Arithmetic averages and normality in continued fractions

Godofredo Iommi

One World Numeration Seminar

28th March 2021

Godofredo Iommi Arithmetic averages and normality in continued fractions

Joint work with Thomas Jordan and Anibal Velozo

An irrational number $x \in (0, 1)$ can be written in a unique way as a continued fraction

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} = [a_1 a_2 a_3 \dots],$$

where $a_i \in \mathbb{N}$.

An irrational number $x \in (0, 1)$ can be written in a unique way as a continued fraction

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} = [a_1 a_2 a_3 \dots],$$

where $a_i \in \mathbb{N}$. The Gauss map, $T : (0, 1] \rightarrow [0, 1]$, is defined by

$$T(x) = \frac{1}{x} - \left[\frac{1}{x}\right].$$

Note that $T([a_1a_2...]) = [a_2a_3...].$

Figure: Gauss map

æ

Э

Figure: Gauss map

The Gauss map has infinite entropy and preserves the measure

$$\mu_G(A) = \frac{1}{\log 2} \int_A \frac{1}{1+x} dx.$$

Arithmetic Mean

It was essentially observed by Khinchine in 1935 that for Lebesgue almost every $x = [a_1, a_2, ...]$ the arithmetic average of the digits is infinity:

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=\infty.$$

A B + A B +

Arithmetic Mean

It was essentially observed by Khinchine in 1935 that for Lebesgue almost every $x = [a_1, a_2, ...]$ the arithmetic average of the digits is infinity:

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=\infty.$$

1

For $\alpha \geq 1$ let

$$A(\alpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = \alpha \right\}$$

Arithmetic Mean

It was essentially observed by Khinchine in 1935 that for Lebesgue almost every $x = [a_1, a_2, ...]$ the arithmetic average of the digits is infinity:

$$\lim_{n\to\infty}\frac{a_1+\cdots+a_n}{n}=\infty.$$

For $\alpha \geq 1$ let

$$A(\alpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = \alpha \right\}$$

Theorem (I-Jordan)

The function $\alpha \mapsto \dim_H A(\alpha)$ in $(1, \infty)$ is real analytic, strictly increasing and $\lim_{\alpha \to \infty} \dim_H A(\alpha) = 1$.

Let $\gamma \in (0,1]$ and

$$A_{\gamma}(\alpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} \left(\frac{a_1^{\gamma} + \dots + a_n^{\gamma}}{n} \right)^{1/\gamma} = \alpha \right\}$$

A B > A B >

э

Let $\gamma \in (0,1]$ and

$$A_{\gamma}(\alpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} \left(\frac{a_1^{\gamma} + \dots + a_n^{\gamma}}{n} \right)^{1/\gamma} = \alpha \right\}$$

Theorem (I-Jordan)

If $\gamma \in (0,1)$ then there exists $K(\gamma) > 1$ such that the function $\alpha \mapsto \dim_H A_{\gamma}(\alpha)$ is real analytic, strictly increasing in $(1, K(\gamma))$ and $\dim_H A_{\gamma}(\alpha) = 1$ for $\alpha \ge K(\gamma)$.

Power Mean

Figure: Arithmetic and Weighted Arithmetic means

문 문 문

Power Mean

If $arphi_\gamma([a_1,a_2,\dots])=a_1^\gamma$ then

$$\lim_{n\to\infty}\frac{a_1^{\gamma}+\cdots+a_n^{\gamma}}{n}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\varphi_{\gamma}(T^ix).$$

御 と く ヨ と く ヨ と

3

Power Mean

If $arphi_\gamma([a_1,a_2,\dots])=a_1^\gamma$ then

$$\lim_{n\to\infty}\frac{a_1^{\gamma}+\cdots+a_n^{\gamma}}{n}=\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\varphi_{\gamma}(T^ix).$$

Remark

The shape of $\alpha \mapsto \dim_H(A_{\gamma}(\alpha))$ depends on the behaviour of φ_{γ} near zero. More precisely, it depends on whether $\int \varphi_{\gamma} d\mu_G = \infty$ or $\int \varphi_{\gamma} d\mu_G < \infty$. Khinchine observed in 1935 that for Lebesgue almost every $x = [a_1, a_2, ...]$ the geometric average of the digits is:

$$\lim_{n\to\infty}\sqrt[n]{a_1a_2\cdots a_n} = \prod_{a=1}^{\infty} \left(\frac{(a+1)^2}{a(a+2)}\right)^{\log a/\log 2} := K$$

