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Cobham’s theorem (1969). Let k, ` ≥ 2 be two multiplicatively independent integers. A set
X ⊆ N is both k-recognizable and `-recognizable if and only if it is ultimately periodic.

A set X ⊆ N is k-recognizable if the language consisting of the base-k representations of the
elements of X is accepted by a finite automaton.

Examples.

I kN is k-recognizable,

I {n ∈ N : s2(n) is even } is 2-recognizable, where s2(n) is the binary digit sum -
Thue-Morse set.
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Let n ≥ 1. A base k representation of a tuple (x1, . . . , xn) ∈ Nn is a word over the alphabet

{0, 1, . . . , k − 1}n. For example, a base 2 representation of

[
6
3

]
is

[
1
0

] [
1
1

] [
0
1

]
.

A set X ⊆ Nn is k-recognizable if the language consisting of the base-k representations of the
elements of X is accepted by a finite automaton.

Semenov (1977). Let k , ` ∈ N≥2 be multiplicatively independent. A set X ⊆ Nn is both
k-recognizable and `-recognizable if and only if it is semilinear.

Definition. A subset of Nn is semilinear if it is finite union of the form

{
v +

m∑
i=1

kiv i : k1, . . . , km ∈ N
}
,

where m ∈ N and v , v1, . . . , vm ∈ Nn.
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Presburger arithmetic. A subset of Nn is semilinear if and only if it is definable in (N,+).

Definable sets. A set defined by a formula obtained from

I finite number of variables taking values in the given domain (here: in N),

I equality and other given predicates (here: just =),

I functions (repeatedly) applied to variables (here: +),

I logical connectives such as and, or and not,

I universal and existential quantifiers.

Example. The order relation is definable in (N,+):

{(x , y) ∈ N2 : x < y} = {(x , y) ∈ N2 : ∃z ∈ N ¬(z + z = z) ∧ y = x + z}

Semilinear sets are definable:

{u ∈ N : ∃x , y , z ∈ N u = 6x + 9y + 20z}
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Büchi arithmetic. For k ∈ N≥2, let Vk(x) : N→ kN be the function that maps x to the
largest power of k dividing x .

Büchi(1960)-Bruyère(1985). Let k ∈ N≥2 and X ⊆ Nn. Then X is k-recognizable if and
only if X is definable in (N, <,+,Vk).

Example 1. kN = {x ∈ N : Vk(x) = x}.

Example 2. Let X be the set of all (x , y) such that x ∈ 2N and x appears in the binary
expansion of y . Then (x , y) ∈ X if and only if and only if

V2(x) = x ∧
(
∃z , t

(
z < x ∧ V2(t) > x ∧ y = z + x + t

)
∨ ∃z

(
z < x ∧ y = z + x

))
.

Büchi (1960). The theory of (N,+,Vk) is decidable. In particular, for each k-recognizable
X ⊆ Nd , the theory of (N,+,X ) is decidable.

Cobham-Semenov restated. Let k, ` ∈ N≥2 be multiplicatively independent. A set X ⊆ Nn

is definable in both (N,+,Vk) and (N,+,V`) if and only if it is definable in (N,+).
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Büchi (1960). The theory of (N,+,Vk) is decidable. In particular, for each k-recognizable
X ⊆ Nd , the theory of (N,+,X ) is decidable.

Cobham-Semenov restated. Let k, ` ∈ N≥2 be multiplicatively independent. A set X ⊆ Nn

is definable in both (N,+,Vk) and (N,+,V`) if and only if it is definable in (N,+).
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H.-Schulz (2019-). Let k, ` ∈ N≥2 be multiplicatively independent, and let X ⊆ Nm and
Y ⊆ Nn be such that

I X is k-recognizable, but not semilinear,

I Y is `-recognizable, but not semilinear.

Then the theory of (N,+,X ,Y ) is undecidable.

H.-Schulz restated. Let k , ` ∈ N≥2 be multiplicatively independent, and let X ⊆ Nm and
Y ⊆ Nn be such that

I X is definable in (N,+,Vk), but not in (N,+),

I Y is definable in (N,+,V`), but not in (N,+).

