EXACT ORDER OF DISCREPANCY OF NORMAL NUMBERS

10.01.2023, One World Numeration Seminar

Roswitha Hofer on joint work with Gerhard Larcher

Uniform Distribution in [0,1)

We focus on sequences $(x_n)_{n\geq 0}$ in [0,1).

Figure: The first 21 points of $(\{n\varphi\})_{n\geq 0}$.

We say $(x_n)_{n\geq 0}$ is uniformly distributed if

$$\lim_{N \to \infty} \frac{1}{N} \underbrace{\#\{0 \le n < N : x_n \in [a, b)\}}_{=:A(N, [a, b))} = \lambda([a, b))$$

for all $0 \le a < b \le 1$.

The discrepancy D_N ...

... measures how "uniformly" $(x_n)_{n\geq 0}$ is distributed:

$$D_N(x_n) := \sup_{0 \le a < b \le 1} \left| \frac{1}{N} A(N, [a, b)) - \lambda([a, b)) \right|.$$

Obviously, $(x_n)_{n\geq 0}$ is uniformly distributed if and only if $D_N \to 0$ as $N \to \infty$.

A regular grid $\left\{\frac{a}{N}: a \in \{0, 1, \dots, N-1\}\right\}$, satisfies $D_N = \frac{1}{N}$ or $ND_N = 1$ resp.

Figure: A regular grid with N = 20.

The best possible discrepancy D_N for sequences in N?

W.M. Schmidt [1972] ensured for any sequence $(x_n)_{n\geq 0}$,

 $ND_N(x_n) \gg \log N.$

We know examples of "**low-discrepancy sequences**" $(x_n)_{n\geq 0}$, i.e., satisfying $ND_N(x_n) \ll \log N$.

How to prove $ND_N(x_n) \ll \log N$? Use e.g. additive properties of $ND_N = \sup_{0 \le a < b \le 1} |A(N, [a, b)) - N\lambda([a, b))|$.

When we split a pointset of N points into two disjoint sets with N_1 and N_2 points, then

$$ND_N \le N_1 D_{N_1} + N_2 D_{N_2}.$$

Example of a low-discrepancy sequence

The binary van der Corput sequence $(vdC_2(n))_{n\geq 0}$:

$$n = n_r 2^r + \dots + n_1 2 + n_0 \mapsto \frac{n_0}{2} + \frac{n_1}{2^2} + \dots + \frac{n_r}{2^{r+1}}.$$

Figure: The first 21 points of $(vdC_2(n))_{n\geq 0}$.

We know

$$ND_N(\mathrm{vdC}_2(n)) \ll \log N.$$

The proof uses the binary expansion $N = N_r 2^r + \cdots + N_1 2 + N_0$ with $N_j \in \{0, 1\}$ and splits the set $\{x_0, x_1, \dots, x_{N-1}\}$:

$$\bigcup_{j=0, N_j \neq 0}^r \{ x_{N_r 2^r + \dots + N_{j+1} 2^{j+1} + i} : i = 0, 1, \dots, 2^j - 1 \}$$

in $\leq r + 1 \approx \log_2 N$ parts of "almost regular grids" with 2^j points and with $2^j D_{2^j} \ll 1$.

Then

Figure:
$$N = 21 = 2^4 + 2^2 + 2^0$$
.

We focus on a special type of sequences in [0, 1):

 $(\{2^n\alpha\})_{n\geq 0}$ with $\alpha \in [0,1).$

Why interesting?

We ask, if the binary expansion of α , i.e. $\alpha = 0.\alpha_1\alpha_2\alpha_3...$ satisfies that each block $(\eta_1, \ldots, \eta_k) \in \{0, 1\}^k$ occurs with frequency $\frac{1}{2^k}$, i.e.

$$\lim_{N \to \infty} \frac{1}{N} \# \left\{ 0 \le n < N : (\alpha_{n+1}, \dots, \alpha_{n+k}) = (\eta_1, \dots, \eta_k) \right\} = \frac{1}{2^k}$$

for all $k \in \mathbb{N}$ and $(\eta_1, \ldots, \eta_k) \in \{0, 1\}^k$.

Such α is called normal in base 2.

It is KNOWN:

- The number $\alpha \in [0,1)$ is normal in base 2 if and only if $(\{2^n\alpha\})_{n\geq 0}$ is uniformly distributed.
- The quality of normality of a normal number α in base 2 corresponds with the discrepancy D_N of the sequence({2ⁿα})_{n≥0}.

