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[-expansions

The p-expansions were first introduced by Rényi in 1957.

Given 8 > 1, for any z € [0, 1] there is a non-negative integer sequence
(Cﬂizl such that

=Y S e {08,

i>1

where | 5] := max{n € N: n < }. We now call this the S-expansion
of z.
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[-transformations

Fixed a 8 > 1, the S-transformation T3 : [0,1] — [0,1] is defined by
letting
Ts(z) := pzr (mod 1).

Then we have

Bx— 1, xe[%,%), i€{0,...,18] —1};
Tp(z) =
Bz — 3], me[%,l}.
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[-transformations
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Figure: The p-transformation T3 with 8 = 1+2\/5.
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Rényi-Parry measure of S-transformations

m For any non-integer 8 > 1, the Lebesgue measure is not
Tg-invariant.

m Rényi (1957) proved that there exists a unique Tg-invariant
probability measure vg.

m Parry (1960) gave the explicit formula of the density function of
vg.

m vg is called the Rényi-Parry measure of B-transformation.
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Rényi-Parry measure of S-transformations

Theorem (Parry, 1960)

Let Tg(z) = Bz (mod 1) for any B > 1. Then, there exists a unique
Tg -invariant probability measure vg which is given by
vg(E) = [ hgd\ for all Borel set E C [0,1] with

_he(@) and hg(z Z ﬁ—,xEOI)

hg() =
f[OJ] RgdA o< T%(1)
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Density function of v

m hg(z) > 0 for M-a.e. z€[0,1].
m T} is ergodic with vg for all 8 > 1.

m We define the normalization constant by

T3(1)

Ky = / g d = —,
o= 2

which implies that

hs(2)

ha(a) = 5
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Density function of v
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Figure: The density function hs(z) with 8 = 1+2\/§.
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For what pairs (1, S2) the Rényi-Parry measures coincide ?
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Conjecture (Bertrand-Mathis, 1998)

Given two real numbers 1 < 51 < (B2, the Rényi-Parry measures
coincide, i.e., vg, = Ug,, if and only if
e (31,02 € N, in which the Rényi-Parry measures are the Lebesque
measure;
o By = 1 + 1, By is the positive root of 2> — gz — p = 0, where
p,q € N with p < q.

It is easy to check that vg, =g, = A for B, 52 € N.
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m $ > 1is called a Pisot number if 3 is an algebraic integer, whose
algebraic conjugates are of modulus strictly smaller than 1.

m Two positive real numbers a, b > 0 are multiplicatively
independent, denoted by a ~ b, if log a/log b ¢ Q.

Theorem (Hochman-Shmerkin, 2015)

Let 51, P2 > 1 with 81 » 3 and (51 a Pisot number. If y is jointly
invariant under Tp,, T,, and if all ergodic components of 1 under
T, have positive entropy, then p is the common Rényi-Parry
measure for T, and Tp,.

They also mentioned that they didn’t know what non-integer pairs
(81, f2) have the same Rényi-Parry measures.
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Main results

Theorem (H.-

Given two non-integers 1 < 81 < P2, the Rényi-Parry measures
coincide, i.e., vg, = vg,, if and only if

e 3 is the root of 2> — gz — p = 0, where p, ¢ € N with p < g,
® fo=p1+1

m This result proves the Bertrand-Mathis conjecture.

m If v, =vg,, then 31 and 3> are Pisot numbers.
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Main results

Corollary

Let $1 > 1 be a Pisot number of degree > 3 and P2 > 1 with 51 »~ Ps.
Then there are no jointly invariant under Tg,, Tz, and ergodic Borel
probability measures with positive entropy under Tg, .

Corollary

For two non-integers (1,02 > 1, vg, = v, and log B1/log B2 € Q if
and any if

o - {52, (2) )

14 /28



of
0000000000000 0

Proof sketch

Recall that for all Borel set E, vg(E) = fEﬁﬁ d\ and
hs(z) = hg(x)/Ka, where

Z — and KB—/ hg(z)dz, z € [0,1).

< T(1) ﬂ

For two non-integers (1, B2 > 1, then to prove that vg, = v, only
need to show that hg, = hg, for a.e z € [0, 1].
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Sufficiency

m Let 81 > 1 be the root of 22 — gx — p = 0, where p, ¢ € N with
p < ¢ We have T, (1) = 1 — gand T (1) =0 for all n > 2. So,

1
hg, (v) = Tjg,1)(z) + E]l[o,ﬁl—q)(l’)-

m Let 82 = B1 + 1, which implies that 7% (1) = 1 — g for all n > 1.
Then

(e.¢]
1
hs, (z) = ]1[0,1)(1?) + Z @ ) ]l[o,ﬁrq)(@") = hg, ().
n=1 2
Therefore, we conclude that vz, = vg,.
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Necessity

Write
Op:={T3(1): n>1}.

