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Automatic Sequences

A sequence is said to be d-automatic if it can be generated by a d-DFAO
(deterministic finite automaton with output). For an integer d ≥ 2, a
d-DFAO is defined to be a 6-tuple

M = (Q,Σ, δ, q0,∆, τ)

where Q is the set of states with q0 ∈ Q being the initial state,
Σ = {0, 1, . . . , d − 1} the input alphabet, δ : Q × Σ→ Q the transition
function, ∆ the output alphabet, and τ : Q → ∆ the output function.
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Automatic Sequences

The d-DFAO M generates a sequence (cn)n≥0 in the following way: for
each non-negative integer n, the base-d expansion of n is read by M from
right to left starting from the initial state q0, and the automaton moves
from state to state according to its transition funciton δ. When the end of
the string is reached, the automaton halts in a state q, and the automaton
outputs the symbol cn = τ(q).

i a

0

1

0

1

τ(i) = 0, τ(a) = 1.

The sequence (t(n))n generated by this automaton is the Thue-Morse
sequence whose first terms are 0110100110010110 · · · .
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Automaticity, Algebricity and Transcendence

Theorem 1 (Christol, Kamae, Mendès France, Rauzy 1979)

The formal power series
∞∑
n=0

unx
n in Fp[x ] is algebraic over Fp(x) if and

only if (un)n is p-automatic.

Theorem 2 (Adamczewski, Bugeaud 2007)

An automatic real number is either rational or transcendental.

Theorem 3 (Bugeaud 2013)

The continued fraction expansion of an algebraic number of degree at
least three cannot be generated by a finite automaton.
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Continued Fractions for Power Series

Let K be a field. Let

f (z) = cnz
n + cn−1z

n−1 + · · ·+ c0 + c−1z
−1 + · · · (1)

be an arbitrary element of K ((1/z)). Define the integer part of f (z) as

[f (z)] = cnz
n + cn−1z

n−1 + · · ·+ c0. (2)

Set f0 = f , a0 = [f0], f0 = a0 + 1/f1, a1 = [f1], f1 = a1 + 1/f2, a2 = [f1], ...
Then a0 ∈ K [z ] and aj ∈ K [z ]\K for j ≥ 1, and f (z) admits the following
continued fraction expansion

f (z) = a0(z) +
1

a1(z) +
1

a2(z) +
1

a3(z) +
1

. . .

. (3)
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Previous Work

Hu and Han studied continued fractions defined by the Thue-Morse
sequence and the period-doubling sequence, and proved the algebraicity
for some cases. Bugeaud and Han proved the algebraicity of Thue-Morse
continued fractions. Hu and Lasjaunias proved the algebraicity of
period-doubling continued fractions.

Recall that the Thue-Morse sequence can be defined by the substitution
0→ 01, 1→ 10, And the period-doubling sequence can be defined by the
substitution 0→ 01, 1→ 00.
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More sequences

We notice that the period-doubling sequence p = 01000101... is the limit
of the following sequence of finite words:

0

010

0100010

010001010100010

. . .

More precisely, let W0 be the empty word, let ε = (01)∞, and
Wn+1 = Wn, εn,Wn for n ≥ 0. Then p = limWn. Therefore it is natural
to consider sequences defined in the same way but with W0 any finite
word and ε any periodic sequence. We let P(W0, ε) denote the sequence
defined this way and let P denote the family of such sequences.
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We notice that the Thue-Morse sequence t = 01101001... is the sum of
the period-doubling sequence p = 10111010.... More precisely, if we define
σ to be the operator that maps a binary sequence (un)n to (

∑n−1
j=0 uj

(mod 2))n, then t = σ(p). It is therefore natural to consider continued
fractions defined by σn(p) for n ≥ 2.
In fact, we also want to consider sequences of the form σn(u) where n ≥ 1
and u ∈ P. It turns out more convenient to consider yet a larger family G
defined as follows: Let Υ be a periodic (0, 1)-sequence. Let u0 and v0 be
two finite words. For n ≥ 0, define

un+1 = un, un

vn+1 = vn, vn

if Υn = 0, and

un+1 = un, vn

vn+1 = vn, un

otherwise. We let G(u0, v0,Υ) denote limn un and let G denote the family
of such sequences.
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Continued Fractions in Characteristic 2

Let A = {a0, . . . , ak} be a finite alphabet. We treat aj as formal variables
and define

F2[A] := F2[a0, . . . , ak ]

F2(A) := F2(a0, . . . , ak)

F2((A)) := F2((
1

a0
, . . . ,

1

ak
)).

