IFS with linear interval maps

Ale Jan Homburg

Korteweg-de Vries Institute for Mathematics University of Amsterdam & Department of Mathematics Free University Amsterdam

February, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Joint with Charlene Kalle (Leiden University)

Linear maps on the unit interval

Given a pair (M, N) of integers $M, N \ge 2$, consider the N-adic map $f_0 : [0, 1) \rightarrow [0, 1)$,

 $f_0(x) = Nx \pmod{1}$

and the collection of M contracting maps $f_i : [0, 1) \rightarrow [0, 1)$,

$$f_i(x) = \frac{1}{M}x + i/M, \qquad 0 \le i < M.$$

Probability vector Take (p_0, \ldots, p_M) with $0 < p_0 < 1$ and

$$p_j = \frac{1-p_0}{M}, \qquad 1 \le j \le M.$$

Symbol space

 $\Sigma = \{0, \dots, M\}^{\mathbb{N}}$ with product topology, Borel σ -algebra, and Bernoulli measure ν ;

$$\nu([a_0\cdots a_k])=\prod_{j=0}^k p_{a_j}$$

for

$$[a_0 \cdots a_k] = \{ \omega \in \Sigma ; \ \omega_j = a_j, 0 \le j \le k \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Skew product system Denote $\omega = (\omega_0 \omega_1 \cdots)$ for $\omega \in \Sigma$.

$$F: \Sigma imes [0,1) o \Sigma imes [0,1)$$
 is given by $F(\omega,x) = (\sigma \omega, f_{\omega_0}(x)).$

Write

$$F^{k}(\omega, x) = (\sigma^{k}\omega, f_{\omega}^{k}(x)) = (\sigma^{k}\omega, f_{\omega_{k-1}} \circ \cdots \circ f_{\omega_{0}}(x))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Stationary measure

Write λ for Lebesgue measure on [0, 1) and write $\mu = \nu \times \lambda$.

Invariance

The product measure μ is an invariant probability measure for *F* (λ is a stationary measure for the IFS):

$$\mu(A) = \mu(F^{-1}(A)).$$

The measure μ is ergodic.

イロト 不得 トイヨト イヨト

3

Uniform distribution For μ -almost all (ω, x) ,

$$\{f_{\omega}^n(x); n \in \mathbb{N}\}$$

is uniformly distributed in [0, 1).

Graphs of iterates

Left picture: (M, N) = (3, 3). The thick graph is the graph of f_{ω}^{8} for $\omega = (12020020)$. Right picture: (M, N) = (3, 2). The thick graph is the graph of f_{ω}^{7} for $\omega = (3020020)$. The Lyapunov exponent L_p is given by

$$L_p = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln(f_{\omega_i})' = p_0 \ln(N) - (1 - p_0) \ln(M),$$

where by the strong law of large numbers the limit exists ν -almost surely and equals the given constant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Synchronization

Consider $L_p < 0$. For all $x, y \in [0, 1)$,

$$\lim_{n\to\infty}|f_{\omega}^n(y)-f_{\omega}^n(x)|=0$$

for ν -almost all $\omega \in \Sigma$.

(a)

э

Ideas in proof We have

$$(f_{\omega}^n)' \leq C\zeta^n$$

for some $C > 1, \zeta < 1$ and ω from a set Ω_C of positive measure. Let B_n denote the $1/n^2$ -neighborhood of discontinuity points i/N. Borel-Cantelli: for μ -almost all (ω, x) ,

 $f_{\omega}^{n}(x) \in B_{n}$ for at most finitely many n.

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi$, $f_{\omega}^{n}([0,1))$ is an interval and

$$\lim_{n\to\infty}\lambda\left(f_{\omega}^{n}([0,1))\right)=0.$$

There are intervals J_{ω} so that $f_{\omega}^n(J_{\omega})$ is an interval for all $n \in \mathbb{N}$, and

$$\lim_{n\to\infty}\lambda\left(f_{\omega}^n(J_{\omega})\right)=0.$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in \{1, \dots, M\}^t$ with $f_{\eta}^t([0, 1)) \subset J$.

Ideas in proof

We have

$$(f_{\omega}^n)' \leq C\zeta^n$$

for some $C > 1, \zeta < 1$ and ω from a set Ω_C of positive measure. Let B_n denote the $1/n^2$ -neighborhood of discontinuity points i/N. Borel-Cantelli: for μ -almost all (ω, x) ,

$f_{\omega}^n(x) \in B_n$ for at most finitely many n.

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi$, $f_{\omega}^{n}([0,1))$ is an interval and

$$\lim_{n\to\infty}\lambda\left(f_{\omega}^{n}([0,1))\right)=0.$$

There are intervals J_{ω} so that $f_{\omega}^n(J_{\omega})$ is an interval for all $n \in \mathbb{N}$, and

$$\lim_{n\to\infty}\lambda\left(f_{\omega}^n(J_{\omega})\right)=0.$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in \{1, \dots, M\}^t$ with $f_{\eta}^t([0, 1)) \subset J$.