It is NOT KNOWN (Korobov [1956]):

• What is the best possible quality of normality?

From Schmidt [1972] we know

 $ND_N \gg \log N.$

E.g. Schiffer [1986] showed for the Champernowne number

$$ND_N \gg \frac{N}{\log N}.$$

So far the best known examples of α (Levin [1999], Becher & Carton [2019]) satisfy

$$\log N \ll N D_N(\{2^n \alpha\}) \ll \log^2 N.$$

There is a gap of one $\log N$ factor between the lower and the upper bound!

Possible improvements for $\log N \ll ND_N(\{2^n\alpha\}) \ll \log^2 N$?

- What about the known examples of Levin [1999] or Becher & Carton [2019]. What is the correct order of ND_N({2ⁿα})? ... Answered, e.g., for Levin's α, log² N ≪ ND_N({2ⁿα}) ≪ log² N (H. & Larcher [2022].)
- Try to find an example of α with better ND_N than $\log^2 N$.
- Try to improve the lower bound of Schmidt for normal numbers:

The set $\{(\{2^n\alpha\})_{n\geq 0} : \alpha \in [0,1)\}$ is a rather small subset of the set of all sequences $(x_n)_{n\geq 0}$ in [0,1).

The objectives of the rest of the presentation:

- Give the basic ideas of the construction of Levin for the normal number α .
- Point out the main reason, within the construction, why $ND_N(\{2^n\alpha\}) \ll \log^2 N$ holds.
- Work out the essential steps/ideas for proving $ND_N(\{2^n\alpha\}) \gg \log^2 N.$
- Discussing (possible) generalizations.

The ingenious construction of α by Levin

$$\underbrace{0.\underbrace{\alpha_{1}\alpha_{2}\ldots\alpha_{2^{(2^{1}+1)}}}_{\mathcal{A}_{1}}\underbrace{\alpha_{2^{(2^{1}+1)}+1}\ldots\alpha_{2^{(2^{1}+1)}+2^{(2^{2}+2)}}_{\mathcal{A}_{2}}}_{\mathcal{A}_{2}} \cdots \underbrace{\ldots\ldots\ldots}_{\mathcal{A}_{m}}$$

Here the block \mathcal{A}_{m} for $m \in \mathbb{N}$ consists of $2^{2^{m}+m} = 2^{m} \cdot 2^{2^{m}}$
digits α_{i} , which are constructed as follows. We write the block \mathcal{A}_{m} in the form

Each *n* defines a sub-block of length 2^m . The number of sub-blocks (or *n*) is 2^{2^m} .

JYU JOHANNES KEPLER UNIVERSITY LINZ

The core of the construction is the Pascal-matrix $\pmod{2}$

$$P = \left(\binom{i+j}{j} \right)_{i,j \ge 0}, \qquad P(m) = \left(\binom{i+j}{j} \pmod{2} \right)_{0 \le i,j < 2^m}$$

Figure: The $2^6 \times 2^6$ matrix P(6) and the $2^2 \times 2^2$ matrix P(2).

JYU JOHANNES KEPLER UNIVERSITY LINZ

We construct A_2 of length $2^2 2^{2^2} = 4 \cdot 16$:

The $d_k(n)$ for $k \in \{0, 1, 2, 3\}$, $n \in \{0, ..., 15\}$ are given by:

$$\underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}}_{=P(2)} \begin{pmatrix} n_0 \\ n_1 \\ n_2 \\ n_3 \end{pmatrix} = \begin{pmatrix} d_0(n) \\ d_1(n) \\ d_2(n) \\ d_3(n) \end{pmatrix} \pmod{2}.$$

How to see $ND_N(\{2^n\alpha\}) \ll \log^2 N$?

Note that
$$\{2^{0}\alpha\} = \alpha =$$

$$0.\underbrace{\alpha_{1}\alpha_{2}\dots\alpha_{2^{(2^{1}+1)}}}_{\mathcal{A}_{1}}\underbrace{\alpha_{2^{(2^{1}+1)}+1}\dots\alpha_{2^{(2^{1}+1)}+2^{(2^{2}+2)}}}_{\mathcal{A}_{2}}\dots\underbrace{\ldots\ldots\ldots}_{\mathcal{A}_{m}}\dots$$

$$\{2^{1}\alpha\} = 0.\alpha_{2}\alpha_{3}\alpha_{4}\dots,$$

$$\{2^{2^{(2^{1}+1)}}\alpha\} = 0.\underbrace{\alpha_{2^{(2^{1}+1)}+1}\dots\alpha_{2^{(2^{1}+1)}+2^{(2^{2}+2)}}}_{\mathcal{A}_{2}}\dots\underbrace{\ldots\ldots\ldots}_{\mathcal{A}_{m}}\dots$$

