, 1, 1]
T̃D−−→ (5, 2, 1)× [2, 1, 2]



New Partition Identities

P(N) = all partitions of N .

4 := {(x0, . . . , xn) ∈ Rn+1 : x0 > x1 > xn > 0}
40 := {(x0, . . . , xn) ∈ 4 : x1 + xn > x0}
41 := {(x0, . . . , xn) ∈ 4 : x1 + xn < x0}
4D := {(x0, . . . , xn) ∈ 4 : x1 + xn = x0}



New Partition Identities

T̃0 is one-to one on P(N) ∩40.

T̃1 is one-to one on P(N) ∩41.

T̃D is not one-to one on P(N) ∩4D.



New Partition Identities

Idea:

1. Start with an interesting subset of P(N)

2. Apply T̃

3. Count image



New Partition Identities

Theorem
Every number has as many integer partitions into partitions
with λ0 < λ1 + λm as into partitions with k0 > km. Similarly,
every number has as many integer partitions into partitions
with λ0 > λ1 + λm as into partitions with k0 < km.

There are many others.

All have generating function (q-series) interpretations.



Inverse Triangle Map

We now want to look at inverse maps.

T−10

domain ∇0 = {k0 > km}
(x0, . . . , xm)× [k0, . . . , km]

↓ T−10

(x0 + xm, x0, x1, . . . , xm−1)× [km, k0 − km, k1, k2, . . . , km−1]



Inverse Triangle Map

T−11

domain ∇1 = {k0 < km}
(x0, . . . , xm)× [k0, . . . , km]

↓ T−11

(x0 + xm, x1, x2, . . . , xm)× [k0, k1, k2, . . . , km−1, km − k0]



Inverse Triangle Map

T−1D (L)
with 1 ≤ L < min{k0, km}

domain {min{k0, km} > 1}
(x0, . . . , xm)× [k0, . . . , km]

↓ T−1D (L)
(x0 + xm, x0, x1, . . . , xm)

×[L, k0 − L, k1, k2, . . . , km−1, km − L]



Inverse Triangle Map

Now let m = 2.

T−10

domain ∇0 = {k0 > k1}
(x0, x1)× [k0, k1]

↓ T−10

(x0 + x1, x0)× [k1, k0 − k1]



Inverse Triangle Map

T−11

domain ∇1 = {k0 < k1}
(x0, x1)× [k0, k1]

↓ T−11

(x0 + x1, x1)× [k0, k1 − k0]



Inverse Triangle Map

T−1D (L)
with 1 ≤ L < min{k0, k1}

domain {min{k0, k1} > 1}
(x0, x1)× [k0, k1]

↓ T−1D (L)
(x0 + x1, x0, x1)× [L, k0 − L, , k1 − L]



Inverse Triangle Map

There is one more case we need for the inverse, namely when
m = 1. There is no inverse for T0, T1 but there will be for TD.

T−1D (L)

domain {k0 > 1}
(x0)× [k0]

↓ T−1D (L) with 1 ≤ L < (1/2)k1
(2x0, x0)× [L, k0 − 2L]



Tree Structure

If N is prime, start with

(1)× [N ]

and look at all inverse images of T̃−1i



Tree Structure

(1)× [5] (5)× [1]

(2, 1)× [1, 3]

(3, 1)× [1, 2]

(4, 1)× [1, 1]

(2, 1)× [2, 1]

(3, 2)× [1, 1]



Tree Structure

If 1 = d1, . . . , dm = N are the factors of N , then there will be
trees with roots

(d)× [N/d].

For N = 12, we would have six trees, with roots

(1)× [12], (2)× [6], (3)× [4], (4)× [3], (6)× [2], (12)× [1].



Tree Structure

(5, 2, 1)× [11, 4, 3]

T0

(6, 5, 2)× [3, 8, 4]

(8, 5, 2)× [3, 8, 1]

T1

(8, 6, 5, 2)× [1, 2, 8, 3]

TD

(8, 6, 5, 2)× [2, 1, 8, 2]

TD



Young Conjugation

Recall conjugation, which is flipping a Young shape, turning the
rows into columns, to get the conjugate partition
Flipping the Young shape of the partition (5, 3, 2)× [3, 2, 1] ` 23
of the previous example gives us the Young shape

∼C

which represents the conjugate partition

(5, 3, 2)× [3, 2, 1] ∼C (6, 5, 3)× [2, 1, 2]



Young Conjugation

Respects conjugation (is Young compatible ):

Theorem
The diagram

(λ̄)× [k̄] ∼C T̃0((µ̄)× [l̄])

T̃0 ↓ ↑ T̃0
T̃0((λ̄× [k̄])) ∼C (µ̄)× [l̄]

when λ2 + λm > λ1 and

(λ̄)× [k̄] ∼C T̃01((µ̄)× [l̄])

T̃1 ↓ ↑ T̃1
T̃1((λ̄× [k̄])) ∼C (µ̄)× [l̄]

when λ2 + λm < λ1 are both commutative.



Young Conjugation

(15, 4)× [1, 1] ∼C (2, 1)× [4, 11]

T̃1 ↓ ↑ T̃1
(11, 4)× [1, 2] ∼C (3, 1)× [4, 7]

T̃1 ↓ ↑ T̃1
(7, 4)× [1, 3] ∼C (4, 1)× [4, 3]

T̃0 ↓ ↑ T̃0
(4, 3)× [4, 1] ∼C (5, 4)× [3, 1]

T̃0 ↓ ↑ T̃0
(3, 1)× [5, 4] ∼C (9, 5)× [1, 2]

T̃1 ↓ ↑ T̃1
(2, 1)× [5, 9] ∼C (14, 5)× [1, 1]



Why triangle map

There are many different multi-dimensional continued fraction
algorithms.