Ideas in proof

We have

 $(f_{\omega}^n)' \leq C\zeta^n$

for some $C > 1, \zeta < 1$ and ω from a set Ω_C of positive measure. Let B_n denote the $1/n^2$ -neighborhood of discontinuity points i/N. Borel-Cantelli: for μ -almost all (ω, x) ,

 $f_{\omega}^{n}(x) \in B_{n}$ for at most finitely many n.

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi$, $f_{\omega}^{n}([0,1))$ is an interval and

 $\lim_{n\to\infty}\lambda\left(f_{\omega}^n([0,1))\right)=0.$

There are intervals J_{ω} so that $f_{\omega}^n(J_{\omega})$ is an interval for all $n \in \mathbb{N}$, and

$$\lim_{n\to\infty}\lambda\left(f_{\omega}^n(J_{\omega})\right)=0.$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in \{1, \dots, M\}^t$ with $f_{\eta}^t([0, 1)) \subset J$.

Ideas in proof

We have

$$(f_{\omega}^n)' \leq C\zeta^n$$

for some $C > 1, \zeta < 1$ and ω from a set Ω_C of positive measure. Let B_n denote the $1/n^2$ -neighborhood of discontinuity points i/N. Borel-Cantelli: for μ -almost all (ω, x) ,

 $f_{\omega}^{n}(x) \in B_{n}$ for at most finitely many n.

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi$, $f_{\omega}^{n}([0, 1))$ is an interval and

 $\lim_{n\to\infty}\lambda\left(f_{\omega}^{n}([0,1))\right)=0.$

There are intervals J_{ω} so that $f_{\omega}^n(J_{\omega})$ is an interval for all $n \in \mathbb{N}$, and

 $\lim_{n\to\infty}\lambda\left(f_{\omega}^n(J_{\omega})\right)=0.$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in \{1, \dots, M\}^t$ with $f_{\eta}^t([0, 1)) \subset J$.

Ideas in proof

We have

$$(f_{\omega}^n)' \leq C\zeta^n$$

for some $C > 1, \zeta < 1$ and ω from a set Ω_C of positive measure. Let B_n denote the $1/n^2$ -neighborhood of discontinuity points i/N. Borel-Cantelli: for μ -almost all (ω, x) ,

 $f_{\omega}^n(x) \in B_n$ for at most finitely many n.

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi$, $f_{\omega}^{n}([0, 1))$ is an interval and

 $\lim_{n\to\infty}\lambda\left(f_{\omega}^n([0,1))\right)=0.$

There are intervals J_{ω} so that $f_{\omega}^n(J_{\omega})$ is an interval for all $n \in \mathbb{N}$, and

 $\lim_{n\to\infty}\lambda\left(f_{\omega}^{n}(J_{\omega})\right)=0.$

Take $J \subset J_{\omega}$ for ω from a positive measure set. $\eta \in \{1, \dots, M\}^t$ with $f_{\eta}^t([0, 1)) \subset J$. There exists $t \in \mathbb{N}$ and

Intermittency

Consider $L_p = 0$. For every $\varepsilon > 0$, for all $x, y \in [0, 1)$,

$$\lim_{n \to \infty} \frac{1}{n} \left| \{ 0 \le i < n ; |f_{\omega}^{i}(x) - f_{\omega}^{i}(y)| < \varepsilon \} \right| = 1$$

for ν -almost all $\omega \in \Sigma$.

Let β be a small positive number. Let $x, y \in [0, 1)$. Then for ν -almost all $\omega \in \Sigma$, either $|f_{\omega}^n(x) - f_{\omega}^n(y)| = 0$ for some *n* or $|f_{\omega}^n(x) - f_{\omega}^n(y)| > \beta$ for infinitely many values of *n*.

Left panel: time series of $f_{\omega}^n(x)$ for $p_0 = 1/2$ and (M, N) = (3, 3).

Right panel: signed difference with another time series with the same ω .

(a)

Ideas in proof. M = N and $p_0 = 1/2$. Then $y_n = |f_{\omega}^n([0, 1))|$ satisfies

$$y_{n+1} = \begin{cases} y_n/M, & \omega_n \in \{1, \dots, M\},\\ \min\{y_nM, 1\}, & \omega_n = 0. \end{cases}$$

Consider $z_i = -\log_N(y_i)$. Then $z_0 = 0$ and

$$z_{n+1} = \begin{cases} z_n + 1, & \omega_n \in \{1, \dots, M\}, \\ \max\{z_n - 1, 0\}, & \omega_n = 0. \end{cases}$$

So z_n is a random walk on \mathbb{N} with partially reflecting boundary at 0. It is null-recurrent.

Ideas in proof. Remarks on the general case. Let $\varepsilon > 0$ be small. Let $(\zeta_1 \dots \zeta_D)$ be a fixed sequence in $\{1, \dots, M\}^D$ with D large so that $1/M^D < \varepsilon$. Start with [0, 1) and iterate under f_{ω}^n until the final D symbols $\omega_{n-D} \dots \omega_{n-1}$ equal $\zeta_1 \dots \zeta_D$. Then

 $|f_{\omega}^n([0,1))| < \varepsilon.$

The expected stopping time is finite. We could continue iterating until $f_{\omega}^{n}([0,1))$ is no longer contained in an interval of size ε . To control possible intersections with discontinuities, we modify. Iterate instead until

 $|f_{\omega}^{n}([0,1))| > 1/n^{2}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The expected stopping time is infinite.

