IFS with linear interval maps

Ale Jan Homburg
Korteweg-de Vries Institute for Mathematics
University of Amsterdam
\&
Department of Mathematics
Free University Amsterdam

February, 2023

Joint with Charlene Kalle (Leiden University)

Linear maps on the unit interval

Given a pair (M, N) of integers $M, N \geq 2$, consider the N-adic $\operatorname{map} f_{0}:[0,1) \rightarrow[0,1)$,

$$
f_{0}(x)=N x \quad(\bmod 1)
$$

and the collection of M contracting maps $f_{i}:[0,1) \rightarrow[0,1)$,

$$
f_{i}(x)=\frac{1}{M} x+i / M, \quad 0 \leq i<M
$$

Probability vector

Take $\left(p_{0}, \ldots, p_{M}\right)$ with $0<p_{0}<1$ and

$$
p_{j}=\frac{1-p_{0}}{M}, \quad 1 \leq j \leq M
$$

Symbol space
$\Sigma=\{0, \ldots, M\}^{\mathbb{N}}$ with product topology, Borel σ-algebra, and
Bernoulli measure ν;

$$
\nu\left(\left[a_{0} \cdots a_{k}\right]\right)=\prod_{j=0}^{k} p_{a_{j}}
$$

for

$$
\left[a_{0} \cdots a_{k}\right]=\left\{\omega \in \Sigma ; \omega_{j}=a_{j}, 0 \leq j \leq k\right\} .
$$

Skew product system
Denote $\omega=\left(\omega_{0} \omega_{1} \cdots\right)$ for $\omega \in \Sigma$.
$F: \Sigma \times[0,1) \rightarrow \Sigma \times[0,1)$ is given by

$$
F(\omega, x)=\left(\sigma \omega, f_{\omega_{0}}(x)\right) .
$$

Write

$$
F^{k}(\omega, x)=\left(\sigma^{k} \omega, f_{\omega}^{k}(x)\right)=\left(\sigma^{k} \omega, f_{\omega_{k-1}} \circ \cdots \circ f_{\omega_{0}}(x)\right)
$$

Stationary measure

Write λ for Lebesgue measure on $[0,1)$ and write $\mu=\nu \times \lambda$. Invariance
The product measure μ is an invariant probability measure for F (λ is a stationary measure for the IFS):

$$
\mu(A)=\mu\left(F^{-1}(A)\right)
$$

The measure μ is ergodic.

Uniform distribution
For μ-almost all (ω, x),

$$
\left\{f_{\omega}^{n}(x) ; n \in \mathbb{N}\right\}
$$

is uniformly distributed in $[0,1)$.

Graphs of iterates

Left picture: $(M, N)=(3,3)$. The thick graph is the graph of f_{ω}^{8} for $\omega=$ (12020020).
Right picture: $(M, N)=(3,2)$. The thick graph is the graph of f_{ω}^{7} for $\omega=(3020020)$.

Lyapunov exponent

The Lyapunov exponent L_{p} is given by

$$
L_{p}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln \left(f_{\omega_{i}}\right)^{\prime}=p_{0} \ln (N)-\left(1-p_{0}\right) \ln (M)
$$

where by the strong law of large numbers the limit exists ν-almost surely and equals the given constant.

Two-point motion

Synchronization
Consider $L_{p}<0$. For all $x, y \in[0,1)$,

$$
\lim _{n \rightarrow \infty}\left|f_{\omega}^{n}(y)-f_{\omega}^{n}(x)\right|=0
$$

for ν-almost all $\omega \in \Sigma$.

Two-point motion

Ideas in proof
We have

$$
\left(f_{\omega}^{n}\right)^{\prime} \leq C \zeta^{n}
$$

for some $C>1, \zeta<1$ and ω from a set Ω_{C} of positive measure.
Let B_{n} denote the $1 / n^{2}$-neighborhood of discontinuity points i / N.
Borel-Cantelli: for μ-almost all (ω, x),

$$
f_{\omega}^{n}(x) \in B_{n} \text { for at most finitely many } \mathrm{n} .
$$

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi, f_{\omega}^{n}([0,1))$ is an interval and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}([0,1))\right)=0
$$

There are intervals J_{ω} so that $f_{\omega}^{n}\left(J_{\omega}\right)$ is an interval for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}\left(J_{\omega}\right)\right)=0
$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and
$\eta \in\{1, \ldots, M\}^{t}$ with $f_{\eta}^{t}([0,1)) \subset J$.

