Zero measure Cantor spectrum for Schrödinger operators with quasi-periodic potentials

Philipp Gohlke (joint work with Jonathan Chaika, David Damanik and Jake Fillman)

Faculty of Mathematics Universität Bielefeld, Germany Rice University, Houston, Texas

January 10, 2022

Outline

2 Zero–measure Cantor spectrum

- 3 The single-frequency case
- 4 The multi-frequency case

QM in 1 dimension on a lattice

Describe a particle by a wave function $\psi \in \ell^2(\mathbb{Z})$.

• Probability of finding the particle in a region $A \subset \mathbb{Z}$:

$$P(A) = \sum_{n \in A} |\psi_n|^2.$$

External potential $V = (V_n)_{n \in \mathbb{Z}}$. How does ψ change over time?

$$\mathrm{i}\partial_t\psi(t) = H_V\psi(t)$$

 $H_V: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ is the Schrödinger operator

$$(H_V\psi)_n = \psi_{n-1} + \psi_{n+1} + V_n\psi_n.$$

Time evolution

Assume $(V_n)_{n \in \mathbb{Z}}$ is bounded.

 \Rightarrow H_V is a bounded, self-adjoint operator.

$$\Rightarrow \psi(t) = \mathrm{e}^{-\mathrm{i}tH_V}\psi(0).$$

Idea: "Diagonalize" the operator H_V .

$$\sigma(H_V) = \{ E \in \mathbb{R} \mid (H_V - E)^{-1} \text{ does not exist} \},\$$

is the spectrum of H_V . $\sigma(H_V) \equiv$ frequencies in the expansion of e^{-itH_V} .

The role of the potential

Reminder: $\sigma(H_V) = \{E \in \mathbb{R} \mid (H_V - E)^{-1} \text{ does not exist}\},\$

$$(H_V\psi)_n = \psi_{n-1} + \psi_{n+1} + V_n\psi_n.$$

Structural properties of $\sigma(H_V)$ highly depend on V!

- V periodic: $\sigma(H_V)$ is a finite union of closed intervals (electronic bands).
- V_n are iid random variables on a finite set $\mathcal{A} \subset \mathbb{R}$: again finite union of intervals a.s. (but different spectral type).
- V substitutive: $\sigma(H_V)$ is a Cantor set of 0-Lebesgue measure.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Substitutive potentials

Example: Fibonacci substitution.

$$\varrho \colon \begin{cases} 0 \mapsto 01, \\ 1 \mapsto 0, \end{cases} \qquad \qquad M_{\varrho} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

 M_{ϱ}^2 has only positive entries $\rightarrow \varrho$ is *primitive*. Iterating the substitution

 $1|0 \mapsto 0|01 \mapsto 01|010 \mapsto 010|01001...$

Take V to be a fixed point of ρ^2 in $\{0,1\}^{\mathbb{Z}}$.

- \Rightarrow V is non-periodic as a sequence, has self-similar properties.
- \Rightarrow 1-dim model of a quasicrystal.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Substitutive potentials II

Theorem (Bovier–Ghez '93)

If V is the fixed point of a primitive substitution, then $\sigma(H_V)$ is a Cantor set of Lebesgue measure 0.

Fibonacci sequence from a torus translation

 $V = \cdots | 01001010 \cdots$

Gohlke Zero measure Cantor spectrum

Sampling potentials

More generally, $V_n = g(R_{\alpha}^n x)$ with

- $x, \alpha \in \mathbb{T}$.
- $R_{\alpha} \colon \mathbb{T} \to \mathbb{T}, x \mapsto x + \alpha \mod 1.$
- $g \colon \mathbb{T} \to \mathbb{R}$.

That is, we sample along the orbit of a torus translation.

Theorem (Bellissard–Iochum–Scoppola–Testard '89)

If $g = \lambda \chi_{[1-\alpha,1)}$, with $\lambda > 0$ and α irrational, the spectrum $\sigma(H_V)$ is a Cantor set of Lebesgue measure 0.

The Fibonacci substitution sequence is a special case.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

The almost Mathieu operator

 H_V , with $V_n = \lambda \cos(2\pi (x + n\alpha))$. That is, $g(x) = \lambda \cos(2\pi x)$ is the sampling function.

Theorem (Avila–Jitomirskaya '09)

For every $\lambda \neq 0$, the spectrum of the almost Mathieu operator $\sigma(H_V)$ is a Cantor set.

Theorem (Jitormirskaya–Kravsovsky '02, Avila–Krikorian '05)

The Lebesgue measure of $\sigma(H_V)$ is given by $|4-2|\lambda||$. It is 0 precisely if $\lambda = 2$.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

→ Ξ →

Torus-dimensions d > 1

What if we sample on a higher-dimensional torus? $V_n = g(R^n_{\alpha}x)$, now $R_{\alpha} \colon \mathbb{T}^d \to \mathbb{T}^d$, $x \mapsto x + \alpha$. Some remarks:

- d > 1 is much less understood than d = 1.
- Cantor spectrum is generic in $C(\mathbb{T}^d)$ for general $d \in \mathbb{N}$.
- How to create examples with Lebesgue measure 0?

