# Algebraic Automatic Continued Fractions in Characteristic 2 

Yining Hu HUST

One World Numeration Seminar February 14, 2023
(1) Automatic Sequences
(2) Automatic Continued Fractions

## Automatic Sequences

A sequence is said to be $d$-automatic if it can be generated by a $d$-DFAO (deterministic finite automaton with output). For an integer $d \geq 2$, a $d$-DFAO is defined to be a 6-tuple

$$
M=\left(Q, \Sigma, \delta, q_{0}, \Delta, \tau\right)
$$

where $Q$ is the set of states with $q_{0} \in Q$ being the initial state, $\Sigma=\{0,1, \ldots, d-1\}$ the input alphabet, $\delta: Q \times \Sigma \rightarrow Q$ the transition function, $\Delta$ the output alphabet, and $\tau: Q \rightarrow \Delta$ the output function.

## Automatic Sequences

The $d$-DFAO $M$ generates a sequence $\left(c_{n}\right)_{n \geq 0}$ in the following way: for each non-negative integer $n$, the base- $d$ expansion of $n$ is read by $M$ from right to left starting from the initial state $q_{0}$, and the automaton moves from state to state according to its transition funciton $\delta$. When the end of the string is reached, the automaton halts in a state $q$, and the automaton outputs the symbol $c_{n}=\tau(q)$.


$$
\tau(i)=0, \tau(a)=1
$$

The sequence $(t(n))_{n}$ generated by this automaton is the Thue-Morse sequence whose first terms are $0110100110010110 \cdots$.

## Automaticity, Algebricity and Transcendence

## Theorem 1 (Christol, Kamae, Mendès France, Rauzy 1979)

The formal power series $\sum_{n=0}^{\infty} u_{n} x^{n}$ in $\mathbb{F}_{p}[x]$ is algebraic over $\mathbb{F}_{p}(x)$ if and only if $\left(u_{n}\right)_{n}$ is $p$-automatic.

## Theorem 2 (Adamczewski, Bugeaud 2007)

An automatic real number is either rational or transcendental.

## Theorem 3 (Bugeaud 2013)

The continued fraction expansion of an algebraic number of degree at least three cannot be generated by a finite automaton.

## Continued Fractions for Power Series

Let $K$ be a field. Let

$$
\begin{equation*}
f(z)=c_{n} z^{n}+c_{n-1} z^{n-1}+\cdots+c_{0}+c_{-1} z^{-1}+\cdots \tag{1}
\end{equation*}
$$

be an arbitrary element of $K((1 / z))$. Define the integer part of $f(z)$ as

$$
\begin{equation*}
[f(z)]=c_{n} z^{n}+c_{n-1} z^{n-1}+\cdots+c_{0} . \tag{2}
\end{equation*}
$$

Set $f_{0}=f, a_{0}=\left[f_{0}\right], f_{0}=a_{0}+1 / f_{1}, a_{1}=\left[f_{1}\right], f_{1}=a_{1}+1 / f_{2}, a_{2}=\left[f_{1}\right], \ldots$ Then $a_{0} \in K[z]$ and $a_{j} \in K[z] \backslash K$ for $j \geq 1$, and $f(z)$ admits the following continued fraction expansion

$$
\begin{equation*}
f(z)=a_{0}(z)+\frac{1}{a_{1}(z)+\frac{1}{a_{2}(z)+\frac{1}{a_{3}(z)+\frac{1}{\ddots}}}} \tag{3}
\end{equation*}
$$

## Previous Work

Hu and Han studied continued fractions defined by the Thue-Morse sequence and the period-doubling sequence, and proved the algebraicity for some cases. Bugeaud and Han proved the algebraicity of Thue-Morse continued fractions. Hu and Lasjaunias proved the algebraicity of period-doubling continued fractions.

Recall that the Thue-Morse sequence can be defined by the substitution $0 \rightarrow 01,1 \rightarrow 10$, And the period-doubling sequence can be defined by the substitution $0 \rightarrow 01,1 \rightarrow 00$.

## More sequences

We notice that the period-doubling sequence $\mathbf{p}=01000101 \ldots$ is the limit of the following sequence of finite words:

```
0
010
0100010
010001010100010
```

More precisely, let $W_{0}$ be the empty word, let $\varepsilon=(01)^{\infty}$, and $W_{n+1}=W_{n}, \varepsilon_{n}, W_{n}$ for $n \geq 0$. Then $\mathbf{p}=\lim W_{n}$. Therefore it is natural to consider sequences defined in the same way but with $W_{0}$ any finite word and $\boldsymbol{\epsilon}$ any periodic sequence. We let $\mathcal{P}\left(W_{0}, \boldsymbol{\epsilon}\right)$ denote the sequence defined this way and let $\mathcal{P}$ denote the family of such sequences.

