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L Introduction

The Real Gauss Map

Define the following functions.
e || : R — Z is the usual floor function,

e The real Gauss map is the function Tg:[0,1) - [0,1) given
by
at-|al], ifa>0,

Vae[0,1) TR(a):{O £,

e a1:(0,1) » N by ar(a) = [a™1],
e For a€(0,1) and neN such that Tg(«) #0,

an(a) = a1(Tg(a)).
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L Introduction

The Real Gauss Map

For any a € (0,1) we have that

a=[0;a1(x),a(x),...Jr =
ai1(x) +

ar(x) + T
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L Introduction

Goal. Write any complex number z as a continued fraction of the
form

z=ap+ , ap € Z[i] for all n.
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L Introduction

A failed continued fraction expansion. The partition.
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L Introduction

La failed continued fraction

A failed continued fraction expansion

Define
S:={zeC:0<R(z)<1,0<Tz<1}.

For any z € &~ {0} let a;(z) € Z[i] be the unique Gaussian integer

satisfying
1 1
——a (—) €G.

z zZ
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L Introduction

La failed continued fraction

A failed continued fraction expansion. Partition of G.
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L Introduction

La failed continued fraction

A failed continued fraction expansion

Let R the curves

1
2
ii. The circle of radius % centered at

i. The circle of radius 5 centered at

+1.

NI N

iii. The line segment joining 1 with 1 + /.
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L Introduction

La failed continued fraction

A failed continued fraction expansion.
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L Introduction

La failed continued fraction

A failed continued fraction expansion

We cannot have a, = —i for n€ N in
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L Definition of Hurwitz continued fractions

The nearest Gaussian integer function [-] : C — Z[/] is given by

VzeC [z]:= l%(z) . %J vi [3(2) . %J

Definition
Define §:={zeC:[z] =0}, T:F > F by

-1 -1 .
z " -[z77], ifz+#0,
Vze T(z)=
zes T@) {0, ifz=0.
Define a1 : §~ {0} — Z[i] by a1(z) = [z7'], an(2) = a1(T"(2)) whenever
T"(z) #0, and ap : C - Z[i] by ag(z) = [z]. The Hurwitz continued fraction
of a complex number z is

ao(z) +
ai(z) +
a(z) +

1
as(z) + -



Good'’s Theorem for Hurwitz continued fractions

L Definition of Hurwitz continued fractions
Lo

aws of succession and the symbolic space

Hurwitz Continued Fraction Process
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L Definition of Hurwitz continued fractions

Hurwitz Continued Fraction Process
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L Definition of Hurwitz continued fractions

LLaws of succession and the symbolic space

Hurwitz Continued Fraction Process
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L Definition of Hurwitz continued fractions

LLaws of succession and the symbolic space

Shift space

Proposition

There is no function M : Z[i] x Z[i] - {0,1} such that a sequence
in Z[i], (an)ns1, is the sequence of Hurwitz elements of some z € §
if and only if

VneN M(ap,ani1) =1

Some aspects of the basic theory of Hurwitz continued fractions
are discussed in [6], [8], [10], and [11].
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L Definition of Hurwitz continued fractions

LLaws of succession and the symbolic space

Partition of § by a;

Figure 1: Partition of §.
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L_An Overview of Hurwitz Continued Fractions

L Basics

A basic definition

Definition

Let z be a complex number and (a,)ns0 its Hurwitz elements. The
Q-pair of z is the pair of sequences (pn)n>0, (qn)ns0 given by

pP-2 Pp-1 _ 01 Pn _ Pn-1 Pn-2){an
g2 g1 1 0)7 \gn Gn-1 qn2J\1)’

as long as a, is defined.
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L An Overview of Hurwitz Continued Fractions

L Basics

Let z be any complex number, (an)no its Hurwitz elements, and (pn)nso,
(gn)nso its Q-pair.

1.
2.

(Hurwitz, [11]) (gn)nso is strictly increasing,

(Dani, Nogueira, [5]) There is a constant k > 1 such that |qa| > "
whenever q, is defined.

(Dani, Nogueira, [5]) If z € §, neN is such that z,,1 := T™(z) # 0, then

-1
_ PnZpi1 £ Pn-1
GnZyty + G

(Hurwitz, [11]) The sequence (an)nzo is infinite if and only if z € C \ Q(i)
and in this case

z=[ao; a1, a2,...] = a0+

a; +

32+f
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L_An Overview of Hurwitz Continued Fractions

L Some Classical Theorems

The Theorems of Lagrange and Galois

Theorem (S.G. Dani, A. Nogueira, 2014 [5

A complex number z has a periodic Hurwitz continued fraction if and only if
there exist a, b, c € Z[i] such that a + 0 and

2
az"+bz+c=0.

