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Introduction

The Real Gauss Map

Define the following functions.

� ⌊⋅⌋ ∶ R→ Z is the usual floor function,

� The real Gauss map is the function TR ∶ [0,1) → [0,1) given
by

∀α ∈ [0,1) TR(α) = ⎧⎪⎪⎨⎪⎪⎩
α−1 − ⌊α−1⌋, if α > 0,

0, if α = 0.

� a1 ∶ (0,1) → N by a1(α) = ⌊α−1⌋,
� For α ∈ (0,1) and n ∈ N such that T n

R(α) ≠ 0,

an(α) = a1(T n
R(α)).
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Introduction

The Real Gauss Map

For any α ∈ (0,1) we have that

α = [0; a1(x), a2(x), . . .]R ∶= 1

a1(x) + 1

a2(x) + 1⋱
.
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α − ⌊ 1

α
⌋ = 1

α − a1(α).
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Introduction

Goal. Write any complex number z as a continued fraction of the
form

z = a0 + 1

a1 + 1

a2 + 1

a3 + 1⋱

, an ∈ Z[i] for all n.
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Introduction

A failed continued fraction expansion. The partition.
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Introduction

A failed continued fraction

A failed continued fraction expansion

Define
S ∶= {z ∈ C ∶ 0 ≤R(z) < 1, 0 ≤ Iz < 1} .

For any z ∈S∖ {0} let a1(z) ∈ Z[i] be the unique Gaussian integer
satisfying

1

z
− a1 (1

z
) ∈S.
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Introduction

A failed continued fraction

A failed continued fraction expansion. Partition of S.
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Introduction

A failed continued fraction

A failed continued fraction expansion

Let R the curves

i. The circle of radius 1
2 centered at 1

2 .

ii. The circle of radius 1
2 centered at 1

2 + i .

iii. The line segment joining 1 with 1 + i .
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Introduction

A failed continued fraction

A failed continued fraction expansion

We cannot have an = −i for n ∈ N in

z = 0 + 1

a1 + 1

a2 + 1

a3 + 1⋱

.



Good’s Theorem for Hurwitz continued fractions

Definition of Hurwitz continued fractions

The nearest Gaussian integer function [⋅] ∶ C→ Z[i] is given by

∀z ∈ C [z] ∶= ⌊R(z) + 1

2
⌋ + i ⌊I(z) + 1

2
⌋ .

Definition
Define F ∶= {z ∈ C ∶ [z] = 0}, T ∶ F→ F by

∀z ∈ F T(z) = ⎧⎪⎪⎨⎪⎪⎩
z−1 − [z−1], if z ≠ 0,

0, if z = 0.

Define a1 ∶ F ∖ {0} → Z[i] by a1(z) = [z−1], an(z) = a1(T n(z)) whenever
T n(z) ≠ 0, and a0 ∶ C→ Z[i] by a0(z) = [z]. The Hurwitz continued fraction
of a complex number z is

a0(z) + 1

a1(z) + 1

a2(z) + 1

a3(z) + 1⋱

.
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Definition of Hurwitz continued fractions

Laws of succession and the symbolic space

Hurwitz Continued Fraction Process
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Definition of Hurwitz continued fractions

Laws of succession and the symbolic space
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Definition of Hurwitz continued fractions

Laws of succession and the symbolic space

Shift space

Proposition

There is no function M ∶ Z[i] ×Z[i] → {0,1} such that a sequence
in Z[i], (an)n≥1, is the sequence of Hurwitz elements of some z ∈ F
if and only if ∀n ∈ N M(an, an+1) = 1.

Some aspects of the basic theory of Hurwitz continued fractions
are discussed in [6], [8], [10], and [11].
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Definition of Hurwitz continued fractions

Laws of succession and the symbolic space

Partition of F by a1 1
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Figure 1: Partition of F.
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An Overview of Hurwitz Continued Fractions

Basics

A basic definition

Definition

Let z be a complex number and (an)n≥0 its Hurwitz elements. TheQ-pair of z is the pair of sequences (pn)n≥0, (qn)n≥0 given by

(p−2 p−1
q−2 q−1

) = (0 1
1 0

) , (pn
qn

) = (pn−1 pn−2
qn−1 qn−2

)(an
1
) ,

as long as an is defined.
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An Overview of Hurwitz Continued Fractions

Basics

Theorem
Let z be any complex number, (an)n≥0 its Hurwitz elements, and (pn)n≥0,(qn)n≥0 its Q-pair.