Two-point motion

Ideas in proof
We have

$$
\left(f_{\omega}^{n}\right)^{\prime} \leq C \zeta^{n}
$$

for some $C>1, \zeta<1$ and ω from a set Ω_{C} of positive measure. Let B_{n} denote the $1 / n^{2}$-neighborhood of discontinuity points i / N. Borel-Cantelli: for μ-almost all (ω, x),

$$
f_{\omega}^{n}(x) \in B_{n} \text { for at most finitely many } \mathrm{n} .
$$

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi, f_{\omega}^{n}([0,1))$ is an interval and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}([0,1))\right)=0
$$

There are intervals J_{ω} so that $f_{\omega}^{n}\left(J_{\omega}\right)$ is an interval for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}\left(J_{\omega}\right)\right)=0
$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in\{1, \ldots, M\}^{t}$ with $f_{\eta}^{t}([0,1)) \subset J$.

Two-point motion

Ideas in proof
We have

$$
\left(f_{\omega}^{n}\right)^{\prime} \leq C \zeta^{n}
$$

for some $C>1, \zeta<1$ and ω from a set Ω_{C} of positive measure. Let B_{n} denote the $1 / n^{2}$-neighborhood of discontinuity points i / N. Borel-Cantelli: for μ-almost all (ω, x),

$$
f_{\omega}^{n}(x) \in B_{n} \text { for at most finitely many } \mathrm{n} \text {. }
$$

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi, f_{\omega}^{n}([0,1))$ is an interval and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}([0,1))\right)=0
$$

There are intervals J_{ω} so that $f_{\omega}^{n}\left(J_{\omega}\right)$ is an interval for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}\left(J_{\omega}\right)\right)=0
$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in\{1, \ldots, M\}^{t}$ with $f_{\eta}^{t}([0,1)) \subset J$.

Two-point motion

Ideas in proof
We have

$$
\left(f_{\omega}^{n}\right)^{\prime} \leq C \zeta^{n}
$$

for some $C>1, \zeta<1$ and ω from a set Ω_{C} of positive measure. Let B_{n} denote the $1 / n^{2}$-neighborhood of discontinuity points i / N. Borel-Cantelli: for μ-almost all (ω, x),

$$
f_{\omega}^{n}(x) \in B_{n} \text { for at most finitely many } \mathrm{n} \text {. }
$$

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi, f_{\omega}^{n}([0,1))$ is an interval and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}([0,1))\right)=0
$$

There are intervals J_{ω} so that $f_{\omega}^{n}\left(J_{\omega}\right)$ is an interval for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}\left(J_{\omega}\right)\right)=0
$$

Take $J \subset J_{\omega}$ for ω from a positive measure set. There exists $t \in \mathbb{N}$ and $\eta \in\{1, \ldots, M\}^{t}$ with $f_{\eta}^{t}([0,1)) \subset J$.

Two-point motion

Ideas in proof

We have

$$
\left(f_{\omega}^{n}\right)^{\prime} \leq C \zeta^{n}
$$

for some $C>1, \zeta<1$ and ω from a set Ω_{C} of positive measure. Let B_{n} denote the $1 / n^{2}$-neighborhood of discontinuity points i / N. Borel-Cantelli: for μ-almost all (ω, x),

$$
f_{\omega}^{n}(x) \in B_{n} \text { for at most finitely many } \mathrm{n} \text {. }
$$

Using ergodicity it suffices to construct $\Psi \subset \Sigma$ of positive measure with: for $\omega \in \Psi, f_{\omega}^{n}([0,1))$ is an interval and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}([0,1))\right)=0
$$

There are intervals J_{ω} so that $f_{\omega}^{n}\left(J_{\omega}\right)$ is an interval for all $n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} \lambda\left(f_{\omega}^{n}\left(J_{\omega}\right)\right)=0
$$

Take $J \subset J_{\omega}$ for ω from a positive measure set.
There exists $t \in \mathbb{N}$ and $\eta \in\{1, \ldots, M\}^{t}$ with $f_{\eta}^{t}([0,1)) \subset J$.