Write

$$\begin{split} N &= 2^{(1+2^1)} + 2^{(2+2^2)} + \dots + 2^{(m-1+2^{m-1})} + N' = n_m + N' \\ \text{with } 1 &\leq N' \leq 2^m 2^{2^m} \text{ and } N' \approx 2^m N'' \text{ , } 1 \leq N'' \leq 2^{2^m}. \end{split}$$

• Write $x_{n_m+2^mn+k}$ as $x_{n,k}$, $k \in \{0, \dots, 2^m - 1\}$, $n \in \{0, \dots, N'' - 1\}$. Then

 $x_{n,k} = 0.\alpha_{n_m + 2^m n + k + 1}, \alpha_{n_m + 2^m n + k + 2}, \dots = 0.d_k(n)d_{k+1}(n)\dots$

JYU JOHANNES KEPLER UNIVERSITY LINZ

- Estimate $N''D_{N''}$ for $x_{n,k}$ with $n \in \{0, ..., N'' 1\}$ and fixed $k \in \{0, ..., 2^m 1\}$.
- Write $N'' = N''_{2m} 2^{2m} + \dots + N''_{1} 2^{1} + N''_{0} 2^{0}$ with $N''_{j} \in \{0, 1\}$. Write $\{0, \dots, N'' - 1\}$ as a union of $\ll \log N$ subsets:

$$\bigcup_{j=0, N_j'' \neq 0} \{ N_{2m}'' 2^{2m} + \dots + N_{j+1}'' 2^{j+1} + i : i = 0, 1, \dots, 2^j - 1 \}.$$

Focus on

$$x_{n,k} = 0.d_k(n)d_{k+1}(n)\ldots \in \left[\frac{c}{2^j}, \frac{c+1}{2^j}\right)$$

with $c \in \{0, \dots, 2^j - 1\}$ and with fixed $k \in \{0, 1, \dots, 2^m - 1\}$, that is

$$d_k(n)d_{k+1}(n)\ldots = c_{j-1}\ldots c_1c_0\ldots$$

where $c = c_{j-1}2^{j-1} + \dots + c_12 + c_0$ and $n \in \{N_{2m}''2^{2m} + \dots + N_{j+1}''2^{j+1} + i : i = 0, 1, \dots, 2^j - 1\}.$

JYU JOHANNES KEPLER UNIVERSITY LINZ

Translate $d_k(n)d_{k+1}(n)\ldots = c_{j-1}\ldots c_1c_0\ldots$ into linear-algebra

Suppose only $k + j \leq 2^m$ then $x_{n,k} = 0.d_k(n)d_{k+1}(n) \dots d_{k+j-1}(n) \dots = c_{j-1} \dots c_1 c_0 \dots$ Note the first *j* digits stem from *n*.

We summarize:

For fixed $k \in \{0, ..., 2^m - 1\}$ and $c \in \{0, 1, ..., 2^j - 1\}$ one value of n in $\{N_{2m}'' 2^{2^m} + \cdots + N_{j+1}'' 2^{j+1} + i : i = 0, 1, ..., 2^j - 1\}$ yields $x_{n,k} \in [\frac{c}{2^j}, \frac{c+1}{2^j})^1$. Those 2^j points form an "almost regular grid" amongst $[\frac{c}{2^j}, \frac{c+1}{2^j}), c \in \{0, 1, ..., 2^j - 1\}$. Thus $2^j D_{2^j} \ll 1$. Altogether we obtain:

$$ND_N \leq \underbrace{\underset{n_mD_{n_m}}{\underset{m}{\longrightarrow}}}_{NmD_{n_m}} + \underbrace{\underset{2^m}{\overset{\# k's}{\longrightarrow}}}_{N''D_{N''}} \ll \underbrace{\underset{j=0,N_j''\neq 0}{\overset{\# k's}{\longrightarrow}}}_{j=0,N_j''\neq 0}^{2^m} 1.$$

Since $2^m \approx \log N$ we arrive at

$$ND_N \ll (2^m)^2 \ll \log^2 N.$$

¹with exceptions, but those exceptions can be controlled.

