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Linear maps on the unit interval

Given a pair (M, N) of integers M, N > 2, consider the N-adic
map fp : [0,1) — [0, 1),

fo(x) = Nx (mod 1)

and the collection of M contracting maps f; : [0,1) — [0, 1),

ﬁ(x):%x—&—i//\/l, 0<i<M.




Probability vector
Take (po, ..., pm) with 0 < pg < 1 and

1—
Symbol space
Y ={0,..., M} with product topology, Borel o-algebra, and
Bernoulli measure v;

k
v([ao---au]) = [ ] s
j=0

for



Skew product system

Denote w = (wowy - -+ ) for w € .

F:¥x[0,1) - X x[0,1) is given by

F(w,x) = (ow, fue(x))-



Stationary measure
Write A for Lebesgue measure on [0, 1) and write u = v X A.

Invariance
The product measure p is an invariant probability measure for F
(X is a stationary measure for the IFS):

WA) = u(FH(A)).

The measure p is ergodic.

Uniform distribution
For p-almost all (w, x),

{£2(x); neN}

is uniformly distributed in [0, 1).



Graphs of iterates
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Left picture: (M, N) = (3,3). The thick graph is the graph of £8
for w = (12020020).

Right picture: (M, N) = (3,2). The thick graph is the graph of f
for w = (3020020).



Lyapunov exponent

The Lyapunov exponent L, is given by

L, = lim fZIn )" = poIn(N) — (1 — po) In(M),

n—oo N

where by the strong law of large numbers the limit exists v-almost
surely and equals the given constant.



Two-point motion

Synchronization
Consider L, < 0. For all x,y € [0,1),

lim [£(y) = £(x)[ =0

n—o0

for v-almost all w € .




Two-point motion

Ideas in proof
We have

(£) < c¢”
for some C > 1,{ < 1 and w from a set Q¢ of positive measure
Let B, denote the 1/n* neighborhood of discontinuity points i/N.
Borel-Cantelli: for p-almost all (w, x),

f2(x) € B, for at most finitely many n.

Using ergodicity it suffices to construct W C X of positive measure with: for
w e WV, £7([0,1)) is an interval and

lim X (£}([0,1))) = 0.
n—oo
There are intervals J, so that £](J,) is an interval for all n € N, and

lim A (£5(4)) = 0.

Take J C J,, for w from a positive measure set. There exists t € N and
ne{l,...,M}" with f,]t([O., 1)) C J.

N



Two-point motion

Ideas in proof
We have
(f2) < c¢"
for some C > 1,¢ < 1 and w from a set Q¢ of positive measure.

denote the 1/n?-neighborhood of discontinuity points i/N.
Borel-Cantelli: for p-almost all (w, x),

Let B,

f7(x) € B, for at most finitely many n.

Using ergodicity it suffices to construct W C X of positive measure with: for
we WV, £7([0,1)) is an interval and

lim A(£7([0,1))) = 0.

n—oo

There are intervals J, so that £](J.) is an interval for all n € N, and

lim A(f1(J)) =0.

n—o0o

Take J C J,, for w from a positive measure set. There exists t € N and
ne{l,..., M} with £;([0,1)) C J.

[} = =




Two-point motion

Ideas in proof

We have
(f5) < c¢”

for some C > 1,( < 1 and w from a set Q¢ of positive measure. Let B, denote
the 1/n?-neighborhood of discontinuity points i/N. Borel-Cantelli: for
p-almost all (w, x),

f2(x) € B, for at most finitely many n.

Using ergodicity it suffices to construct ¥ C ¥ of positive
measure with: for w € W, £7([0,1)) is an interval and

Jim A(£(0.1))) =0.

There are intervals J,, so that £](J,) is an interval for all n € N, and

lim A(£7(J)) = 0.

n—o00

Take J C J,, for w from a positive measure set. There exists t € N and
ne{l,...,M}* with £/([0,1)) C J.

[} = =




Two-point motion

Ideas in proof
We have
(1) < c¢”
for some C > 1,¢ < 1 and w from a set Q¢ of positive measure. Let B, denote

the 1/n?-neighborhood of discontinuity points i/N. Borel-Cantelli: for
p-almost all (w, x),

f2(x) € B, for at most finitely many n.

Using ergodicity it suffices to construct W C X of positive measure with: for
we WV, £7([0,1)) is an interval and

lim A (£7([0,1))) = 0.

n—oo

There are intervals J,, so that £7(J,) is an interval for all n € N,

and
li £ =0.
Jim A(£5(4.)) = 0
Take J C J,, for w from a positive measure set.  There exists t € N

and n € {1,..., M}* with £;([0,1)) C J.

u}
o)
I
i
it




Two-point motion

Ideas in proof
We have

(f) <c¢”
for some C > 1,( < 1 and w from a set Q¢ of positive measure. Let B, denote
the 1/n?-neighborhood of discontinuity points i/N. Borel-Cantelli: for
p-almost all (w, x),

f2(x) € B, for at most finitely many n.

