The coincidence of Rényi-Parry measures for β -transformation

Yan Huang joint work with Zhiqiang Wang

Chongqing University

One World Numeration Seminar

April 2025

<ロト <回ト < 注ト < 注ト = 注

000	000	boc	

Main result 00000

Contents

1 Preliminaries

2 Main results

3 Proof sketch

<ロト < 回 > < 言 > < 言 > こ > う Q () 2/28

$$\beta$$
-expansions

The β -expansions were first introduced by Rényi in 1957.

Given $\beta > 1$, for any $x \in [0, 1]$ there is a non-negative integer sequence $(c_i)_{i \ge 1}$ such that

$$x = \sum_{i \ge 1} \frac{c_i}{\beta^i} \quad c_i \in \{0, ..., \lfloor \beta \rfloor\},\$$

where $\lfloor \beta \rfloor := \max\{n \in \mathbb{N} : n \le \beta\}$. We now call this the β -expansion of x.

Main result 00000

β -transformations

Fixed a $\beta > 1$, the β -transformation $T_{\beta} : [0,1] \to [0,1]$ is defined by letting

$$T_{\beta}(x) := \beta x \pmod{1}.$$

Then we have

$$T_{\beta}(x) = \begin{cases} \beta x - i, & x \in \left[\frac{i}{\beta}, \frac{i+1}{\beta}\right), \quad i \in \{0, \dots, \lfloor \beta \rfloor - 1\};\\ \beta x - \lfloor \beta \rfloor, & x \in \left[\frac{\lfloor \beta \rfloor}{\beta}, 1\right]. \end{cases}$$

Main result 00000

β -transformations

Figure: The β -transformation T_{β} with $\beta = \frac{1+\sqrt{5}}{2}$.

イロト イロト イヨト イヨト 二日

Rényi-Parry measure of β -transformations

- For any non-integer $\beta > 1$, the Lebesgue measure is not T_{β} -invariant.
- Rényi (1957) proved that there exists a unique T_{β} -invariant probability measure ν_{β} .
- Parry (1960) gave the explicit formula of the density function of ν_{β} .
- ν_{β} is called the *Rényi-Parry measure* of β -transformation.

Rényi-Parry measure of β -transformations

Theorem (Parry, 1960)

Let $T_{\beta}(x) = \beta x \pmod{1}$ for any $\beta > 1$. Then, there exists a unique T_{β} -invariant probability measure ν_{β} which is given by $\nu_{\beta}(E) = \int_{E} \tilde{h}_{\beta} d\lambda$ for all Borel set $E \subset [0, 1]$ with

$$\widetilde{h}_{\beta}(x) = \frac{h_{\beta}(x)}{\int_{[0,1]} h_{\beta} d\lambda} \quad and \quad h_{\beta}(x) = \sum_{x < T_{\beta}^{n}(1)} \frac{1}{\beta^{n}}, \ x \in [0,1).$$

Density function of ν_{β}

- $h_{\beta}(x) \ge 0$ for λ -a.e. $x \in [0, 1]$.
- T_{β} is ergodic with ν_{β} for all $\beta > 1$.
- We define the normalization constant by

$$K_{\beta} := \int_{[0,1]} h_{\beta} d\lambda = \sum_{n=0}^{\infty} \frac{T_{\beta}^n(1)}{\beta^n},$$

which implies that

$$\widetilde{h}_{\beta}(x) = rac{h_{\beta}(x)}{K_{\beta}}.$$

8/28

Main result 00000

Density function of ν_{β}

Figure: The density function $\tilde{h}_{\beta}(x)$ with $\beta = \frac{1+\sqrt{5}}{2}$.

Question

For what pairs (β_1, β_2) the Rényi-Parry measures coincide ?

Conjecture (Bertrand-Mathis, 1998)

Given two real numbers $1 < \beta_1 < \beta_2$, the Rényi-Parry measures coincide, i.e., $\nu_{\beta_1} = \nu_{\beta_2}$, if and only if

- β₁, β₂ ∈ N, in which the Rényi-Parry measures are the Lebesgue measure;
- $\beta_2 = \beta_1 + 1$, β_1 is the positive root of $x^2 qx p = 0$, where $p, q \in \mathbb{N}$ with $p \leq q$.