Here F2(( 1
a0
, . . . , 1

ak
)) denotes the ring of power series of the form

ϕ =
∑

n0,...,nk≥N
cn0,n1,...,nka

−n0
0 · · · ak−nk , (4)

where N is an integer and cn0,n1,...,nk ∈ F2.
Let (un)n≥0 be a sequence taking values in A. It defines a formal power
series

∑
n≥0 unz

n in F2[A][[z ]].
We define a norm on F2((A)) by assigning a series of the form (4) the
number 2−m, where m = min{n0 + n1 · · ·+ nk | cn0,n1,...,nk 6= 0} (with the
convention that min ∅ =∞) is the valuation of the series ϕ.
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Continued Fractions in Characteristic 2

The continued fraction CF(u) = [u0, u1, . . .] is defined as the limit of the
sequence ([u0, u1, . . . , un])n:

[u0] = u0,

[u0, u1, . . . , un] = u0 +
1

[u1, . . . , un]
∈ F2((A)),

for n ≥ 1. For example,

[u0, u1, u2] = u0 +
1

u1 + 1
u2

= u0 +
u−11

1 + (u1u2)−1

= u0 + u−11 + u−21 u−12 + u−31 u−22 + · · ·
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Continued Fractions in Characteristic 2

Define

Mn =

(
1 1

un
1
un

0

)(
1 1

un−1
1

un−1
0

)
· · ·
(

1 1
u0

1
u0

0

)
(5)

then

[u0, u1, . . . , un] =
Mn,0,1

Mn,0,0
. (6)

In general, we do not have the convergence of (Mn,0,1)n and (Mn,0,0)n, but

we do have the convergence of
(
Mn,0,1

Mn,0,0

)
n
, which is proved in the same way

as in the case of classical contineud fraction for real numbers.
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Main result

Theorem 4 (H.)

If u = P(W0, ε) is a sequence in P, where ε has period n, then CF(u) is
algebraic over F2(A) of degree at most 2n.

Theorem 5 (H.)

If u = G(u0, v0,Υ) is a sequence in G, where Υ has period k, and contains
an even number of 1’s in one period, then CF(u) is algebraic over F2(A) of
degree at most 2k .

Remark For a sequence u ∈ P ∪ G, σ(u) ∈ G.
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Example

Let u0 and v0 be single letters a and b. Let Υ = 1∞. Then G(u0, v0,Υ) is
the Thue-Morse sequence t = abbabaab . . . Define

m0 =

(
1 1/a

1/a 0

)
, w0 =

(
1 1/b

1/b 0

)
and for k ≥ 0,

mk+1 = wkmk wk+1 = mkwk .

By (5) and (6),

CF(t) = lim
k

m2k+1,0,1

m2k+1,0,0
.

We will show that every entry of (m2k+1)k converges, and the limit is
algebraic. The key to the proof is the relation

m3 = (m1 + d/co + d2/r/co2) · l , (?)

where

d = det(m1), r = tr(m1), co = m1 + w1 + r , l = r · co2.
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Example

In fact, the relation (?) holds regardless of the particular form of m0 and
w0; it remains true if we had taken m0 and w0 to be any 2× 2 matrix in
characteristic 2. Therefore, it actually gives us the relation between m2k+1

and m2k+3 for all k ≥ 0. For example, if we define m′0 = m2, and
w ′0 = w2, and define m′k , w ′k , d ′, r ′, co ′, l ′ accordingly, then by (?),

m′3 = (m′1 + d ′/co ′ + d ′2/r ′/co ′2) · l ′.

We verify directly

d ′ = d4, r ′ = r · l , co ′ = co · l , l ′ = l4.

Therefore

m5 = m′3 = (m3 + d4/co/l + d8/r/co2/l3) · l4

= l1+4 · (m1 + (d + d4/l2)/co + (d2 + d8/l4)/r/co2)

Algebraic Automatic Continued Fractions in Characteristic 2February 13, 2023 15 / 19



Example

We continue in this way to find

m7 = l1+4+16·(m1+(d+d4/l2+d4/l2+8)/co+(d2+d8/l4+d32/l4+16)/r/co2),

etc. Define
f = l1+4+16+64+···

H = d + d4/l2 + d16/l2+8 + d64/l2+8+32 + · · · .

It is easy to prove by induction that

lim
k

m2k+1 = f · (m1 + H/co + H2/r/co2).

Both f and H are algebraic:
f 4 = f /l

H4/l2 = H + d .

Therefore CF(t) ∈ F2(a, b)[H], and is algebraic of degree at most 4.
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Idea of the Proof

Let m0, w0 be two 2× 2 matrices with entries in a field of characteristic 2.
Let m1 = w0m0, w1 = m0w0. We define m1s and w1s for all binary word s
inductively as follows:

m1s0 = m2
1s

m1s1 = w1sm1s

w1s0 = w2
1s

w1s1 = m1sw1s .

Define d = det(m1), r = tr(m1) (the trace of m1), and co = m1 + w1 + r .
For all binary word s, define t(s) as the sum of digits of s modulo 2.
Let s be an arbitrary non-empty binary word. For j < |s|, define s(j) to be
s0 . . . sj−1, the prefix of length j of s. Define e(s) inductively as follows: If
s is the empty word, then e(s) = 0; define e(s0) = 2e(s) + t(s0),

e(s1) = 2e(s) + t(s1). Define and cj(s) = d2j−1
/r2

j−1−e(s(j))/coe(s(j)).
We write cj for short when there is no ambiguity.
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Idea of the Proof

Proposition 6

Let s be a binary word of length k ≥ 1. If t(s) = 0, then

m1s = (m1 + c1 + · · ·+ ck) · d2k−1
/ck , (7)

w1s = (w1 + c1 + · · ·+ ck) · d2k−1
/ck ; (8)

if t(s) = 1, then

m1s = (w1 + c1 + · · ·+ ck) · d2k−1
/ck , (9)

w1s = (m1 + c1 + · · ·+ ck) · d2k−1
/ck . (10)
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Thank You!
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