Using ergodicity it suffices to construct W C X of positive measure with: for
we WV, £7([0,1)) is an interval and

lim A (£7([0,1))) = O.

n—oo

There are intervals J, so that £](J,) is an interval for all n € N, and
lim X\ (f)(J,)) =0.
n— oo

Take J C J,, for w from a positive measure set. There exists t € N and
ne{l,..., M}t with fnt([O, 1)) C J.

u}

o)
I
i

it



Two-point motion

Intermittency
Consider L, = 0. For every ¢ > 0, for all x,y € [0,1),

.1 . ; ;
Jim {0 <i<n; [f() - £y <=1
for v-almost all w € .
Let 5 be a small positive number. Let x,y € [0,1). Then for
v-almost all w € X, either |£](x) — £(y)| = 0 for some n or
|f7(x) — £7(y)| > S for infinitely many values of n.



Two-point motion

Left panel: time series of £7(x) for pp = 1/2 and (M, N) = (3, 3).

Right panel: signed difference with another time series with the
same w.



Two-point motion

|deas in proof. M = N and pyp = 1/2.
Then y, = |£7([0, 1))| satisfies

(M, wn € {1,.... M},
Yrtl = min{yaM, 1}, w,=0.

Consider z; = —logp(y;). Then zp =0 and
L[ @+, wn € {1,..., M},
"7 max{z, — 1,0}, w,=0.

So z, is a random walk on N with partially reflecting boundary at
0. It is null-recurrent.



Two-point motion

Ideas in proof. Remarks on the general case.

Let € > 0 be small.

Let (C1...¢p) be a fixed sequence in {1,..., M}P with D large so
that 1/MP < e. Start with [0,1) and iterate under £” until the
final D symbols w,_p...wp—1 equal (1...¢(p. Then

1£7([0,1))] <e.
The expected stopping time is finite. We could continue iterating

until £7([0,1)) is no longer contained in an interval of size . To control
possible intersections with discontinuities, we modify. Iterate instead until

I£2(10,1))] > 1/n".

The expected stopping time is infinite.



Two-point motion

Ideas in proof. Remarks on the general case.

Let € > 0 be small.

Let (Ci...¢p) be a fixed sequence in {1,..., M}? with D large so that
1/MP < e. Start with [0,1) and iterate under £ until the final D symbols
Wn—p...wp—1 equal (1...¢p. Then

If5([0, 1) <e.

The expected stopping time is finite. We could continue iterating until
£7([0,1)) is no longer contained in an interval of size €. To control
possible intersections with discontinuities, we modify. Iterate until

£2(10,1)] > 1/n?.

The expected stopping time is infinite.



Two-point motion

The two-point map fi(z) :[0,1)2 — [0,1)? given by

D%, ) = (£(x), £(1))-

Expansion
Consider L, > 0. The iterated function system on [0, 1)? generated

by fi(2), 0 < i < M, admits an absolutely continuous stationary
probability measure m® of full support.



Two-point motion

>

=

Left panel: time series of £7(x) for pp = 1/2 and (M, N) = (2, 3).

Right panel: signed difference with another time series with the
same w.



Two-point motion

Stationary distribution

for two-point motion.
Example: (M, N) = (3,9).
Picture: pg = 1/2.

Stationary measure

oo € —
m®) = > oieo Ce Z_/,\io et )‘|U/M£,U+1)/MZ)2’ €= _% + % ' p:;po'

Density function

In this example: L, > 0 for pg > 1/3. The density of the stationary
measure for the two-point motion is bounded for py > 9/13.



Two-point motion

Stationary distribution

for two-point motion.

Example: (M, N) = (3, 3).
Supported on fractal invariant set.




Extensions

The skew product map F is
measurably isomorphic to
G :[0,1)? — [0,1)? given by

(%W (mod 1), Nx (mod 1)) , 0<w< po,

<1ypo(W—ri) (mod 1)7%)(—*—&), n<w<ri,l<i<M

with two-dimensional Lebesgue measure as invariant measure.



Extensions

An invertible extension I : [0,1)3 — [0,1)3 is given by

r(W7X7y) =
(%W (mod 1), Nx (mod 1),%y+%),

0<w<po
j j+1 :
JN§X<JTa0§J<N7

<%(W —r) (mod 1), 5x + 47, (1 — po)y + Po) :

r,-§w<r,-+1,1§i§/\/l.




Extensions
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The action of I on the cube [0,1)3, (M, N) = (2,2).



Extensions

Consider subsets of periodic points for I in

Qs = {(W’va); rq(vaa)/) = (W,X,y),
Qc = {(W)va); rq(vaay) = (W7X7y)’

Q. - {(w,x,y) P (waxy) = (wox.y),




Extensions

Heterodimensional chaos (inspired by Saiki, Takahasi, Yorke)
Consider (M, N) with M, N > 2.

The sets Qs, Q, are dense in [0,1)3.
If In(N)/In(M) € Q then Q. is dense in [0,1)3.
If In(N)/In(M) ¢ Q, then Q. is empty.