We notice that the Thue-Morse sequence $\mathbf{t}=01101001 \ldots$ is the sum of the period-doubling sequence $\mathbf{p}=10111010 \ldots$. More precisely, if we define $\sigma$ to be the operator that maps a binary sequence $\left(u_{n}\right)_{n}$ to $\left(\sum_{j=0}^{n-1} u_{j}\right.$ $(\bmod 2))_{n}$, then $\mathbf{t}=\sigma(\mathbf{p})$. It is therefore natural to consider continued fractions defined by $\sigma^{n}(\mathbf{p})$ for $n \geq 2$.
In fact, we also want to consider sequences of the form $\sigma^{n}(\mathbf{u})$ where $n \geq 1$ and $\mathbf{u} \in \mathcal{P}$. It turns out more convenient to consider yet a larger family $\mathcal{G}$ defined as follows: Let $\boldsymbol{\Upsilon}$ be a periodic ( 0,1 )-sequence. Let $u_{0}$ and $v_{0}$ be two finite words. For $n \geq 0$, define

$$
\begin{aligned}
u_{n+1} & =u_{n}, u_{n} \\
v_{n+1} & =v_{n}, v_{n}
\end{aligned}
$$

if $\Upsilon_{n}=0$, and

$$
\begin{aligned}
& u_{n+1}=u_{n}, v_{n} \\
& v_{n+1}=v_{n}, u_{n}
\end{aligned}
$$

otherwise. We let $\mathcal{G}\left(u_{0}, v_{0}, \boldsymbol{\Upsilon}\right)$ denote $\lim _{n} u_{n}$ and let $\mathcal{G}$ denote the family of such sequences.

## Continued Fractions in Characteristic 2

Let $A=\left\{a_{0}, \ldots, a_{k}\right\}$ be a finite alphabet. We treat $a_{j}$ as formal variables and define

$$
\begin{array}{r}
\mathbb{F}_{2}[A]:=\mathbb{F}_{2}\left[a_{0}, \ldots, a_{k}\right] \\
\mathbb{F}_{2}(A):=\mathbb{F}_{2}\left(a_{0}, \ldots, a_{k}\right) \\
\mathbb{F}_{2}((A)):=\mathbb{F}_{2}\left(\left(\frac{1}{a_{0}}, \ldots, \frac{1}{a_{k}}\right)\right) .
\end{array}
$$

Here $\mathbb{F}_{2}\left(\left(\frac{1}{a_{0}}, \ldots, \frac{1}{a_{k}}\right)\right)$ denotes the ring of power series of the form

$$
\begin{equation*}
\varphi=\sum_{n_{0}, \ldots, n_{k} \geq N} c_{n_{0}, n_{1}, \ldots, n_{k}} a_{0}^{-n_{0}} \cdots a_{k}^{-n_{k}} \tag{4}
\end{equation*}
$$

where $N$ is an integer and $c_{n_{0}, n_{1}, \ldots, n_{k}} \in \mathbb{F}_{2}$.
Let $\left(u_{n}\right)_{n \geq 0}$ be a sequence taking values in $A$. It defines a formal power series $\sum_{n \geq 0} u_{n} z^{n}$ in $\mathbb{F}_{2}[A][[z]]$.
We define a norm on $\mathbb{F}_{2}((A))$ by assigning a series of the form (4) the number $2^{-m}$, where $m=\min \left\{n_{0}+n_{1} \cdots+n_{k} \mid \quad c_{n_{0}, n_{1}, \ldots, n_{k}} \neq 0\right\}$ (with the convention that $\min \emptyset=\infty)$ is the valuation of the series $\varphi$.

## Continued Fractions in Characteristic 2

The continued fraction $\operatorname{CF}(\mathbf{u})=\left[u_{0}, u_{1}, \ldots\right]$ is defined as the limit of the sequence $\left(\left[u_{0}, u_{1}, \ldots, u_{n}\right]\right)_{n}$ :

$$
\begin{aligned}
{\left[u_{0}\right] } & =u_{0} \\
{\left[u_{0}, u_{1}, \ldots, u_{n}\right] } & =u_{0}+\frac{1}{\left[u_{1}, \ldots, u_{n}\right]} \in \mathbb{F}_{2}((A)),
\end{aligned}
$$

for $n \geq 1$. For example,

$$
\begin{aligned}
{\left[u_{0}, u_{1}, u_{2}\right] } & =u_{0}+\frac{1}{u_{1}+\frac{1}{u_{2}}} \\
& =u_{0}+\frac{u_{1}^{-1}}{1+\left(u_{1} u_{2}\right)^{-1}} \\
& =u_{0}+u_{1}^{-1}+u_{1}^{-2} u_{2}^{-1}+u_{1}^{-3} u_{2}^{-2}+\cdots
\end{aligned}
$$