Khinchine observed in 1935 that for Lebesgue almost every $x = [a_1, a_2, ...]$ the geometric average of the digits is:

$$\lim_{n\to\infty}\sqrt[n]{a_1a_2\cdots a_n} = \prod_{a=1}^{\infty} \left(\frac{(a+1)^2}{a(a+2)}\right)^{\log a/\log 2} := K$$

For $\alpha \geq 1$ let

$$G(\alpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = \alpha \right\}$$

Geometric Mean

Theorem (Fan, Liao, Wang, Wu, 2009)

The function $\alpha \mapsto \dim_H G(\alpha)$ in $(1, \infty)$ is real analytic, it has a unique maximum at K and $\lim_{\alpha \to \infty} \dim_H G(\alpha) = 1/2$.

Geometric Mean

Theorem (Fan, Liao, Wang, Wu, 2009)

The function $\alpha \mapsto \dim_H G(\alpha)$ in $(1, \infty)$ is real analytic, it has a unique maximum at K and $\lim_{\alpha \to \infty} \dim_H G(\alpha) = 1/2$.

Figure: Geometric mean

Theorem (I-Jordan)

$$\dim_H G(\infty) = \frac{1}{2}.$$

Image: A Image: A

э

Theorem (I-Jordan)

$$\dim_H G(\infty) = \frac{1}{2}.$$

Remark

The above result is related to the Hausdorff dimension at infinity,

$$\sup\left\{\limsup_{n\to\infty}\dim_{H}\mu_{n}:\mu_{n}\in\mathcal{M}_{T}\text{ and }\mu_{n}\to\delta_{0}\right\}=\frac{1}{2}$$

It is a measure theoretic version of Good's theorem (1941).

-∢ ≣ ▶

Speed of approximation

For
$$x = [a_1 a_2 \dots]$$
 let $p_n/q_n = [a_1 a_2 \dots a_n]$. Let

$$S(\alpha) = \left\{ x \in (0,1) : -\lim_{n \to \infty} \frac{1}{n} \log \left| x - \frac{p_n}{q_n} \right| = \alpha \right\}.$$

< ∃ →

э

Speed of approximation

For
$$x = [a_1 a_2 ...]$$
 let $p_n/q_n = [a_1 a_2 ... a_n]$. Let

$$S(\alpha) = \left\{ x \in (0,1) : -\lim_{n \to \infty} \frac{1}{n} \log \left| x - \frac{p_n}{q_n} \right| = \alpha \right\}.$$

Theorem (Pollicott-Weiss, Kesseböhmer-Stratmann)

The function $\alpha \mapsto \dim_H S(\alpha)$ in $(2\log(1 + \sqrt{5})/2, \infty)$ is real analytic. It attains a maximum at $\alpha = \pi^2/(6\log 2)$.

ヨト イヨト イヨト

Speed of approximation

Figure: Speed of approximation by rationals

< ∃ →

- ₹ 🖬 🕨

э

Proof.

Recall that $\varphi_{\gamma}([a_1, a_2, \dots]) = a_1^{\gamma}$. To simplify, we remove the power $1/\gamma$.

$$\mathcal{A}_{\gamma}(lpha) = \left\{ x \in (0,1] : \lim_{n \to \infty} rac{a_1^{\gamma} + \dots + a_n^{\gamma}}{n} = lpha
ight\}$$

Recall that $\varphi_{\gamma}([a_1, a_2, \dots]) = a_1^{\gamma}$. To simplify, we remove the power $1/\gamma$.

$$egin{aligned} \mathsf{A}_\gamma(lpha) &= \left\{ x \in (0,1]: \lim_{n o \infty} rac{a_1^\gamma + \dots + a_n^\gamma}{n} = lpha
ight\} \ &= \left\{ x \in (0,1): \lim_{n o \infty} rac{1}{n} \sum_{i=0}^{n-1} arphi_\gamma(T^i x) = lpha
ight\}. \end{aligned}$$

Recall that $\varphi_{\gamma}([a_1, a_2, ...]) = a_1^{\gamma}$. To simplify, we remove the power $1/\gamma$.

$$egin{aligned} &\mathcal{A}_{\gamma}(lpha) = \left\{ x \in (0,1]: \lim_{n o \infty} rac{a_{1}^{\gamma} + \cdots + a_{n}^{\gamma}}{n} = lpha
ight\} \ &= \left\{ x \in (0,1): \lim_{n o \infty} rac{1}{n} \sum_{i=0}^{n-1} arphi_{\gamma}(T^{i}x) = lpha
ight\}. \end{aligned}$$

Let μ be an ergodic *G*-invariant probability measure and

$$\lambda(\mu) = \int \log |T'| d\mu.$$

Proof.