Then the theory of (N,+,X ,Y ) is undecidable.

Proof of Cobham-Semenov.
Suppose X ⊆ Nn is definable in both (N,+,Vk) and (N,+,V`), but not in (N,+). Then the
theory of (N,+,X ,X ) is undecidable. However, then the theory of (N,+,Vk) is undecidable.
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Villemaire (1992). Let k , ` ∈ N≥2 be multiplicatively independent. The theory of
(N,+,Vk ,V`) is undecidable.

Bès (1996). Let k , ` ∈ N≥2 be multiplicatively independent, and let Y be definable in
(N,+,V`), but not in (N,+). Then the theory of (N,+,Vk ,Y ) is undecidable.

In both cases (N,+,Vk ,V`) and (N,+,Vk ,Y ) define multiplication. Hence undecidability
follows from Gödel’s theorem that the theory of (N,+, ·) is undecidable.

• Y

(N,+)Vk V`



Villemaire (1992). Let k , ` ∈ N≥2 be multiplicatively independent. The theory of
(N,+,Vk ,V`) is undecidable.

Bès (1996). Let k , ` ∈ N≥2 be multiplicatively independent, and let Y be definable in
(N,+,V`), but not in (N,+). Then the theory of (N,+,Vk ,Y ) is undecidable.

In both cases (N,+,Vk ,V`) and (N,+,Vk ,Y ) define multiplication. Hence undecidability
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Bès (1996). Let k ∈ N≥2, and let X ⊆ Nn be definable in (N,+,Vk), but not in (N,+).
Then (N,+,X ) defines kN.

Left to show:

Let k , ` ∈ N≥2 be multiplicatively independent. Then the theory of (N,+, kN, `N) is
undecidable.

This question is an old question. Bruyère, Cherlin and van den Dries asked this question as
early as 1985, and it has been restated in the literature many times.
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early as 1985, and it has been restated in the literature many times.



This is kind of unfortunate. Even the theory of (N,+, 2N, 3N) includes many non-trivial
number-theoretic statements about 2 and 3.

Corollary of Baker’s theorem on linear forms. For every m ∈ N, there exists C (m) such
that if n1, n2 ∈ N with 2n1 − 3n2 = m, then n1, n2 ≤ C .

In (N,+, 2N, 3N):

∀u∃v∀x ∈ kN∀y ∈ `N (x ≥ v ∧ y ≥ v)→ |x − y | > u.

What does that mean?

You probably can’t automatically prove theorems worth a Fields medal.

Open question. What fragments of the theory of (N,+, 2N, 3N) are decidable?
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For simplicity, let k = 2 and ` = 3. So consider (N,+, 2N, 3N).

Let λ : N→ 2N map x to the unique element 2m ∈ 2N with 2m ≤ x < 2m+1.

For y ∈ 2N, define S(y) to be the set of all x ∈ 3N such that λ(x − λ(x)) = y .

In words: S(y) is the set of all powers of 3 for which y is the second largest power of 2 that
appears in the binary representation of x .

For example: 27 = 16 + 8 + 2 + 1. So 27 ∈ S(8).

Fact. For all y ∈ 2N, S(y) is finite. However, for all m, n ∈ N there is y ∈ 2N such that y > m
and |S(y)| > n.
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Main Lemma. Let m, n ∈ N, let Z1, . . . ,Zm be a partition of {1, . . . , n}. Then there are
s ∈ N>0 and t1 < · · · < tn such that for i = 1, . . . ,m

S(2s+i ) ∩ [3t1 , 3tn ] = {3tj : j ∈ Zi}.

Z1 = 1, 3, 5,

Z2 = 2, 6, 7,

Z3 = 4

3t1 3t2 3t3 3t4 3t5 3t6 3t7

2s+1

2s+2

2s+3

I Proof of Main Lemma just uses density of 2−N3N in R>0.

I This allows us to code/interpret arbitrary large finite subsets of N2.