## Continued Fractions in Characteristic 2

Define

$$
M_{n}=\left(\begin{array}{cc}
1 & \frac{1}{u_{n}}  \tag{5}\\
\frac{1}{u_{n}} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{1}{u_{n-1}} \\
\frac{1}{u_{n-1}} & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & \frac{1}{u_{0}} \\
\frac{1}{u_{0}} & 0
\end{array}\right)
$$

then

$$
\begin{equation*}
\left[u_{0}, u_{1}, \ldots, u_{n}\right]=\frac{M_{n, 0,1}}{M_{n, 0,0}} \tag{6}
\end{equation*}
$$

In general, we do not have the convergence of $\left(M_{n, 0,1}\right)_{n}$ and $\left(M_{n, 0,0}\right)_{n}$, but we do have the convergence of $\left(\frac{M_{n, 0,1}}{M_{n, 0,0}}\right)_{n}$, which is proved in the same way as in the case of classical contineud fraction for real numbers.

## Main result

## Theorem 4 (H.)

If $\mathbf{u}=\mathcal{P}\left(W_{0}, \varepsilon\right)$ is a sequence in $\mathcal{P}$, where $\boldsymbol{\varepsilon}$ has period $n$, then $\operatorname{CF}(\mathbf{u})$ is algebraic over $\mathbb{F}_{2}(A)$ of degree at most $2^{n}$.

## Theorem 5 (H.)

If $\mathbf{u}=\mathcal{G}\left(u_{0}, v_{0}, \boldsymbol{\Upsilon}\right)$ is a sequence in $\mathcal{G}$, where $\boldsymbol{\Upsilon}$ has period $k$, and contains an even number of 1 's in one period, then $\operatorname{CF}(\mathbf{u})$ is algebraic over $\mathbb{F}_{2}(A)$ of degree at most $2^{k}$.

Remark For a sequence $\mathbf{u} \in \mathcal{P} \cup \mathcal{G}, \sigma(\mathbf{u}) \in \mathcal{G}$.

## Example

Let $u_{0}$ and $v_{0}$ be single letters $a$ and $b$. Let $\boldsymbol{\Upsilon}=1^{\infty}$. Then $\mathcal{G}\left(u_{0}, v_{0}, \boldsymbol{\Upsilon}\right)$ is the Thue-Morse sequence $\mathbf{t}=a b b a b a a b \ldots$ Define

$$
m_{0}=\left(\begin{array}{cc}
1 & 1 / a \\
1 / a & 0
\end{array}\right), \quad w_{0}=\left(\begin{array}{cc}
1 & 1 / b \\
1 / b & 0
\end{array}\right)
$$

and for $k \geq 0$,

$$
m_{k+1}=w_{k} m_{k} \quad w_{k+1}=m_{k} w_{k}
$$

By (5) and (6),

$$
\mathrm{CF}(\mathbf{t})=\lim _{k} \frac{m_{2 k+1,0,1}}{m_{2 k+1,0,0}}
$$

We will show that every entry of $\left(m_{2 k+1}\right)_{k}$ converges, and the limit is algebraic. The key to the proof is the relation

$$
m_{3}=\left(m_{1}+d / c o+d^{2} / r / c o^{2}\right) \cdot l
$$

where

$$
d=\operatorname{det}\left(m_{1}\right), r=\operatorname{tr}\left(m_{1}\right), c o=m_{1}+w_{1}+r, I=r \cdot c o^{2} .
$$

## Example

In fact, the relation $(\star)$ holds regardless of the particular form of $m_{0}$ and $w_{0}$; it remains true if we had taken $m_{0}$ and $w_{0}$ to be any $2 \times 2$ matrix in characteristic 2 . Therefore, it actually gives us the relation between $m_{2 k+1}$ and $m_{2 k+3}$ for all $k \geq 0$. For example, if we define $m_{0}^{\prime}=m_{2}$, and $w_{0}^{\prime}=w_{2}$, and define $m_{k}^{\prime}, w_{k}^{\prime}, d^{\prime}, r^{\prime}, c o^{\prime}, l^{\prime}$ accordingly, then by $(\star)$,

$$
m_{3}^{\prime}=\left(m_{1}^{\prime}+d^{\prime} / c o^{\prime}+d^{\prime 2} / r^{\prime} / c o^{\prime 2}\right) \cdot l^{\prime}
$$