If μ be an ergodic *G*-invariant probability measure then

A B > A B >

If μ be an ergodic G-invariant probability measure then

 $I \quad \dim_{H}(\mu) = h(\mu)/\lambda(\mu).$

If μ be an ergodic G-invariant probability measure then

• dim_H(
$$\mu$$
) = $h(\mu)/\lambda(\mu)$.
• If $\int \varphi_{\gamma} d\mu = \alpha$ then $\mu(A_{\gamma}(\alpha)) = 1$.

Image: A Image: A

If μ be an ergodic G-invariant probability measure then

• dim_H(
$$\mu$$
) = $h(\mu)/\lambda(\mu)$.
• If $\int \varphi_{\gamma} d\mu = \alpha$ then $\mu(A_{\gamma}(\alpha)) = 1$.

$$\dim_{H} A_{\gamma}(\alpha) = \sup_{\mu \text{ ergodic}} \left\{ \dim_{H}(\mu) : \mu(A_{\gamma}(\alpha)) = 1, \lambda(\mu) < \infty \right\}$$

ゆ ト イヨ ト イヨト

If μ be an ergodic G-invariant probability measure then

$$\dim_{H} A_{\gamma}(\alpha) = \sup_{\mu \text{ ergodic}} \left\{ \dim_{H}(\mu) : \mu(A_{\gamma}(\alpha)) = 1, \lambda(\mu) < \infty \right\}$$

$$= \sup_{\mu \text{ ergodic}} \left\{ \frac{h(\mu)}{\lambda(\mu)} : \int \varphi_{\gamma} d\mu = \alpha, \lambda(\mu) < \infty \right\}.$$

聞 と く ヨ と く ヨ と

If $\boldsymbol{\mu}$ be an ergodic G-invariant probability measure then

• dim_H(
$$\mu$$
) = $h(\mu)/\lambda(\mu)$.
• If $\int \varphi_{\gamma} d\mu = \alpha$ then $\mu(A_{\gamma}(\alpha)) = 1$.

$$\dim_{H} A_{\gamma}(\alpha) = \sup_{\mu \text{ ergodic}} \left\{ \dim_{H}(\mu) : \mu(A_{\gamma}(\alpha)) = 1, \lambda(\mu) < \infty \right\}$$
$$= \sup_{\mu \text{ ergodic}} \left\{ \frac{h(\mu)}{\lambda(\mu)} : \int \varphi_{\gamma} d\mu = \alpha, \lambda(\mu) < \infty \right\}.$$

Use thermodynamic formalism to find a measure attaining the supremum.

伺 ト イミト イヨト

Proof.

Recall that the pressure of a function ψ is defined by

$$P(\psi) = \sup\left\{h(\mu) + \int \psi \, d\mu : \mu \in \mathcal{M}_T \text{ and } \int \psi \, d\mu > -\infty
ight\}.$$

Proof.

Recall that the pressure of a function $\boldsymbol{\psi}$ is defined by

$$P(\psi) = \sup \left\{ h(\mu) + \int \psi \, d\mu : \mu \in \mathcal{M}_T \text{ and } \int \psi \, d\mu > -\infty
ight\}.$$

Figure: Map
$$t \mapsto P(-t \log |T'|)$$

Proof.

Study of the function on \mathbb{R}^2 defined by

$$(q,\delta)\mapsto {\sf P}(q(arphi_\gamma-lpha)-\delta\log|{\sf T}'|).$$

Proof.