The Tribonacci substitution

$$\varrho \colon \begin{cases} 1 \mapsto 12, \\ 2 \mapsto 13, \\ 3 \mapsto 1, \end{cases} \qquad M_{\varrho} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 ϱ^3 has a fixed point $u = \dots u_{-2}u_{-1}|u_0u_1u_2\dots$ For a prefix $u_0 \dots u_n$ take the abelianisation vector $v^n = (v_1^n, v_2^n, v_3^n) \in \mathbb{N}^3$. Here, $v_i^n = \#_i(u_0 \dots u_n)$. For all $n \in \mathbb{N}$, the vector v_n remains close to the line spanned by the expanding eigenvector of M_{ϱ} .

Rauzy fractal

Figure: Image by Prokofiev, published under a CC-BY-SA-3.0 license.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Choice of the torus

Rauzy fractal II

The projection of the Rauzy fractal to \mathbb{T}^2 is 1:1 almost everywhere.

- \Rightarrow Partitions \mathbb{T}^2 into smaller sets $\{\mathbb{T}_1, \mathbb{T}_2, \mathbb{T}_3\}$.
- \Rightarrow Gives sampling function to recover u from R_{α} .

$$g(x) = \sum_{j=1}^{3} j \chi_{\mathbb{T}_j}(x)$$

satisfies $g(R_{\alpha}^n x) = j$ iff $R_{\alpha}^n x \in \mathbb{T}_j$.

Sliding block codes

Goal: approximate arbitrary $g \in C(\mathbb{T})$ by elementary functions, maintaining Cantor spectrum of Lebesgue measure 0 (CSL0).

Sliding block code: $\phi_h \colon x \mapsto y$ with $y_n = h(x_{[n,n+3]})$, h injective.

• $\phi_h(V)$ still has CSL0, for V the Tribonacci sequence.

•
$$V_{[n,n+3]} = w$$
 iff $R^n_{\alpha} x \in \mathbb{T}_w$, for some $\mathbb{T}_w \subset \mathbb{T}_w$
 $\implies \phi_h(V)$ from finer partition $\{\mathbb{T}_w : |w| = 4\}.$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

S-adic sequences

Can we get such a result for almost every $\alpha \in \mathbb{T}^2$? Problem: there are only countably many substitutions! S-adic system: directive sequence of substitutions $\tau = (\tau_n)_{n \in \mathbb{N}}$, drawn from a finite set $\{\gamma_1, \dots, \gamma_n\}$. Consider

$$u_{\tau} = \lim_{n \to \infty} \tau_1 \circ \tau_2 \circ \ldots \circ \tau_n(a_n | b_n).$$

Steps:

- Condition (*) on $(\tau_n)_{n \in \mathbb{N}}$ such that H_V with $V = u_\tau$ has CSL0.
- 2 Relate (R_{α}, T) to an S-adic system for a.e. $\alpha \in \mathbb{T}^2$.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Boshernitzan's condition

Symbolic dynamical system from sequence $V \in \mathcal{A}^{\mathbb{Z}}$:

•
$$S: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$$
 with $(SW)_n = W_{n+1}$.

•
$$\mathbb{X}_V = \overline{\{S^j V : j \in \mathbb{Z}\}}.$$

Equip (X_V, S) with some S-invariant measure μ . Cylinder sets:

$$[w_1\cdots w_n] = \{W \in \mathbb{X}_V : W_1\cdots W_n = w_1\cdots w_n\}.$$

Definition

 (X_V, S) satisfies Boshernitzan's condition (B) if there is an S-invariant probability measure μ on X_V and C > 0 with

$$\inf\{\mu([w_1\cdots w_n]): [w_1\cdots w_n]\neq\varnothing\} > \frac{C}{n},$$

for infinitely many $n \in \mathbb{N}$.

$(B) \implies \text{CSL0}$

Theorem (Damanik–Lenz '06)

If (\mathbb{X}_V, S) is minimal and satisfies (B), H_W has CSL0 for every $W \in \mathbb{X}_V$, unless V is periodic.

This is satisfied if V is *linearly recurrent*:

Implies for $w = w_1 \cdots w_n$

$$\mu([w]) = \lim_{m \to \infty} \frac{\#_w(V_1 \cdots V_m)}{m} > \frac{1}{Kn}.$$

Property (*)

Substitution γ acting on \mathcal{A} .

- γ is *positive* if $\gamma(a)$ contains all letters for all $a \in \mathcal{A}$.
- γ is a *pair builder* if $\gamma(a)$ contains all words v_1v_2 that occur in some $\gamma(w_1w_2)$.

Definition

We say that $(\tau_n)_{n\in\mathbb{N}}$ satisfies (*) if there are infinitely many $n\in\mathbb{N}$ and $j_n,k_n\leqslant N\in\mathbb{N}$ such that

2
$$au_{n+j_n+1} \circ \cdots \circ \tau_{n+j_n+k_n}$$
 is a pair builder.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Weak linear recurrence

Property (*) gives "linear recurrence" on infinitely many scales.

Figure: $\sigma_n = \tau_1 \circ \cdots \circ \tau_{n+j_n}$ and $\varrho_n = \tau_{n+j_n+1} \circ \cdots \circ \tau_{n+j_n+k_n}$.

- Positivity: σ_n inflates sizes almost uniformly.
- Pair builder: $v = v_1 v_2$ in every $\rho_n(a)$ with $a \in \mathcal{A}$.

$$(*) \implies \text{CSL0}$$

Proposition (Chaika–Damanik–Fillman–G)

Assume $(\tau_n)_{n \in \mathbb{N}}$ satisfies property (*) and $V = u_{\tau}$. Then, for all $W \in \mathbb{X}_V$, $\sigma(H_W)$ is a Cantor set of Lebesgue measure 0.

Chain of implications:

$$(*) \implies$$
 weak LR \implies $(B) \implies$ CSL0.

Cassaigne–Selmer substitutions

$$\gamma_1 \colon \begin{cases} 1 \mapsto 1, \\ 2 \mapsto 13, \\ 3 \mapsto 2, \end{cases} \quad \gamma_2 \colon \begin{cases} 1 \mapsto 2, \\ 2 \mapsto 13, \\ 3 \mapsto 3, \end{cases}$$

and
$$\tau = (\tau_n)_{n \in \mathbb{N}}$$
, with $\tau_n \in \{\gamma_1, \gamma_2\}$.

Theorem (Berthé–Steiner–Thuswaldner '20)

For almost every $\alpha \in \mathbb{T}^2$ there exists a directive sequence $\tau = \tau(\alpha)$ such that u_{τ} is a coding of the torus translation R_{α} .

Remark: the sampling function is an elementary function on sets that are (generalized) Rauzy fractals.

Main result

Recall that $V_n = g(R^n_{\alpha}x)$.

Theorem (Chaika–Damanik–Fillman–G)

For almost every $\alpha \in \mathbb{T}^2$, the corresponding directive sequence $\tau(\alpha)$ satisfies property (*). In particular, for almost every $\alpha \in \mathbb{T}^2$ there exists a sampling function g such that $\sigma(H_V)$ is a Cantor set of Lebesgue measure 0 (irrespective of x).

Remark: The $|\cdot|_{\infty}$ -closure of such functions g contains $\mathcal{C}(\mathbb{T})$.

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Summary

$$(H_V\psi)_n = \psi_{n-1} + \psi_{n+1} + V_n\psi_n.$$

where $V_n = g(R_{\alpha}^n x)$ is quasi-periodic. The spectrum $\sigma(H_V) = \{E \in \mathbb{R} \mid (H_V - E)^{-1} \text{ does not exist}\}$ is a Cantor set of Lebesgue measure 0 if

- d = 1 and $\alpha \in \mathbb{T}^1$ is irrational, g appropriate step function.
- $d = 1, g(x) = 2\cos(2\pi x)$ and α irrational. Here, the factor 2 is crucial!
- d = 2, for almost every $\alpha \in \mathbb{T}^2$ and appropriate g.
- **Q**: Can we choose $g \in \mathcal{C}(\mathbb{T}^2)$?
- Q: What about d > 2? At least d = 3 seems within reach.

イロト 不得下 イヨト イヨト

Background on aperiodic order and Schrödinger operators

M. Baake and U. Grimm, *Aperiodic Order. Vol. 1: A Mathematical Invitation*, Cambridge University Press, Cambridge, 2013.

D. Damanik, Schrödinger operators with dynamically defined potentials, *Ergodic Theory Dynam. Systems* **37** (2017) 1681-1764.

References

A. Avila, S. Jitomirskaya, The ten Martini problem, Annals of Mathematics **170** (2009) 303–342.

A. Avila, R. Krikorian, Reducibility and non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles, *Annals of Mathematics* **164** (2006) 911–940.

J. Bellissard, B. Iochum, E. Scoppola, D. Testard, Spectral properties of one-dimensional quasi-crystals, *Comm. Math. Phys.* **125** (1989) 527–543.

References II

A. Bovier, J.-M. Ghez, Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions, *Comm. Math. Phys.* 158 (1993) 45–66; Erratum: *Comm. Math. Phys.* 166 (1994) 431–432.

D. Damanik and D. Lenz, A condition of Boshernitzan and uniform convergence in the Multiplicative Ergodic Theorem, *Duke Math. J.* **133** (2006) 95–123.

S. Jitomirskaya and I. Krasovsky, Continuity of the measure of the spectrum for discrete quasiperiodic operators, *Math. Res. Letters* **9** (2002) 413–421.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thank you for your attention!

∃ >