Theorem (G.R., 2018 [8

Let § = [ao; a1, a2, .. .] be quadratic over Q(i) and let n € C be its conjugate
over Q(i).

L. If (an)n21 is purely periodic, then [n] <1.

2. If|¢|>1, neF, and |as| > /8 for all neNo, then & has a purely periodic

Hurwitz continued fraction. The conditions n € § and |a,| > \/8 for all
n € No cannot be removed.
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L_An Overview of Hurwitz Continued Fractions

L Some Classical Theorems

A. Serret, 1866)

Two real numbers o = [ao; a1, . . . |r, B = [bo; b1, . ..]r are equivalent under the
action of PGL(2,Z) if and only if o, 8 € Q or if o, €e R\ Q and for some
J,k € N we have aj,n = byyp for all n e N.

Theorem (R. Lakein,

The complex numbers

. AL . —
:/+(43+28/)2 A:5—I—_ B:3+2I+_

2 ’ 4—j 4
satisfy A= (2B -1i)/(B-1), but

A=[2+1,3i,-1+2i,-1+2i,3,-2-1],
B=[2+i,-2+i,—2+i,1-2i,-1-2i,1+2i].

However, for almost every pair w,z € §, the numbers are PGL(2,Z[i])
equivalent if and only if their tails eventually coincide.
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L_An Overview of Hurwitz Continued Fractions

LRepresentation of complex numbers

The exponent of repetition rep(a) is defined in [3].

Theorem (Y. Bugeaud, 2013, [2

Let a = (an)n>1 be a bounded and non-periodic sequence of natural numbers
such that

rep(a) < +oo.

Then, the number [0; a1, a2, . . .]r is transcendental.

Theorem (G.R., 2018 [8

Let a = (an)n>1 be a bounded and non-periodic sequence of Gaussian integers
such that

rep(a) < +oo0, min|a,| > /8.
neN

Then, the complex number [0; a1, a», . ..] is transcendental.
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L_An Overview of Hurwitz Continued Fractions

LRepresentation of complex numbers

Conjecture (Folklore Conjecture)

An algebraic real number has a bounded regular continued fraction
if and only if it is quadratic over Q.

Theorem (W. Bosma, D. Gruenewald, 2012 [1

For each n e N there exists ( € C\ R with a bounded Hurwitz
continued fraction satisfying [Q(¢) : Q] = 2n.
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L_An Overview of Hurwitz Continued Fractions

LSome Approximation Properties

Theorem (R. Lakein, 1973, [14

For any z € C~ Q(i) with Q-pair (Pn)n>0, (qn)ns0, and any ne N
define m,(z) € C by

Pn 1
Z__

dn - mn(z)q%.
Then, inf{|m,(z)|:neN,ze C~Q(i)} = 1.

Corollary

For every z € C\ Q(i) with Q-pair (Pn)ns0, (Gn)ns0 and any ne N




Good'’s Theorem for Hurwitz continued fractions

L_An Overview of Hurwitz Continued Fractions

LSome Approximation Properties

Let z be a complex number. A rational complex number p/q is a
good approximation to ( if

vq'eZ[i] Vp'eZ[i] |q'|<|ql = laz-pl<ld'z-p'|. (1)
and p/q is a best approximation to ( if
vq'eZ[i] vp'eZ[i] |d|<lql = laz-pl<ld'z-p|. (2)

Theorem (R. Lakein, 1973 [14

Every HCF convergent of any z € C is a good approximation to z.
For Lebesgue almost all z € C every HCF convergent is a best
approximation.
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L_An Overview of Hurwitz Continued Fractions

L Ergodic theory

Theorem (H. Nakada, 1976 [17

There exists a measure p which is equivalent to the Lebesgue
measure on § and such that the system (§, T, u) ergodic.

Theorem (G.R., 2021)

Let u = (up)n>1 be a sequence of positive real numbers and define

E={z=[0;a1,a2,...] €§:|an| > up for infinitely many neN}.
Then, if m is the Lebesgue measure on §, we have that

0, if Z u;2 < +00,

m(E) = neN
(E) 1, if Y up?=+oo.
neN
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LComplex Good’s Theorem

Theorem (1.J. Good, 1941 [9
The following equality holds

1
dimy {z =[ag; a1,a2,...Jr €R: lim a, = +oo} =5

n—oo

Theorem (G.R., 2018 [7

The following equality holds

dimH{z =[ag; a1,a2,...] € C: lim |a,| = +oo} =1
n—oo
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LComplex Good’s Theorem

L General Lemmas

Let (X, d) be a complete metric space. Let A = Upen, An be a
family of compact sets such that each A, is finite, #A49 = 1, and
i. YAe A |A >0,

i. VvneN VA BeA, (A=B)v(AnB=9),
ii. VneN VBeA, JAcA,1 BCcA,
iv. VvneN VAeAd,; IBeA, BCcA,
v. dp(A) =max{|Al: Ae A,} > 0as n— oo.
For each ne Ny and each A€ A, put
D(A)={BeA,;1:BcA}
The limit set of A, A, is