1. (Hurwitz, [11]) (qn)n≥0 is strictly increasing,

2. (Dani, Nogueira, [5]) There is a constant κ > 1 such that ∣qn∣ ≥ κn

whenever qn is defined.

3. (Dani, Nogueira, [5]) If z ∈ F, n ∈ N is such that zn+1 ∶= T n+1(z) ≠ 0, then

z = pnz
−1
n+1 + pn−1

qnz−1n+1 + qn−1
.

4. (Hurwitz, [11]) The sequence (an)n≥0 is infinite if and only if z ∈ C ∖Q(i)
and in this case

z = [a0; a1, a2, . . .] ∶= a0 + 1

a1 + 1

a2 + 1⋱
.
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An Overview of Hurwitz Continued Fractions

Some Classical Theorems

The Theorems of Lagrange and Galois

Theorem (S.G. Dani, A. Nogueira, 2014 [5])
A complex number z has a periodic Hurwitz continued fraction if and only if
there exist a,b, c ∈ Z[i] such that a ≠ 0 and

az2 + bz + c = 0.

Theorem (G.R., 2018 [8])
Let ξ = [a0; a1, a2, . . .] be quadratic over Q(i) and let η ∈ C be its conjugate
over Q(i).

1. If (an)n≥1 is purely periodic, then ∣η∣ < 1.

2. If ∣ξ∣ > 1, η ∈ F, and ∣an∣ ≥ √
8 for all n ∈ N0, then ξ has a purely periodic

Hurwitz continued fraction. The conditions η ∈ F and ∣an∣ ≥ √
8 for all

n ∈ N0 cannot be removed.
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An Overview of Hurwitz Continued Fractions

Some Classical Theorems

Theorem (J.A. Serret, 1866)

Two real numbers α = [a0; a1, . . .]R, β = [b0;b1, . . .]R are equivalent under the
action of PGL(2,Z) if and only if α,β ∈ Q or if α,β ∈ R ∖Q and for some
j , k ∈ N we have aj+n = bk+n for all n ∈ N.

Theorem (R. Lakein, [15], A. Lukyanenko, J. Vandehey, [16])
The complex numbers

Ξ = i + (43 + 28i) 1
2

2
, A = 5 − i −Ξ

4 − i
, B = 3 + 2i +Ξ

4

satisfy A = (2B − i)/(B − i), but

A = [2 + i ,3i ,−1 + 2i ,−1 + 2i ,3,−2 − i],
B = [2 + i ,−2 + i ,−2 + i ,1 − 2i ,−1 − 2i ,1 + 2i].

However, for almost every pair w , z ∈ F, the numbers are PGL(2,Z[i])
equivalent if and only if their tails eventually coincide.
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An Overview of Hurwitz Continued Fractions

Representation of complex numbers

The exponent of repetition rep(a) is defined in [3].

Theorem (Y. Bugeaud, 2013, [2])
Let a = (an)n≥1 be a bounded and non-periodic sequence of natural numbers
such that

rep(a) < +∞.
Then, the number [0; a1, a2, . . .]R is transcendental.

Theorem (G.R., 2018 [8])
Let a = (an)n≥1 be a bounded and non-periodic sequence of Gaussian integers
such that

rep(a) < +∞, min
n∈N

∣an∣ ≥ √
8.

Then, the complex number [0; a1, a2, . . .] is transcendental.
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An Overview of Hurwitz Continued Fractions

Representation of complex numbers

Conjecture (Folklore Conjecture)

An algebraic real number has a bounded regular continued fraction
if and only if it is quadratic over Q.

Theorem (W. Bosma, D. Gruenewald, 2012 [1])

For each n ∈ N there exists ζ ∈ C ∖R with a bounded Hurwitz
continued fraction satisfying [Q(ζ) ∶ Q] = 2n.
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An Overview of Hurwitz Continued Fractions

Some Approximation Properties

Theorem (R. Lakein, 1973, [14])

For any z ∈ C ∖Q(i) with Q-pair (pn)n≥0, (qn)n≥0, and any n ∈ N
define mn(z) ∈ C by

z − pn
qn

= 1

mn(z)q2n .
Then, inf{∣mn(z)∣ ∶ n ∈ N, z ∈ C ∖Q(i)} = 1.