We verify directly

$$
d^{\prime}=d^{4}, r^{\prime}=r \cdot I, c o^{\prime}=c o \cdot I, I^{\prime}=I^{4}
$$

Therefore

$$
\begin{aligned}
& m_{5}=m_{3}^{\prime}=\left(m_{3}+d^{4} / c o / l+d^{8} / r / c o^{2} / l^{3}\right) \cdot l^{4} \\
= & l^{1+4} \cdot\left(m_{1}+\left(d+d^{4} / l^{2}\right) / c o+\left(d^{2}+d^{8} / l^{4}\right) / r / c o^{2}\right)
\end{aligned}
$$

## Example

We continue in this way to find

$$
m_{7}=l^{1+4+16} \cdot\left(m_{1}+\left(d+d^{4} / l^{2}+d^{4} / l^{2+8}\right) / c o+\left(d^{2}+d^{8} / l^{4}+d^{32} / l^{4+16}\right) / r / c o^{2}\right)
$$

etc. Define

$$
\begin{gathered}
f=I^{1+4+16+64+\cdots} \\
H=d+d^{4} / I^{2}+d^{16} / I^{2+8}+d^{64} / I^{2+8+32}+\cdots
\end{gathered}
$$

It is easy to prove by induction that

$$
\lim _{k} m_{2 k+1}=f \cdot\left(m_{1}+H / c o+H^{2} / r / c o^{2}\right) .
$$

Both $f$ and $H$ are algebraic:

$$
\begin{aligned}
f^{4} & =f / l \\
H^{4} / l^{2} & =H+d
\end{aligned}
$$

Therefore $\mathrm{CF}(\mathbf{t}) \in \mathbb{F}_{2}(a, b)[H]$, and is algebraic of degree at most 4.

## Idea of the Proof

Let $m_{0}, w_{0}$ be two $2 \times 2$ matrices with entries in a field of characteristic 2 . Let $m_{1}=w_{0} m_{0}, w_{1}=m_{0} w_{0}$. We define $m_{1 s}$ and $w_{1 s}$ for all binary word $s$ inductively as follows:

$$
\begin{aligned}
& m_{1 s 0}=m_{1 s}^{2} \\
& m_{1 s 1}=w_{1 s} m_{1 s} \\
& w_{1 s 0}=w_{1 s}^{2} \\
& w_{1 s 1}=m_{1 s} w_{1 s}
\end{aligned}
$$

Define $d=\operatorname{det}\left(m_{1}\right), r=\operatorname{tr}\left(m_{1}\right)$ (the trace of $\left.m_{1}\right)$, and $c o=m_{1}+w_{1}+r$. For all binary word $s$, define $t(s)$ as the sum of digits of $s$ modulo 2 .
Let $s$ be an arbitrary non-empty binary word. For $j<|s|$, define $s(j)$ to be $s_{0} \ldots s_{j-1}$, the prefix of length $j$ of $s$. Define $e(s)$ inductively as follows: If $s$ is the empty word, then $e(s)=0$; define $e(s 0)=2 e(s)+t(s 0)$, $e(s 1)=2 e(s)+t(s 1)$. Define and $c_{j}(s)=d^{2^{j-1}} / r^{2^{j}-1-e(s(j))} / c o^{e(s(j))}$. We write $c_{j}$ for short when there is no ambiguity.

## Idea of the Proof

## Proposition 6

Let $s$ be a binary word of length $k \geq 1$. If $t(s)=0$, then

$$
\begin{align*}
& m_{1 s}=\left(m_{1}+c_{1}+\cdots+c_{k}\right) \cdot d^{2^{k-1}} / c_{k}  \tag{7}\\
& w_{1 s}=\left(w_{1}+c_{1}+\cdots+c_{k}\right) \cdot d^{2^{k-1}} / c_{k} \tag{8}
\end{align*}
$$

if $t(s)=1$, then

$$
\begin{align*}
& m_{1 s}=\left(w_{1}+c_{1}+\cdots+c_{k}\right) \cdot d^{2^{k-1}} / c_{k},  \tag{9}\\
& w_{1 s}=\left(m_{1}+c_{1}+\cdots+c_{k}\right) \cdot d^{2^{k-1}} / c_{k} . \tag{10}
\end{align*}
$$

## Thank You!