:f_ﬁu

(See strongly tree-like structure in [13]).
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LComplex Good’s Theorem

L General Lemmas

Lemma (First Generalized Jarnik Lemma)

Let A be as above and assume that it satisfies the following conditions:
-1
1. liminf 8T o
n—oo n

2. There is a sequence of positive numbers (Bp)n>1 such that
VneN YAeA, Y,ZeD(A) Y#Z = d(Y,Z) > B,A|

log log(B;*
limsup 128188 ) 4
n

n—oo

If s > 0 satisfies
VneN VAeA, > [Bf>A]. (3)
BeD(A)

then dimy Aw > s.
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LComplex Good’s Theorem

L General Lemmas

Lemma (Second Generalized Jarnik Lemma)

Let A be as above. If s >0 is such that

VkeN VAeA, > |BFF<|AP, (4)
BeD(A)

then dimy Ay < s.
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LComplex Good’s Theorem

L General Lemmas

“Proof” of the first lemma

1. We show that there exists ¢ > 0 such that any finite collection
X ¢ A that covers A, satisfies

AP > c.

AeX

2. For each open covering G of A, and any € >0 we find some
finite X ¢ A that covers A, and

c< Y AP < Y IGl.

AeX Geg

3. Conclude.
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LComplex Good’s Theorem

LUpper bound in the complex Good’s Theorem

“Proof” of the upper bound
Write
E:={z=[0;a1,a2,...]€F: ,,“_,Tq"a”‘ = +00}.

For any L > O define
E/ ::{[O;al,ag,...]e%:liminf|an|2L},
E = {[0;31,327~~-] € inf |ag| 2 L}~

then E; ¢ E/ and dimy E; < dimy E/. Some basic properties of Hausdorff
dimension yield
VLER>0 dimH EL:dimH Eli

Using the First Generalized Jarnik Lemma we get that

lim dimy E;. < 1.

— 00

Since E c E/ for all L >0,
dimy E < 1.
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LComplex Good’s Theorem

LLower bound in the complex Good’s Theorem

For any z € C write |z| = max{|%R(z)|,|3(2)|}.

Lemma

Let f,g;N - R be to functions with the following properties:

1. There is some c' € (0,1) such that

VneN /8<f(n)<c'g(n),
2. lim f(n) = +oo,
n—oo

log |
3. limsup 28lo8&(n)
n— oo Iogn
Then, the set

Efg:= {[O;al,ag,...] eg :VneN f(n)<|an Sg(n)}

satisfies dimy Ef g > 1.
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LComplex Good’s Theorem

LLower bound in the complex Good’s Theorem

Proof of the Lemma.

Notation. For ne N and a=(a1,...,a,) € Z[i]" the cylinder
determined by a is

Cn(a):={z=[0;a1(2),a2(2),...]€F:a1(z) = a1,...,an(2) = an},

and C,(a) is its closure. Note that for some absolute constant
k> 1 such that |C,(a)| < k7", B
Proof of the Lemma. Define Ay = {F} and for any ne N

A, = {C_n(a) racZli]", Vje{l,....,n} f(j)<|aj] < g(j)}.

Apply the First Generalized Jarnik Lemma to A = Upen, An and to
an arbitrary 0 < s <1 and conclude.
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LComplex Good’s Theorem

LFinal Remarks on the proof

Remarks on the proof

1. When we assume that z = [0; a1, a2, ...] € § satisfies |a,| > /8
for all n, we get rid of the complicated structure of the
associated shift space.

2. The computations with max{|9R(z)|,|J(z)|} are simpler than
with |z|. This is also used in the proof of the complex
Borel-Bernstein Theorem.

3. In an ongoing collaboration with Rafael Alcaraz Barrera, we
adapted the strategy to the context of distal sets for the
Liroth map.
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LOpen problem

Fix to > 1. Given 1) : [to, +00) — Ry, the set D(v) of 1-Dirichlet numbers is
the collection of x € R such that for every large t > 0 there are p, g € Z such that

lax = pl <¥(t), 0<|q[<t.

Theorem (D. Kleinbock, N. Wadleigh, 2018 [12

If 3 : [to, 00) = Rso is non-increasing and 1(t) < t™* for every large t, then
D(v) #R.

Theorem (N. Chevallier, 2021 [4

Let z be any complex number. For every Q > 1 there exist p, q € Z[i] such that

V2
3

Is there a complex analogue of the Kleinbock-Wadleigh Theorem?

0<|ql< @, lgz-p|<

S
D=
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LOpen problem

Thank you for your attention.
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