Why use the triangle map?

Most multi-dimensional continued fraction algorithms seem to
be not “partition friendly”.

For example, for both Mönkemeyer and Cassaigne, the
multiplicities k start becoming negative numbers.



Why triangle map

From work of Cassaigne, Labbé and Leroy, there is the extended
slow-Cassaigne map C̃ , which is

C̃((n1, n2, n3)× [k1, k2, k3])

is
(n2, n3, n2 + n3 − n1)× [k1 + k2, k1 + k3,−k1],

if n2 + n3 > n1 and is

(n1 − n3, n2, n2 − n3)× [k1, k1 + k2 + k3,−k1 − k3],

if n2 + n3 < n1



Why triangle map

Consider the partition

(7, 5, 4)× [3, 2, 4] ` 47

We have

C̃((7, 5, 4)× [3, 2, 4]) = (5, 4, 2)× [5, 7,−3].

That −3 for one of the multiplicities means that this dynamical
system will also not generate partitions.



Why triangle map

Of course, the creation of this map C was motivated to find a
multidimensional continued fraction algorithm that produces
infinite words on three letters whose linear complexity is exactly
2n+ 1. (And thus to find the “right” analog of the link between
Sturmian sequenceses and low complexity.

TG and Osterman have recently shown, in part conjecturally,
part numerically and part via proofs, that this algorithm is the
MCF with lowest linear complexity. (The triangle map has
linear complexity at most 3n.)



Why triangle map

Dasaratha, Flapan, TG, C. Lee, C. Mihaila, N. Neumann-Chun,
S. Peluse, M. Stoffregen (2014) set up a conceptual framework
for all possible multi-dimensional continued fraction algorithms
(call Triangle Partition Maps).

For each dimension n, the Gauss version paramerized by an
element of

Sn−1 × Sn−1 × Sn−1
Half this number for the corresponding Farey version.



Why triangle map

n |Sn−1×Sn−1×Sn−1|
2 number that are partition friendly

2 4 1

3 108 2

4 6912 3

5 864000 4

6 186624000 5

7 64012032000 6

8 32774160384000 7



Why the triangle map

Matthew Phang has shown that the Selmer and the Brun
algorithms are partition friendly

Neither respect conjugation of the Young shape.

Neither do the other few examples that are partition friendly



Partitions and the Natural Extension

So far we used the triangle map to understand partitions.

Can partitions be used to understand anything new about the
triangle map?



Partitions and the Natural Extension

The natural extension, for each m, is

P(N)

is all
(λ0, . . . , λm)× [k0, . . . , km]

with each λi, kj ∈ R,

λ0 > · · · > λm > 0, ki > 0

and

N = k0λ0 + . . .+ kmλm

= (k0, . . . , km) ·

 λ0
...
λm





Triangle Map and Integer Partitions

Domain(T̃0) ∩ Image(T̃0)
C−→ Domain(T̃0) ∩ Image(T̃0)

Domain(T̃0) ∩ Image(T̃1)
C−→ Domain(T̃1) ∩ Image(T̃0)

Domain(T̃1) ∩ Image(T̃0)
C−→ Domain(T̃0) ∩ Image(T̃1)

Domain(T̃1) ∩ Image(T̃1)
C−→ Domain(T̃1) ∩ Image(T̃1)

Thus Young conjugation gives us an involution of the natural
extension. This seems new.



Natural Extension

Straightforward to prove a natural extension must exist,
abstractly. Usually hard to make it concrete.

This is easy in the context of the extended triangle map. The
natural extension can be described quite cleanly.



Tree Structure and the Natural Extenstion

The structure of the trees reflect the underlying dynamics of the
various natural extensions.

There are far, far more paths involving T̃−11 than T̃−10 reflects
that in all the natural extensions, the origin is an indifferent
fixed point, and the corresponding invariant measures have
infinite volume near the origin.



Tree Structure and the Natural Extenstion

For n = 2, T̃ is ergodic is classical.

For n = 3, Messaoudi, Nogueira, and Schweiger (2009) showed
T̃ is ergodic.

For n > 3, TG and Lehmann Duke (2024) showed T̃ is ergodic.



Tree Structure and the Natural Extenstion

After de-homogenizing, the invariant measure is

dx1 · · · dxn
x1 · · ·xn−1(1 + xn)

The origin is an indifferent fixed point. This is the underlying
reason that there are far, far more paths involving T̃−11 than
T̃−10
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Questions

1. Is it true that the triangle map is the only
multi-dimensional continued fraction algorithm that is both
partition friendly and Young compatible?

2. Understand the nature of the tree structure

3. Direct proofs of generating function identities.

4. Find more identities

5. Can you put “q” into this language. (Maybe link with
work of Sophie Morier-Genoud, Valentin Ovsienko and
collaborators)

6. Use integer partitions to understand the dynamics

7. Multi-dimensional continued fractions can be linked to
billards, translations surfaces, automata theory, etc. Can
integer partition theory be used?



Homework

1. Find the path under T̃ of

(12, 7, 3, 2)× [2, 3, 1, 5]

2. Find the tree structure for all P(N), for

N = 1, 2, 3, 4, 5, 6, 7, 8, 9.

3. For 4 = {1 > λ2 > λ3 > 0}, find the values of λ2, λ3 whose
triangle sequence is

(0, 1, 0, 1, 0, 1, . . .).



THANKS