Study of the function on \mathbb{R}^2 defined by

$$(q,\delta)\mapsto {\sf P}(q(arphi_\gamma-lpha)-\delta\log|{\sf T}'|).$$

Note that, if μ_q is an equilibrium measure for the function $q(\varphi_\gamma - \alpha) - \delta \log |T'|$ then,

$$rac{\partial}{\partial q} {\sf P}({\it q}(arphi_\gamma-lpha)-\delta \log |{\sf T}'|) = \int arphi_\gamma d\mu_q - lpha.$$

Proof.

Study of the function on \mathbb{R}^2 defined by

$$(q,\delta)\mapsto {\sf P}(q(arphi_\gamma-lpha)-\delta\log|{\sf T}'|).$$

Note that, if μ_q is an equilibrium measure for the function $q(\varphi_\gamma - \alpha) - \delta \log |T'|$ then,

$$rac{\partial}{\partial q} P(q(arphi_\gamma - lpha) - \delta \log |T'|) = \int arphi_\gamma d\mu_q - lpha.$$

Remark

If
$$\frac{\partial}{\partial q} P(q(\varphi_{\gamma} - \alpha) - \delta \log |T'|) = 0$$
 then

$$\mu_q(A_\gamma(\alpha))=1.$$

Proof.

If $\delta = \dim_H A_{\gamma}(\alpha)$ then

Figure: Map $q \mapsto P(q(\varphi_{\gamma} - \alpha) - \dim_{H} A_{\gamma}(\alpha) \log |T'|)$

Godofredo Iommi Arithmetic averages and normality in continued fractions

Thus, at the point $(q_{\alpha}, \dim_{H} A_{\gamma}(\alpha))$ the pressure $P(q, \delta)$ is zero and its derivative w/r to q is also zero.

Thus, at the point $(q_{\alpha}, \dim_{H} A_{\gamma}(\alpha))$ the pressure $P(q, \delta)$ is zero and its derivative w/r to q is also zero. Therefore,

$$\ \, {\bf I}_{q_{\alpha}}(A_{\gamma}(\alpha))=1$$

Thus, at the point $(q_{\alpha}, \dim_{H} A_{\gamma}(\alpha))$ the pressure $P(q, \delta)$ is zero and its derivative w/r to q is also zero. Therefore,

Definition

A number $x \in (0, 1]$ is continued fraction normal if the frequency of appearance of every string of digits $(d_1, \ldots, d_m) \in \mathbb{N}^m$ in the expansion $x = [a_1, a_2, \ldots]$ is equal to $\mu_G([d_1, \ldots, d_m])$, where

$$[d_1,\ldots,d_m] = \{x \in (0,1] : (a_1(x),\ldots,a_m(x)) = (d_1,\ldots,d_m)\}.$$

Definition

A number $x \in (0, 1]$ is continued fraction normal if the frequency of appearance of every string of digits $(d_1, \ldots, d_m) \in \mathbb{N}^m$ in the expansion $x = [a_1, a_2, \ldots]$ is equal to $\mu_G([d_1, \ldots, d_m])$, where

$$[d_1,\ldots d_m] = \{x \in (0,1] : (a_1(x),\ldots,a_m(x)) = (d_1,\ldots,d_m)\}.$$

Remark

Lebesgue almost every point is continued fraction normal.

Theorem (Moshchevitin and Shkredov 2003, Airy and Mance 2019)

The number $x \in (0, 1]$ is continued normal if and only if the sequence $(\nu_n)_n$, with $\nu_n = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{T^i x}$, is tight in (0, 1] and there exists a constant B > 0 such that for every interval $[a, c] \subset (0, 1]$,

$$\limsup_{n\to\infty}\frac{1}{n}\#\left\{i\in\{1,\ldots,n\}:T^i(x)\in[a,c]\right\}\leq B\mu_G([a,c]).$$

Theorem (Moshchevitin and Shkredov 2003, Airy and Mance 2019)

The number $x \in (0, 1]$ is continued normal if and only if the sequence $(\nu_n)_n$, with $\nu_n = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{T^i x}$, is tight in (0, 1] and there exists a constant B > 0 such that for every interval $[a, c] \subset (0, 1]$,

$$\limsup_{n\to\infty}\frac{1}{n}\#\left\{i\in\{1,\ldots,n\}:T^i(x)\in[a,c]\right\}\leq B\mu_G([a,c]).$$

Example

If x = [1, 2, 3, ..., n, n + 1, ...] then (ν_n) has no convergent sub-sequence in (0, 1] and the frequency of appearance of every string is equal to zero.