Suppose that (1, 2 > 1 are two different non-integers with vg, = vg,.
So, we have hg, (z) = hg,(z) for M-a.e. z€ [0,1).

m STEP 1: hg, (z) = hg,(z) for all z € [0,1).
m STEP 2: Both Op, and Og, are finite, and Og, \ {0} = Og, \ {0}.
m STEP 3: 0 is in exactly one of the sets Og, and Og,.

m STEP 4: We prove the necessity by analysing hg, = hg,.
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Necessity

Proposition
Let 8> 1 be a non-integer. Then we have

(i) limi hg(z) = 1;

(ii) hg(z) is decreasing and right continuous on [0,1);

(iil) hg(z) is constant on an open interval (a,b) C (0,1) if and only if
(a, ) N Og =1.
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Necessity

Lemma

Let f,g:(0,1) = R be two functions satisfying f(x) = g(x) for
Lebesgue almost everywhere x € (0,1). If the left limits lim f(z) and
T T

lim g(z) exist for some 0 < 29 < 1, then we have
Tz

lim f(z) = lim g(z).

T—r IO T—> ZO

Similarly, if the right limits lim f(z) and lim g¢(z) exist for some

ik
T—r ZO —> 1)0

0 <z <1, then
lim f(z) = lim g(x).

+ +
T—r ZO T—> 1}0
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m Proposition (i) + Lemma —>

= lim £ = lim & =
Ky o e (@) = lim fs,(2) =

—— ](ﬁl = I{ﬁ2~

m hg, (2) = hg,(z) for M-a.e. z€[0,1).

m Proposition (ii) (right continuity) + Lemma =

hg, (z) = hg,(z) for all z € [0,1).
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Assume that Og, and Og, are both infinite.

m 7% (1) >0and 7% (1) >0 for all n > 1.

— 1 Bi .
h/gi(O):;ﬂ—?:Biil for i=1,2.

m hg, (0) = hg,(0) = 51 = [2, a contradiction.

WOLG, we assume that Og, is finite. Then by Proposition (iii), we
can show that Og, is finite, and Op, \ {0} = Og, \ {0}.
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Suppose that 0 & Og, U Og, .
m 7% (1) >0and 7% (1) >0 for all n > 1.

|
[ere}

1 Bi .
hgi(O):Z—n: for i =1,2.
n—0 ﬁz ﬁi -1

m hg, (0) = hg,(0) = 51 = B2, a contradiction.
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Suppose that 0 € Og, N Og,.
m Let n; :=min{n>1: ngrl(l) =0} for i=1,2.

0\ {0} = {T5,(1), T%,(1),..., Th(1)} and hg,(0 Zﬂn

= 051 \ {0} = 052 \ {0} = N1 = Ng.
m hg, (0) = hg,(0) = 51 = B2, a contradiction.
Therefore, we conclude that 0 is in exactly one of the sets O, and

Op,.
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WLOG, assume that 0 € Og, and 0 € Og,.

m Let m=min{n >1: ng'l(l) =0}. Then m > 1 and T3 (1) =0
for all n > m.

m Write z, = T3 (1) for 1 < n < m.

m O, \ {0} ={z1,22,..., 2} and

m
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m Note that 0 ¢ Og, and Og, = Op, \ {0} = {z1, 22, ..., zn}.
n {T’é(l)}:o:l ={m,22,..., 2y} implies that Tg;"'l(l) = ng(l)

for some 1 </ < m.

m Write y, = 73, (1) for 1 < n < m. Then {Tg2(1)}oo is

n=1
yl7"'?y€7"'7ym’y€7"'7y7ﬂ7y€7"'7ym7"'

and

hg, (z) = 19,1y () + Z Lo,y (2 ‘Bmil—e ~ >
2

— Ty ().
k [0,yz)
1 k=¢ P
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m For m=1, hg, (z) = hg,(z) if o =p1 +1and 57 — g6 —p=0
with p < p and p,q € N.

m For m > 2, hg, (z) # hg,(z) for all different non-integer pairs
(B1, B2).-
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