To prove $ND_N \gg \log^2 N$ we define for $m \in \mathbb{N}$

•
$$n_m < N := N_m < n_{m+1}$$

- and an interval $J := J_m \subseteq [0, 1)$.
- For m large enough we find a $\overline{c} > 0$ such that

$$ND_N \ge A(N, J) - N\lambda(J) \ge \overline{c} \cdot (\log N)^2$$
.

• We reach this with $N = N_m = n_m + 2^m \sum_{l=0}^M N_l$ and $M + 1 \approx c' \log N$;

$$A(N,J) - N\lambda(J) \ge -\underbrace{n_m D_{n_m}}_{\ll \log N} + \sum_{l=0}^M \underbrace{\sum_{k=0}^{2^m - 1} \left(A(N_l, J) - N_l\lambda(J)\right)}_{\text{a suitable surplus of points}}$$

• As tools serve specific features of the Pascal-matrix P(m).

$$x_{n,k} \in \left[\frac{c+\gamma/2}{2^{j}}, \frac{c+(\gamma+1)/2}{2^{j}}\right) \text{ with } k+j+1 \leq 2^{m} ?$$

Need many k's with equal values for "violet part · fixed vector"

For our choice of $N_m = n_m + 2^m 2^{w_0} \sum_{l=0}^M 2^{-8l}$ the fixed vector for l = 0, ..., M has a special form (0000000)(10000000) ... (10000000)00.....

Again we use specific properties of the Pascal-matrix:

"violet part \cdot fixed vector" is more often black than white. This relative surplus grows with m.

JYU JOHANNES KEPLER

We return to obtaining $ND_N \gg \log^2 N$

With $N = n_m + 2^m 2^{w_0} \sum_{l=0}^M 2^{-8l} = n_m + 2^m \sum_{l=0}^M N_l$ and $M + 1 \approx c' \log N$

$$ND_N \ge A(N,J) - N\lambda(J) \ge -\underbrace{n_m D_{n_m}}_{\ll \log N} +$$

$$+\sum_{l=0}^{M}\underbrace{\sum_{k=0}^{2^{m}-1}\left(A(N_{l},J)-N_{l}\lambda(J)\right)}_{\text{surplus of points}} \ge (M+1)c''2^{m} \ge \overline{c} \cdot (\log N)^{2}.$$

JYU JOHANNES KEPLER

Further normal numbers with $ND_N \ll \log^2 N$

The essential properties of the Pascal-matrix mod 2, guaranteeing $ND_N \ll \log^2 N$, can be identified in an appropriate form in a **modified Pascal-matrix mod 2** (Becher & Carton [2019]) and **mod p** (H. & Larcher [2022]).

So one obtains similar to Levin's construction a normal number α in base p with $ND_N(\{p^n\alpha\}) \ll \log^2 N$.

Figure: All the sketched, square submatrices are regular. The right shows a modified Pascal-matrix.

Can we prove also $ND_N \gg \log^2 N$?

Some important properties in our method of proof might be re-identified in a **modified Pascal-matrix mod p**.

Can we prove also $ND_N \gg \log^2 N$?

But a comparable pattern as for the unmodified case p = 2 is clear only for the unmodified case for general p.

Figure: For general p we again obtain many black entries for "violet part \cdot fixed vector" .

The main problem for a modified case is:

Figure: How to obtain many equal values for "violet part · fixed vector"?.

This might be feasible for a single example of such α . But a general "recipe" for all such α seems to be unfeasible.

We summarize:

- We know: The exact order of ND_N is $\log^2 N$ for Levin's number based on the Pascal-matrix mod p (H. & Larcher 2022).
- **Open:** What is the correct order of ND_N for normal numbers that are obtained from nested perfect necklaces in the sense of Becher & Carton [2019] for p = 2 or from affine necklaces for $p \in \mathbb{P}$ in the sense of H. & Larcher [2022].

Thank you for the attention!

- 1. M.B. Levin. On the discrepancy estimate of normal numbers. Acta Arithmetica, v. 88, no. 2., pp. 99-111, 1999.
- V. Becher and O. Carton. *Normal numbers and nested perfect necklaces.* Journal of Complexity, 54: 101403, 2019.
- R. Hofer and G. Larcher. The exact order of the discrepancy of Levin's normal number in base 2. To appear in Journal de Théorie des Nombres de Bordeaux. https://arxiv.org/abs/2205.01566
- R. Hofer and G. Larcher. Discrepancy bounds for normal numbers generated by necklaces in arbitrary base. Submitted 2022. https://arxiv.org/abs/2211.04212

JYU JOHANNES KEPLER UNIVERSITY LINZ