Definition

Let $\alpha \in (0,1)$. A real number $x \in (0,1]$ is α -continued fraction normal if for every string of digits $(d_1, \ldots, d_m) \in \mathbb{N}^m$ we have

$$\lim_{n \to \infty} \frac{1}{n} \# \{ i \in \{1, \dots, n\} : (a_i(x), \dots, a_{i+m}(x)) = (d_1, \dots, d_m) \} = \alpha \mu_G([d_1, \dots, d_m])$$

We denote this set by $G(\alpha \mu_G)$

Definition

Let $\alpha \in (0,1)$. A real number $x \in (0,1]$ is α -continued fraction normal if for every string of digits $(d_1, \ldots, d_m) \in \mathbb{N}^m$ we have

$$\lim_{n \to \infty} \frac{1}{n} \# \{ i \in \{1, \dots, n\} : (a_i(x), \dots, a_{i+m}(x)) = (d_1, \dots, d_m) \} = \alpha \mu_G([d_1, \dots, d_m])$$

We denote this set by $G(\alpha \mu_G)$

Construction of such numbers: There exists a sequence of ergodic measures supported on periodic orbits $(\nu_n)_n$ that converges to the measure $\alpha \mu_G + (1 - \alpha)\delta_0$.

Definition

Let $\alpha \in (0,1)$. A real number $x \in (0,1]$ is α -continued fraction normal if for every string of digits $(d_1, \ldots, d_m) \in \mathbb{N}^m$ we have

$$\lim_{n \to \infty} \frac{1}{n} \# \{ i \in \{1, \dots, n\} : (a_i(x), \dots, a_{i+m}(x)) = (d_1, \dots, d_m) \} = \alpha \mu_G([d_1, \dots, d_m])$$

We denote this set by $G(\alpha \mu_G)$

Construction of such numbers: There exists a sequence of ergodic measures supported on periodic orbits $(\nu_n)_n$ that converges to the measure $\alpha \mu_G + (1 - \alpha)\delta_0$.

Theorem (I-Velozo)

If
$$\alpha \in (0,1)$$
 then dim_H $G(\alpha \mu_G) = \frac{1}{2}$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Good 1941)

$$\dim_H\left(\left\{x=[a_1,a_2,\ldots]\in(0,1]:\lim_{n\to\infty}a_n=\infty\right\}\right)=\frac{1}{2}$$

伺 ト く ヨ ト く ヨ ト

3

Theorem (Good 1941)

$$\dim_H\left(\left\{x=[a_1,a_2,\ldots]\in(0,1]:\lim_{n\to\infty}a_n=\infty\right\}\right)=\frac{1}{2}$$

Theorem (I-Jordan 2015)

$$\dim_{H}\left(\left\{x\in(0,1]:\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\log|T'(T^{i}x)|=\infty\right\}\right)=\frac{1}{2}$$

御 と く ヨ と く ヨ と

3

Theorem (Good 1941)

$$\dim_H\left(\left\{x=[a_1,a_2,\ldots]\in(0,1]:\lim_{n\to\infty}a_n=\infty\right\}\right)=\frac{1}{2}$$

Theorem (I-Jordan 2015)

$$\dim_{H}\left(\left\{x\in(0,1]:\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\log|T'(T^{i}x)|=\infty\right\}\right)=\frac{1}{2}$$

Theorem (Fan, Jordan, Liao, Rams 2015)

If $(\mu_n)_n \subset \mathcal{M}_G$ is such that $\lim_{n \to \infty} \int \log |T'| \ d\mu_n = \infty$ then

$$\limsup_{n\to\infty} (\dim_H \mu_n) \leq \frac{1}{2}.$$

Moreover, there exists (ν_n) s.t. $\lim_{n\to\infty} \dim_H \nu_n = 1/2$.

Remark

The pressure of the geometric potential satisfies:

$$P(-t \log |T'|) = \begin{cases} \infty & \text{if } t \leq 1/2; \\ finite & \text{if } t > 1/2. \end{cases}$$

-

Remark

The above results are related to the entropy at infinity. If Φ is the suspension flow over T with roof function $\log |T'|$ then Abramov's formula yields,

$$\dim_{H} \mu = h_{\Phi}(\mu \times Leb) = \frac{h(\mu)}{\int \log |T'| \ d\mu}.$$