Ideas in proof. Remarks on the general case.

Let $\varepsilon > 0$ be small. Let $(\zeta_1 \dots \zeta_D)$ be a fixed sequence in $\{1, \dots, M\}^D$ with D large so that $1/M^D < \varepsilon$. Start with [0, 1) and iterate under f_{ω}^n until the final D symbols $\omega_{n-D} \dots \omega_{n-1}$ equal $\zeta_1 \dots \zeta_D$. Then

 $|f_{\omega}^n([0,1))| < \varepsilon.$

The expected stopping time is finite. We could continue iterating until $f_{\omega}^{n}([0,1))$ is no longer contained in an interval of size ε . To control possible intersections with discontinuities, we modify. Iterate until

 $|f_{\omega}^{n}([0,1))| > 1/n^{2}.$

(日)(1)

The expected stopping time is infinite.

The two-point map $f_i^{(2)} : [0,1)^2 \to [0,1)^2$ given by $f_i^{(2)}(x,y) = (f_i(x), f_i(y)).$

Expansion

Consider $L_p > 0$. The iterated function system on $[0, 1)^2$ generated by $f_i^{(2)}$, $0 \le i \le M$, admits an absolutely continuous stationary probability measure $m^{(2)}$ of full support.

Left panel: time series of $f_{\omega}^n(x)$ for $p_0 = 1/2$ and (M, N) = (2, 3).

Right panel: signed difference with another time series with the same ω .

э

イロト イヨト イヨト

Stationary distribution for two-point motion. Example: (M, N) = (3, 9). Picture: $p_0 = 1/2$.

Stationary measure

$$m^{(2)} = \sum_{\ell=0}^{\infty} \zeta^{\ell} \sum_{j=0}^{M^{\ell}-1} M^{\ell} \left. \lambda \right|_{[j/M^{\ell},(j+1)/M^{\ell})^2}, \ \zeta = -\frac{1}{2} + \frac{1}{2} \sqrt{\frac{4-3p_0}{p_0}}.$$

Density function

In this example: $L_p > 0$ for $p_0 > 1/3$. The density of the stationary measure for the two-point motion is bounded for $p_0 > 9/13$.

Stationary distribution for two-point motion. Example: (M, N) = (3, 3). Supported on fractal invariant set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The skew product map F is measurably isomorphic to $G : [0,1)^2 \rightarrow [0,1)^2$ given by G(w,x) = $\begin{cases} \left(\frac{1}{p_0}w \pmod{1}, Nx \pmod{1}\right), & 0 \le w < p_0, \\ \left(\frac{M}{1-p_0}(w-r_i) \pmod{1}, \frac{1}{M}x + \frac{i}{M}\right), & r_i \le w < r_{i+1}, 1 \le i \le M \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with two-dimensional Lebesgue measure as invariant measure.

An invertible extension $\Gamma:[0,1)^3\to [0,1)^3$ is given by

$$\begin{split} \mathsf{F}(w, x, y) &= \\ \left\{ \begin{array}{ll} \left(\frac{1}{p_0} w \pmod{1}, Nx \pmod{1}, \frac{p_0}{N} y + \frac{jp_0}{N} \right), \\ 0 &\leq w < p_0 \\ \frac{j}{N} \leq x < \frac{j+1}{N}, 0 \leq j < N, \\ \left(\frac{M}{1-p_0} (w-r_i) \pmod{1}, \frac{1}{M} x + \frac{i}{M}, (1-p_0) y + p_0 \right), \\ r_i &\leq w < r_{i+1}, 1 \leq i \leq M. \end{split} \right. \end{split}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

The action of Γ on the cube $[0,1)^3$, (M,N) = (2,2).

Consider subsets of periodic points for Γ in $[0, 1)^3$:

$$\Omega_{s} = \left\{ (w, x, y) ; \Gamma^{q}(w, x, y) = (w, x, y), \left| \frac{\partial}{\partial x} \Gamma^{q}(w, x, y) \right| < 1 \right\},$$

$$\Omega_{c} = \left\{ (w, x, y) ; \Gamma^{q}(w, x, y) = (w, x, y), \left| \frac{\partial}{\partial x} \Gamma^{q}(w, x, y) \right| = 1 \right\},$$

$$\Omega_{u} = \left\{ (w, x, y) ; \Gamma^{q}(w, x, y) = (w, x, y), \left| \frac{\partial}{\partial x} \Gamma^{q}(w, x, y) \right| > 1 \right\}.$$

Heterodimensional chaos (inspired by Saiki, Takahasi, Yorke) Consider (M, N) with $M, N \ge 2$.

The sets Ω_s, Ω_u are dense in $[0, 1)^3$. If $\ln(N) / \ln(M) \in \mathbb{Q}$ then Ω_c is dense in $[0, 1)^3$. If $\ln(N) / \ln(M) \notin \mathbb{Q}$, then Ω_c is empty.