Corollary

For every z ∈ C ∖Q(i) with Q-pair (pn)n≥0, (qn)n≥0 and any n ∈ N
∣z − pn

qn
∣ < 1∣qn∣2 .
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An Overview of Hurwitz Continued Fractions

Some Approximation Properties

Let z be a complex number. A rational complex number p/q is a
good approximation to ζ if

∀q′ ∈ Z[i] ∀p′ ∈ Z[i] ∣q′∣ ≤ ∣q∣ Ô⇒ ∣qz − p∣ ≤ ∣q′z − p′∣. (1)

and p/q is a best approximation to ζ if

∀q′ ∈ Z[i] ∀p′ ∈ Z[i] ∣q′∣ < ∣q∣ Ô⇒ ∣qz − p∣ < ∣q′z − p′∣. (2)

Theorem (R. Lakein, 1973 [14])

Every HCF convergent of any z ∈ C is a good approximation to z.
For Lebesgue almost all z ∈ C every HCF convergent is a best
approximation.
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An Overview of Hurwitz Continued Fractions

Ergodic theory

Theorem (H. Nakada, 1976 [17])

There exists a measure µ which is equivalent to the Lebesgue
measure on F and such that the system (F,T , µ) ergodic.

Theorem (G.R., 2021)

Let u = (un)n≥1 be a sequence of positive real numbers and define

E = {z = [0; a1, a2, . . .] ∈ F ∶ ∣an∣ ≥ un for infinitely many n ∈ N} .
Then, if m is the Lebesgue measure on F, we have that

m(E) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if ∑
n∈N

u−2n < +∞,
1, if ∑

n∈N
u−2n = +∞.
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Complex Good’s Theorem

Theorem (I.J. Good, 1941 [9])

The following equality holds

dimH {z = [a0; a1, a2, . . .]R ∈ R ∶ lim
n→∞ an = +∞} = 1

2
.

Theorem (G.R., 2018 [7])

The following equality holds

dimH {z = [a0; a1, a2, . . .] ∈ C ∶ lim
n→∞ ∣an∣ = +∞} = 1.
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Complex Good’s Theorem

General Lemmas

Let (X ,d) be a complete metric space. Let A = ⋃n∈N0
An be a

family of compact sets such that each An is finite, #A0 = 1, and

i. ∀A ∈ A ∣A∣ > 0,

ii. ∀n ∈ N ∀A,B ∈ An (A = B) ∨ (A ∩B = ∅),

iii. ∀n ∈ N ∀B ∈ An ∃A ∈ An−1 B ⊆ A,

iv. ∀n ∈ N ∀A ∈ An−1 ∃B ∈ An B ⊆ A,

v. dn(A) ∶= max{∣A∣ ∶ A ∈ An} → 0 as n →∞.

For each n ∈ N0 and each A ∈ An, put

D(A) = {B ∈ An+1 ∶ B ⊆ A}.
The limit set of A, A∞, is

A∞ ∶= ∞⋂
n=0

⋃
A∈An

A.

(See strongly tree-like structure in [13]).
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Complex Good’s Theorem

General Lemmas

Lemma (First Generalized Jarńık Lemma)

Let A be as above and assume that it satisfies the following conditions:

1. lim inf
n→∞

log(dn(A)−1)
n

> 0,

2. There is a sequence of positive numbers (Bn)n≥1 such that

∀n ∈ N ∀A ∈ An Y ,Z ∈ D(A) Y ≠ Z Ô⇒ d(Y ,Z) ≥ Bn∣A∣
lim sup
n→∞

log log(B−1
n )

n
< 1

If s > 0 satisfies ∀n ∈ N ∀A ∈ An ∑
B∈D(A)

∣B ∣s ≥ ∣A∣s . (3)

then dimH A∞ ≥ s.
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Complex Good’s Theorem

General Lemmas

Lemma (Second Generalized Jarńık Lemma)

Let A be as above. If s > 0 is such that

∀k ∈ N ∀A ∈ Ak ∑
B∈D(A)

∣B ∣s ≤ ∣A∣s , (4)

then dimH A∞ ≤ s.
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Complex Good’s Theorem

General Lemmas

“Proof” of the first lemma

1. We show that there exists c > 0 such that any finite collection
X ⊆ A that covers A∞ satisfies

∑
A∈X

∣A∣s ≥ c .