I Such theories are known to be undecidable, as the halting problem or the tiling problem
can be encoded in such theories.
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Remark 1. The proof does not dependent on N. The theory of (R, <,+, kN, `N) is
undecidable whenever k and ` are multiplicatively independent.

Remark 2. In contrast to Villemaire’s and Bès’ results, we know that (N,+, kN, `N) does not
define multiplication when k and ` are multiplicatively independent.

Remark 3. We expect that this method can be extended to prove other variants of Cobham’s
theorem.
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Combinatorics on words.
We observed that {n ∈ N : s2(n) is even } is 2-recognizable, where s2(n) is the binary digit
sum. Thus the function f : N→ {0, 1} given by

n 7→

{
0 if s2(n) is even

1 otherwise.

is definable in (N,+,V2).

The word f (0)f (1)f (2) . . . is the Thue-Morse sequence.

Jeff Shallit’s idea. Use decision procedure for (N,+,V2) to decide statements about the
Thue-Morse sequence.

Example. To check that the Thue-Morse sequence in not eventually periodic, we have to
decide

(N,+,V2) |= ∀p (p > 0)→
(
∀i ∃j j > i ∧ f (j) 6= f (j + p)

)
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A continued fraction expansion [a0; a1, . . . , ak , . . . ] is an expression of the form

a0 +
1

a1 + 1
a2+

1

a3+
1
. . .

Let a be a real number with continued fraction expansion [a0; a1, . . . , ak , . . . ].

Set q−1 := 0 and q0 := 1, and for k ≥ 0,

qk+1 := ak+1 · qk + qk−1.

Ostrowski (1918). Every natural number N can be written uniquely as

N =
n∑

k=0

bk+1qk ,

where bk ∈ N such that b1 < a1, bk ≤ ak and, if bk = ak , bk−1 = 0.
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Let Va : N→ N be the function that maps x ≥ 1 with Ostrowski representation bn . . . b1 to the
least qk with bk+1 6= 0, and 0 to 1.

H.-Terry (2016). Let a be quadratic. The theory of (N, <,+,Va) is decidable.

H.-Ma-Oei-Schaeffer-Schulz-Shallit (2021). The theory of

{(N, <,+,Va) : a ∈ (0, 1) \Q}

is decidable.
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The characteristic Sturmian word with slope a is the infinite
{0, 1}-word ca = ca(0)ca(1)ca(2) . . . such that for all n ∈ N

ca(n) = ba(n + 1)c − banc − bac.

Fact. Let n ∈ N≥1. Then the following are equivalent:

I the n-th digit of the characteristic Sturmian word with slope a is 1.

I the a-Ostrowski representation of n ends with an odd number of 0’s.

Corollary. The set
{n ∈ N : ca(n) = 1}

is definable in (N,+,Va).

H.-Ma-Oei-Schaeffer-Schulz-Shallit (2021). The theory of

{(N,+, 0, 1, n 7→ ca(n)) : a ∈ (0, 1) \Q}

is decidable.
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Applications.
Let Lc be the language of Na := (N,+, 0, 1, n 7→ ca(n)).

Consider the Lc -sentence ϕ

∀p (p > 0)→
(
∀i ∃j j > i ∧ c(j) 6= c(j + p)

)
We observe that

Na |= ϕ if and only if ca is not eventually periodic.

Thus

TSturmian |= ϕ if and only if all Sturmian words are not evenutually periodic.

The decision procedure for TSturmian allows us to check that no Sturmian word is eventually
periodic.
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An implementation: Pecan

I Try Pecan at http://reedoei.com/pecan

I Git: https://github.com/ReedOei/Pecan

Pecan improves on Walnut by Mousavi, another automated theorem prover for deciding
combinatorial properties of automatic words, by using Büchi automata instead of finite
automata.

This difference enables Pecan to handle uncountable families of sequences, allowing us quantify
over all Sturmian words.

http://reedoei.com/pecan
https://github.com/ReedOei/Pecan


Thank you!