Two-point motion

Intermittency
Consider $L_{p}=0$. For every $\varepsilon>0$, for all $x, y \in[0,1)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{0 \leq i<n ;\left|f_{\omega}^{i}(x)-f_{\omega}^{i}(y)\right|<\varepsilon\right\}\right|=1
$$

for ν-almost all $\omega \in \Sigma$.
Let β be a small positive number. Let $x, y \in[0,1)$. Then for ν-almost all $\omega \in \Sigma$, either $\left|f_{\omega}^{n}(x)-f_{\omega}^{n}(y)\right|=0$ for some n or $\left|f_{\omega}^{n}(x)-f_{\omega}^{n}(y)\right|>\beta$ for infinitely many values of n.

Two-point motion

Left panel: time series of $f_{\omega}^{n}(x)$ for $p_{0}=1 / 2$ and $(M, N)=(3,3)$.

Right panel: signed difference with another time series with the same ω.

Two-point motion

Ideas in proof. $M=N$ and $p_{0}=1 / 2$.
Then $y_{n}=\left|f_{\omega}^{n}([0,1))\right|$ satisfies

$$
y_{n+1}= \begin{cases}y_{n} / M, & \omega_{n} \in\{1, \ldots, M\} \\ \min \left\{y_{n} M, 1\right\}, & \omega_{n}=0\end{cases}
$$

Consider $z_{i}=-\log _{N}\left(y_{i}\right)$. Then $z_{0}=0$ and

$$
z_{n+1}= \begin{cases}z_{n}+1, & \omega_{n} \in\{1, \ldots, M\} \\ \max \left\{z_{n}-1,0\right\}, & \omega_{n}=0\end{cases}
$$

So z_{n} is a random walk on \mathbb{N} with partially reflecting boundary at 0 . It is null-recurrent.

Two-point motion

Ideas in proof. Remarks on the general case.
Let $\varepsilon>0$ be small.
Let $\left(\zeta_{1} \ldots \zeta_{D}\right)$ be a fixed sequence in $\{1, \ldots, M\}^{D}$ with D large so that $1 / M^{D}<\varepsilon$. Start with $[0,1)$ and iterate under f_{ω}^{n} until the final D symbols $\omega_{n-D} \ldots \omega_{n-1}$ equal $\zeta_{1} \ldots \zeta_{D}$. Then

$$
\left|f_{\omega}^{n}([0,1))\right|<\varepsilon .
$$

The expected stopping time is finite. We could continue iterating until $f_{\omega}^{n}([0,1))$ is no longer contained in an interval of size ε. To control possible intersections with discontinuities, we modify. Iterate instead until

$$
\left|f_{\omega}^{n}([0,1))\right|>1 / n^{2}
$$

The expected stopping time is infinite.

Two-point motion

Ideas in proof. Remarks on the general case.
Let $\varepsilon>0$ be small.
Let $\left(\zeta_{1} \ldots \zeta_{D}\right)$ be a fixed sequence in $\{1, \ldots, M\}^{D}$ with D large so that
$1 / M^{D}<\varepsilon$. Start with $[0,1)$ and iterate under f_{ω}^{n} until the final D symbols
$\omega_{n-D} \ldots \omega_{n-1}$ equal $\zeta_{1} \ldots \zeta_{D}$. Then

$$
\left|f_{\omega}^{n}([0,1))\right|<\varepsilon .
$$

The expected stopping time is finite. We could continue iterating until $f_{\omega}^{n}([0,1))$ is no longer contained in an interval of size ε. To control possible intersections with discontinuities, we modify. Iterate until

$$
\left|f_{\omega}^{n}([0,1))\right|>1 / n^{2} .
$$

The expected stopping time is infinite.

Two-point motion

The two-point map $f_{i}^{(2)}:[0,1)^{2} \rightarrow[0,1)^{2}$ given by

$$
f_{i}^{(2)}(x, y)=\left(f_{i}(x), f_{i}(y)\right)
$$

Expansion

Consider $L_{p}>0$. The iterated function system on $[0,1)^{2}$ generated by $f_{i}^{(2)}, 0 \leq i \leq M$, admits an absolutely continuous stationary probability measure $m^{(2)}$ of full support.

