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QM in 1 dimension on a lattice

Describe a particle by a wave function ψ ∈ ℓ2(Z).
Probability of finding the particle in a region A ⊂ Z:

P (A) =
∑
n∈A

|ψn|2.

External potential V = (Vn)n∈Z. How does ψ change over time?

i∂tψ(t) = HV ψ(t)

HV : ℓ2(Z) → ℓ2(Z) is the Schrödinger operator

(HV ψ)n = ψn−1 + ψn+1 + Vnψn.
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Time evolution

Assume (Vn)n∈Z is bounded.

⇒ HV is a bounded, self-adjoint operator.

⇒ ψ(t) = e−itHV ψ(0).

Idea: “Diagonalize” the operator HV .

σ(HV ) = {E ∈ R | (HV − E)−1 does not exist},

is the spectrum of HV .
σ(HV ) ≡ frequencies in the expansion of e−itHV .
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The role of the potential

Reminder: σ(HV ) = {E ∈ R | (HV − E)−1 does not exist},

(HV ψ)n = ψn−1 + ψn+1 + Vnψn.

Structural properties of σ(HV ) highly depend on V !

V periodic: σ(HV ) is a finite union of closed intervals
(electronic bands).

Vn are iid random variables on a finite set A ⊂ R: again
finite union of intervals a.s. (but different spectral type).

V substitutive: σ(HV ) is a Cantor set of 0-Lebesgue
measure.
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Substitutive potentials

Example: Fibonacci substitution.

ϱ :

{
0 7→ 01,

1 7→ 0,
Mϱ =

(
1 1
1 0

)
M2

ϱ has only positive entries → ϱ is primitive.
Iterating the substitution

1|0 7→ 0|01 7→ 01|010 7→ 010|01001 . . .

Take V to be a fixed point of ϱ2 in {0, 1}Z.
⇒ V is non-periodic as a sequence, has self-similar properties.

⇒ 1-dim model of a quasicrystal.
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Substitutive potentials II

Theorem (Bovier–Ghez ’93)

If V is the fixed point of a primitive substitution, then σ(HV ) is
a Cantor set of Lebesgue measure 0.
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Fibonacci sequence from a torus translation

V = · · · |01001010 · · ·
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Sampling potentials

More generally, Vn = g(Rn
αx) with

x, α ∈ T.
Rα : T → T, x 7→ x+ α mod 1.

g : T → R.
That is, we sample along the orbit of a torus translation.

Theorem (Bellissard–Iochum–Scoppola–Testard ’89)

If g = λχ[1−α,1), with λ > 0 and α irrational, the spectrum
σ(HV ) is a Cantor set of Lebesgue measure 0.

The Fibonacci substitution sequence is a special case.
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The almost Mathieu operator

HV , with Vn = λ cos(2π(x+ nα)).
That is, g(x) = λ cos(2πx) is the sampling function.

Theorem (Avila–Jitomirskaya ’09)

For every λ ̸= 0, the spectrum of the almost Mathieu operator
σ(HV ) is a Cantor set.

Theorem (Jitormirskaya–Kravsovsky ’02, Avila–Krikorian ’05)

The Lebesgue measure of σ(HV ) is given by |4− 2|λ||. It is 0
precisely if λ = 2.
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Torus-dimensions d > 1

What if we sample on a higher-dimensional torus?
Vn = g(Rn

αx), now Rα : Td → Td, x 7→ x+ α.
Some remarks:

d > 1 is much less understood than d = 1.

Cantor spectrum is generic in C(Td) for general d ∈ N.
How to create examples with Lebesgue measure 0?
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The Tribonacci substitution

ϱ :


1 7→ 12,

2 7→ 13,

3 7→ 1,

Mϱ =

1 1 1
1 0 0
0 1 0


ϱ3 has a fixed point u = . . . u−2u−1|u0u1u2 . . . .
For a prefix u0 · · ·un take the abelianisation vector
vn = (vn1 , v

n
2 , v

n
3 ) ∈ N3. Here, vni = #i(u0 · · ·un).

For all n ∈ N, the vector vn remains close to the line spanned
by the expanding eigenvector of Mϱ.

Gohlke Zero measure Cantor spectrum



Schrödinger operators and their spectra
Zero–measure Cantor spectrum

The single-frequency case
The multi-frequency case

Rauzy fractal

Figure: Image by Prokofiev, published under a CC-BY-SA-3.0 license.
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Choice of the torus

π(e1)

π(e2)

π(e3)
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Rauzy fractal II

The projection of the Rauzy fractal to T2 is 1 : 1 almost
everywhere.

⇒ Partitions T2 into smaller sets {T1,T2,T3}.
⇒ Gives sampling function to recover u from Rα.

g(x) =
3∑

j=1

jχTj
(x)

satisfies g(Rn
αx) = j iff Rn

αx ∈ Tj .
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Sliding block codes

Goal: approximate arbitrary g ∈ C(T) by elementary functions,
maintaining Cantor spectrum of Lebesgue measure 0 (CSL0).

· · · x−3 x−2 x−1 x0 x1 x2 x3 x4 x5 x6 · · ·

· · · y−3 y−2 y−1 y0 y1 y2 y3 y4 y5 y6 · · ·

h

Sliding block code: ϕh : x 7→ y with yn = h(x[n,n+3]), h injective.

ϕh(V ) still has CSL0, for V the Tribonacci sequence.