It is easy to check that $\nu_{\beta_1} = \nu_{\beta_2} = \lambda$ for $\beta_1, \beta_2 \in \mathbb{N}$.

Main result 00000	Proof 00000000000000

- $\beta > 1 \text{ is called a } Pisot \ number \text{ if } \beta \text{ is an algebraic integer, whose algebraic conjugates are of modulus strictly smaller than 1. }$
- Two positive real numbers a, b > 0 are multiplicatively independent, denoted by a ≈ b, if log a/log b ∉ Q.

Theorem (Hochman-Shmerkin, 2015)

Let $\beta_1, \beta_2 > 1$ with $\beta_1 \nsim \beta_2$ and β_1 a Pisot number. If μ is jointly invariant under T_{β_1}, T_{β_2} , and if all ergodic components of μ under T_{β_2} have positive entropy, then μ is the common Rényi-Parry measure for T_{β_1} and T_{β_2} .

They also mentioned that they didn't know what non-integer pairs (β_1, β_2) have the same Rényi-Parry measures.

Main results

Theorem (H.-Wang, 2025)

Given two non-integers $1 < \beta_1 < \beta_2$, the Rényi-Parry measures coincide, i.e., $\nu_{\beta_1} = \nu_{\beta_2}$, if and only if

• β_1 is the root of $x^2 - qx - p = 0$, where $p, q \in \mathbb{N}$ with $p \leq q$,

•
$$\beta_2 = \beta_1 + 1.$$

- This result proves the Bertrand-Mathis conjecture.
- If $\nu_{\beta_1} = \nu_{\beta_2}$, then β_1 and β_2 are Pisot numbers.

Main results

Corollary

Let $\beta_1 > 1$ be a Pisot number of degree ≥ 3 and $\beta_2 > 1$ with $\beta_1 \nsim \beta_2$. Then there are no jointly invariant under T_{β_1}, T_{β_2} and ergodic Borel probability measures with positive entropy under T_{β_2} .

Corollary

For two non-integers $\beta_1, \beta_2 > 1$, $\nu_{\beta_1} = \nu_{\beta_2}$ and $\log \beta_1 / \log \beta_2 \in \mathbb{Q}$ if and any if

$$\{\beta_1, \beta_2\} = \left\{\frac{1+\sqrt{5}}{2}, \left(\frac{1+\sqrt{5}}{2}\right)^2\right\}.$$

Proof sketch

Recall that for all Borel set E, $\nu_{\beta}(E) = \int_{E} \tilde{h}_{\beta} d\lambda$ and $\tilde{h}_{\beta}(x) = h_{\beta}(x)/K_{\beta}$, where

$$h_{\beta}(x) = \sum_{x < T^n_{\beta}(1)} \frac{1}{\beta^n}$$
 and $K_{\beta} = \int_0^1 h_{\beta}(x) \mathrm{d}x, x \in [0, 1).$

For two non-integers $\beta_1, \beta_2 > 1$, then to prove that $\nu_{\beta_1} = \nu_{\beta_2}$ only need to show that $h_{\beta_1} = h_{\beta_2}$ for a.e $x \in [0, 1]$.

Preliminaries	Main result

Sufficiency

• Let $\beta_1 > 1$ be the root of $x^2 - qx - p = 0$, where $p, q \in \mathbb{N}$ with $p \leq q$. We have $T_{\beta_1}(1) = \beta_1 - q$ and $T^n_{\beta_1}(1) = 0$ for all $n \geq 2$. So,

$$h_{\beta_1}(x) = \mathbb{1}_{[0,1)}(x) + \frac{1}{\beta_1} \mathbb{1}_{[0,\beta_1-q)}(x).$$

• Let $\beta_2 = \beta_1 + 1$, which implies that $T_{\beta_2}^n(1) = \beta_1 - q$ for all $n \ge 1$. Then

$$h_{\beta_2}(x) = \mathbb{1}_{[0,1)}(x) + \sum_{n=1}^{\infty} \frac{1}{\beta_2^n} \cdot \mathbb{1}_{[0,\beta_1-q)}(x) = h_{\beta_1}(x).$$

Therefore, we conclude that $\nu_{\beta_1} = \nu_{\beta_2}$.