Two-point motion

Left panel: time series of $f_{\omega}^{n}(x)$ for $p_{0}=1 / 2$ and $(M, N)=(2,3)$.

Right panel: signed difference with another time series with the same ω.

Two-point motion

Stationary distribution for two-point motion.
Example: $(M, N)=(3,9)$.
Picture: $p_{0}=1 / 2$.

Stationary measure $m^{(2)}=\left.\sum_{\ell=0}^{\infty} \zeta^{\ell} \sum_{j=0}^{M^{\ell}-1} M^{\ell} \lambda\right|_{\left[j / M^{\ell},(j+1) / M^{\ell}\right)^{2}}, \zeta=-\frac{1}{2}+\frac{1}{2} \sqrt{\frac{4-3 p_{0}}{p_{0}}}$.

Density function
In this example: $L_{p}>0$ for $p_{0}>1 / 3$. The density of the stationary measure for the two-point motion is bounded for $p_{0}>9 / 13$.

Two-point motion

Stationary distribution for two-point motion.
Example: $(M, N)=(3,3)$.
Supported on fractal invariant set.

Extensions

The skew product map F is measurably isomorphic to
$G:[0,1)^{2} \rightarrow[0,1)^{2}$ given by

$G(w, x)=$

$$
\begin{cases}\left(\frac{1}{p_{0}} w(\bmod 1), N x \quad(\bmod 1)\right), & 0 \leq w<p_{0}, \\ \left(\frac{M}{1-p_{0}}\left(w-r_{i}\right)(\bmod 1), \frac{1}{M} x+\frac{i}{M}\right), & r_{i} \leq w<r_{i+1}, 1 \leq i \leq M\end{cases}
$$

with two-dimensional Lebesgue measure as invariant measure.

Extensions

An invertible extension $\Gamma:[0,1)^{3} \rightarrow[0,1)^{3}$ is given by

$$
\begin{aligned}
& \Gamma(w, x, y)= \\
& \left\{\begin{array}{c}
\left(\frac{1}{p_{0}} w \quad(\bmod 1), N x \quad(\bmod 1), \frac{p_{0}}{N} y+\frac{j p_{0}}{N}\right), \\
0 \leq w<p_{0} \\
\frac{j}{N} \leq x<\frac{j+1}{N}, 0 \leq j<N \\
\left(\frac{M}{1-p_{0}}\left(w-r_{i}\right) \quad(\bmod 1), \frac{1}{M} x+\frac{i}{M},\left(1-p_{0}\right) y+p_{0}\right), \\
r_{i} \leq w<r_{i+1}, 1 \leq i \leq M .
\end{array}\right.
\end{aligned}
$$

Extensions

The action of Γ on the cube $[0,1)^{3},(M, N)=(2,2)$.

Extensions

Consider subsets of periodic points for Γ in $[0,1)^{3}$:

$$
\begin{aligned}
& \Omega_{s}=\left\{(w, x, y) ; \Gamma^{q}(w, x, y)=(w, x, y),\left|\frac{\partial}{\partial x} \Gamma^{q}(w, x, y)\right|<1\right\}, \\
& \Omega_{c}=\left\{(w, x, y) ; \Gamma^{q}(w, x, y)=(w, x, y),\left|\frac{\partial}{\partial x} \Gamma^{q}(w, x, y)\right|=1\right\}, \\
& \Omega_{u}=\left\{(w, x, y) ; \Gamma^{q}(w, x, y)=(w, x, y),\left|\frac{\partial}{\partial x} \Gamma^{q}(w, x, y)\right|>1\right\} .
\end{aligned}
$$

Extensions

Heterodimensional chaos (inspired by Saiki, Takahasi, Yorke)
Consider (M, N) with $M, N \geq 2$.
The sets Ω_{s}, Ω_{u} are dense in $[0,1)^{3}$.
If $\ln (N) / \ln (M) \in \mathbb{Q}$ then Ω_{c} is dense in $[0,1)^{3}$.
If $\ln (N) / \ln (M) \notin \mathbb{Q}$, then Ω_{c} is empty.