V[n,n+3] = w iff Rn
αx ∈ Tw, for some Tw ⊂ T.

=⇒ ϕh(V ) from finer partition {Tw : |w| = 4}.
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S-adic sequences

Can we get such a result for almost every α ∈ T2? Problem:
there are only countably many substitutions!
S-adic system: directive sequence of substitutions τ = (τn)n∈N,
drawn from a finite set {γ1, · · · , γn}. Consider

uτ = lim
n→∞

τ1 ◦ τ2 ◦ . . . ◦ τn(an|bn).

Steps:

1 Condition (∗) on (τn)n∈N such that HV with V = uτ has
CSL0.

2 Relate (Rα, T ) to an S-adic system for a.e. α ∈ T2.
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Boshernitzan’s condition

Symbolic dynamical system from sequence V ∈ AZ:

S : AZ → AZ with (SW )n =Wn+1.

XV = {SjV : j ∈ Z}.
Equip (XV , S) with some S-invariant measure µ. Cylinder sets:

[w1 · · ·wn] = {W ∈ XV :W1 · · ·Wn = w1 · · ·wn}.

Definition

(XV , S) satisfies Boshernitzan’s condition (B) if there is an
S-invariant probability measure µ on XV and C > 0 with

inf{µ([w1 · · ·wn]) : [w1 · · ·wn] ̸= ∅} > C

n
,

for infinitely many n ∈ N.

Gohlke Zero measure Cantor spectrum



Schrödinger operators and their spectra
Zero–measure Cantor spectrum

The single-frequency case
The multi-frequency case

(B) =⇒ CSL0

Theorem (Damanik–Lenz ’06)

If (XV , S) is minimal and satisfies (B), HW has CSL0 for every
W ∈ XV , unless V is periodic.

This is satisfied if V is linearly recurrent:

V
w w

< Kn n

Implies for w = w1 · · ·wn

µ([w]) = lim
m→∞

#w(V1 · · ·Vm)

m
>

1

Kn
.
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Property (∗)

Substitution γ acting on A.

γ is positive if γ(a) contains all letters for all a ∈ A.

γ is a pair builder if γ(a) contains all words v1v2 that occur
in some γ(w1w2).

Definition

We say that (τn)n∈N satisfies (∗) if there are infinitely many
n ∈ N and jn, kn ⩽ N ∈ N such that

1 τn+1 ◦ · · · ◦ τn+jn is positive.

2 τn+jn+1 ◦ · · · ◦ τn+jn+kn is a pair builder.
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Weak linear recurrence

Property (∗) gives “linear recurrence” on infinitely many scales.

V
σn(v) σn(v)

ϱn(a) ϱn(b)

v v

a b
ϱn

σn

Figure: σn = τ1 ◦ · · · τn+jn and ϱn = τn+jn+1 ◦ · · · ◦ τn+jn+kn
.

Positivity: σn inflates sizes almost uniformly.

Pair builder: v = v1v2 in every ϱn(a) with a ∈ A.
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(∗) =⇒ CSL0

Proposition (Chaika–Damanik–Fillman–G)

Assume (τn)n∈N satisfies property (∗) and V = uτ . Then, for all
W ∈ XV , σ(HW ) is a Cantor set of Lebesgue measure 0.

Chain of implications:

(∗) =⇒ weak LR =⇒ (B) =⇒ CSL0.

Gohlke Zero measure Cantor spectrum



Schrödinger operators and their spectra
Zero–measure Cantor spectrum

The single-frequency case
The multi-frequency case

Cassaigne–Selmer substitutions

γ1 :


1 7→ 1,

2 7→ 13,

3 7→ 2,

γ2 :


1 7→ 2,

2 7→ 13,

3 7→ 3,

and τ = (τn)n∈N, with τn ∈ {γ1, γ2}.

Theorem (Berthé–Steiner–Thuswaldner ’20)

For almost every α ∈ T2 there exists a directive sequence
τ = τ(α) such that uτ is a coding of the torus translation Rα.

Remark: the sampling function is an elementary function on
sets that are (generalized) Rauzy fractals.

Gohlke Zero measure Cantor spectrum



Schrödinger operators and their spectra
Zero–measure Cantor spectrum

The single-frequency case
The multi-frequency case

Main result

Recall that Vn = g(Rn
αx).

Theorem (Chaika–Damanik–Fillman–G)

For almost every α ∈ T2, the corresponding directive sequence
τ(α) satisfies property (∗). In particular, for almost every
α ∈ T2 there exists a sampling function g such that σ(HV ) is a
Cantor set of Lebesgue measure 0 (irrespective of x).

Remark: The | · |∞-closure of such functions g contains C(T).
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Summary

(HV ψ)n = ψn−1 + ψn+1 + Vnψn.

where Vn = g(Rn
αx) is quasi-periodic.

The spectrum σ(HV ) = {E ∈ R | (HV − E)−1 does not exist} is
a Cantor set of Lebesgue measure 0 if

d = 1 and α ∈ T1 is irrational, g appropriate step function.

d = 1, g(x) = 2 cos(2πx) and α irrational. Here, the factor
2 is crucial!

d = 2, for almost every α ∈ T2 and appropriate g.

Q: Can we choose g ∈ C(T2)?

Q: What about d > 2? At least d = 3 seems within reach.
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Thank you for your attention!
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