Necessity

Write

$$\mathcal{O}_{\beta} := \big\{ T^n_{\beta}(1) : n \ge 1 \big\}.$$

Suppose that $\beta_1, \beta_2 > 1$ are two different non-integers with $\nu_{\beta_1} = \nu_{\beta_2}$. So, we have $\widetilde{h}_{\beta_1}(x) = \widetilde{h}_{\beta_2}(x)$ for λ -a.e. $x \in [0, 1)$.

- STEP 1: $h_{\beta_1}(x) = h_{\beta_2}(x)$ for all $x \in [0, 1)$.
- STEP 2: Both \mathcal{O}_{β_1} and \mathcal{O}_{β_2} are finite, and $\mathcal{O}_{\beta_1} \setminus \{0\} = \mathcal{O}_{\beta_2} \setminus \{0\}.$
- STEP 3: 0 is in exactly one of the sets \mathcal{O}_{β_1} and \mathcal{O}_{β_2} .
- STEP 4: We prove the necessity by analysing $h_{\beta_1} = h_{\beta_2}$.

Necessity

Proposition

Let $\beta > 1$ be a non-integer. Then we have

(i) $\lim_{x \to 1^{-}} h_{\beta}(x) = 1;$

(ii) $h_{\beta}(x)$ is decreasing and right continuous on [0, 1);

(iii) $h_{\beta}(x)$ is constant on an open interval $(a, b) \subset (0, 1)$ if and only if $(a, b) \cap \mathcal{O}_{\beta} = \emptyset.$

Necessity

Lemma

Let $f, g: (0,1) \to \mathbb{R}$ be two functions satisfying f(x) = g(x) for Lebesgue almost everywhere $x \in (0,1)$. If the left limits $\lim_{x \to x_0^-} f(x)$ and $\lim_{x \to x_0^-} g(x)$ exist for some $0 < x_0 \le 1$, then we have

 $x \rightarrow x_0^-$

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^-} g(x).$$

Similarly, if the right limits $\lim_{x \to x_0^+} f(x)$ and $\lim_{x \to x_0^+} g(x)$ exist for some $0 \le x_0 < 1$, then

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} g(x).$$

19/28

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

• Proposition (i) + Lemma \Longrightarrow

$$\frac{1}{K_{\beta_1}} = \lim_{x \to 1^-} \widetilde{h}_{\beta_1}(x) = \lim_{x \to 1^-} \widetilde{h}_{\beta_2}(x) = \frac{1}{K_{\beta_2}} \Longrightarrow K_{\beta_1} = K_{\beta_2}.$$

•
$$h_{\beta_1}(x) = h_{\beta_2}(x)$$
 for λ -a.e. $x \in [0, 1)$.

• Proposition (ii) (right continuity) + Lemma \implies

$$h_{\beta_1}(x) = h_{\beta_2}(x)$$
 for all $x \in [0, 1)$.

20/28

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Assume that \mathcal{O}_{β_1} and \mathcal{O}_{β_2} are both infinite.

•
$$T_{\beta_1}^n(1) > 0$$
 and $T_{\beta_2}^n(1) > 0$ for all $n \ge 1$.
• $h_{\beta_i}(0) = \sum_{n=0}^{\infty} \frac{1}{\beta_i^n} = \frac{\beta_i}{\beta_i - 1}$ for $i = 1, 2$.

• $h_{\beta_1}(0) = h_{\beta_2}(0) \Longrightarrow \beta_1 = \beta_2$, a contradiction.

WOLG, we assume that \mathcal{O}_{β_1} is finite. Then by Proposition (iii), we can show that \mathcal{O}_{β_2} is finite, and $\mathcal{O}_{\beta_1} \setminus \{0\} = \mathcal{O}_{\beta_2} \setminus \{0\}$.

Suppose that $0 \notin \mathcal{O}_{\beta_1} \cup \mathcal{O}_{\beta_2}$.

• $T^n_{\beta_1}(1) > 0$ and $T^n_{\beta_2}(1) > 0$ for all $n \ge 1$.

$$h_{\beta_i}(0) = \sum_{n=0}^{\infty} \frac{1}{\beta_i^n} = \frac{\beta_i}{\beta_i - 1}$$
 for $i = 1, 2$.