2. For each open covering G of A∞ and any ε > 0 we find some
finite X ⊆ A that covers A∞ and

c < ∑
A∈X

∣A∣s ≤ ∑
G∈G

∣G ∣s−ε.
3. Conclude.
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Complex Good’s Theorem

Upper bound in the complex Good’s Theorem

“Proof” of the upper bound

Write
E ∶= {z = [0; a1, a2, . . .] ∈ F ∶ lim

n→∞
∣an∣ = +∞}.

For any L > 0 define

E ′
L ∶= {[0; a1, a2, . . .] ∈ F ∶ lim inf

n→∞
∣an∣ ≥ L} ,

EL ∶= {[0; a1, a2, . . .] ∈ F ∶ inf
n→∞

∣an∣ ≥ L} .
then EL ⊆ E ′

L and dimH EL ≤ dimH E ′
L. Some basic properties of Hausdorff

dimension yield ∀L ∈ R>0 dimH EL = dimH E ′
L.

Using the First Generalized Jarńık Lemma we get that

lim
L→∞

dimH EL ≤ 1.

Since E ⊆ E ′
L for all L > 0,

dimH E ≤ 1.
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Complex Good’s Theorem

Lower bound in the complex Good’s Theorem

For any z ∈ C write ∥z∥ = max{∣R(z)∣, ∣I(z)∣}.

Lemma

Let f ,g ;N→ R>0 be to functions with the following properties:

1. There is some c ′ ∈ (0,1) such that

∀n ∈ N √
8 ≤ f (n) ≤ c ′g(n),

2. lim
n→∞ f (n) = +∞,

3. lim sup
n→∞

log log g(n)
log n

< 1.

Then, the set

Ef ,g ∶= {[0; a1, a2, . . .] ∈ F′ ∶ ∀n ∈ N f (n) ≤ ∥an∥ ≤ g(n)}
satisfies dimH Ef ,g ≥ 1.
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Complex Good’s Theorem

Lower bound in the complex Good’s Theorem

Proof of the Lemma.

Notation. For n ∈ N and a = (a1, . . . , an) ∈ Z[i]n the cylinder
determined by a is

Cn(a) ∶= {z = [0; a1(z), a2(z), . . .] ∈ F ∶ a1(z) = a1, . . . , an(z) = an},
and Cn(a) is its closure. Note that for some absolute constant
κ > 1 such that ∣Cn(a)∣ < κ−n.
Proof of the Lemma. Define A0 = {F} and for any n ∈ N
An ∶= {Cn(a) ∶ a ∈ Z[i]n, ∀j ∈ {1, . . . ,n} f (j) ≤ ∥aj∥ ≤ g(j)} .

Apply the First Generalized Jarńık Lemma to A = ⋃n∈N0
An and to

an arbitrary 0 < s < 1 and conclude.
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Complex Good’s Theorem

Final Remarks on the proof

Remarks on the proof

1. When we assume that z = [0; a1, a2, . . .] ∈ F satisfies ∣an∣ ≥ √
8

for all n, we get rid of the complicated structure of the
associated shift space.

2. The computations with max{∣R(z)∣, ∣I(z)∣} are simpler than
with ∣z ∣. This is also used in the proof of the complex
Borel-Bernstein Theorem.

3. In an ongoing collaboration with Rafael Alcaraz Barrera, we
adapted the strategy to the context of distal sets for the
Lüroth map.
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Open problem

Fix t0 ≥ 1. Given ψ ∶ [t0,+∞) → R>0, the set D(ψ) of ψ-Dirichlet numbers is
the collection of x ∈ R such that for every large t > 0 there are p,q ∈ Z such that

∣qx − p∣ < ψ(t), 0 < ∣q∣ < t.

Theorem (D. Kleinbock, N. Wadleigh, 2018 [12])
If ψ ∶ [t0,∞) → R≥0 is non-increasing and ψ(t) < t−1 for every large t, then
D(ψ) ≠ R.

Theorem (N. Chevallier, 2021 [4])
Let z be any complex number. For every Q ≥ 1 there exist p,q ∈ Z[i] such that

0 < ∣q∣ < Q, ∣qz − p∣ ≤ √
2

3 −√
3

1

Q
.

Problem
Is there a complex analogue of the Kleinbock-Wadleigh Theorem?
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Open problem

Thank you for your attention.
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