• $h_{\beta_1}(0) = h_{\beta_2}(0) \Longrightarrow \beta_1 = \beta_2$, a contradiction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose that $0 \in \mathcal{O}_{\beta_1} \cap \mathcal{O}_{\beta_2}$.

• Let $n_i := \min\{n \ge 1 : T^{n+1}_{\beta_i}(1) = 0\}$ for i = 1, 2.

$$\mathcal{O}_{\beta_i} \setminus \{0\} = \{ T_{\beta_i}(1), T_{\beta_i}^2(1), \dots, T_{\beta_i}^{n_i}(1) \} \text{ and } h_{\beta_i}(0) = \sum_{n=0}^{n_i} \frac{1}{\beta_i^n}.$$

$$\mathcal{O}_{\beta_1} \setminus \{0\} = \mathcal{O}_{\beta_2} \setminus \{0\} \Longrightarrow n_1 = n_2.$$

• $h_{\beta_1}(0) = h_{\beta_2}(0) \Longrightarrow \beta_1 = \beta_2$, a contradiction.

Therefore, we conclude that 0 is in exactly one of the sets \mathcal{O}_{β_1} and \mathcal{O}_{β_2} .

WLOG, assume that $0 \in \mathcal{O}_{\beta_1}$ and $0 \notin \mathcal{O}_{\beta_2}$.

• Let $m = \min\{n \ge 1 : T_{\beta_1}^{n+1}(1) = 0\}$. Then $m \ge 1$ and $T_{\beta_1}^n(1) = 0$ for all n > m.

• Write
$$x_n = T^n_{\beta_1}(1)$$
 for $1 \le n \le m$.

•
$$\mathcal{O}_{\beta_1} \setminus \{0\} = \{x_1, x_2, \dots, x_m\}$$
 and

$$h_{\beta_1}(x) = \mathbb{1}_{[0,1)}(x) + \sum_{k=1}^m \frac{1}{\beta_1^k} \cdot \mathbb{1}_{[0,x_k)}(x).$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

- Note that $0 \notin \mathcal{O}_{\beta_2}$ and $\mathcal{O}_{\beta_2} = \mathcal{O}_{\beta_1} \setminus \{0\} = \{x_1, x_2, \dots, x_m\}.$
- $\{T_{\beta_2}^n(1)\}_{n=1}^{\infty} = \{x_1, x_2, \dots, x_m\}$ implies that $T_{\beta_2}^{m+1}(1) = T_{\beta_2}^{\ell}(1)$ for some $1 \le \ell \le m$.
- Write $y_n = T_{\beta_2}^n(1)$ for $1 \le n \le m$. Then $\left\{T_{\beta_2}^n(1)\right\}_{n=1}^{\infty}$ is

 $y_1,\ldots,y_\ell,\ldots,y_m,y_\ell,\ldots,y_m,y_\ell,\ldots,y_m,\ldots$

and

$$h_{\beta_2}(x) = \mathbb{1}_{[0,1)}(x) + \sum_{k=1}^{\ell-1} \frac{1}{\beta_2^k} \cdot \mathbb{1}_{[0,y_k)}(x) + \frac{\beta_2^{m+1-\ell}}{\beta_2^{m+1-\ell} - 1} \sum_{k=\ell}^m \frac{1}{\beta_2^k} \cdot \mathbb{1}_{[0,y_k)}(x).$$

イロト 不同 トイヨト イヨト ヨー ろくつ

- For m = 1, $h_{\beta_1}(x) = h_{\beta_2}(x)$ if $\beta_2 = \beta_1 + 1$ and $\beta_1^2 q\beta_1 p = 0$ with p < p and $p, q \in \mathbb{N}$.
- For $m \ge 2$, $h_{\beta_1}(x) \ne h_{\beta_2}(x)$ for all different non-integer pairs (β_1, β_2) .

References

A. Bertrand-Mathis. Sur les mesures simultanément invariantes pour les transformations x → {λx} et x → {βx}. Acta Math. Hungar., 78(1-2):71-78, 1998. M. Hochman and P. Shmerkin. Equidistribution from fractal measures. Invent. Math., 202(1):427-479, 2015. W. Parry. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar., 11:401-416, 1960.

A. Rényi.

Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar., 8:477–493, 1957.

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへで