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An irrational number x ∈ (0, 1) can be written in a unique way as
a continued fraction

x =
1

a1 +
1

a2 +
1

a3 + . . .

= [a1a2a3 . . . ],

where ai ∈ N.

The Gauss map, T : (0, 1]→ [0, 1], is defined by

T (x) =
1

x
−
[1

x

]
.

Note that T ([a1a2 . . . ]) = [a2a3 . . . ].
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Figure: Gauss map

The Gauss map has infinite entropy and preserves the measure

µG (A) =
1

log 2

∫
A

1

1 + x
dx .
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Arithmetic Mean

It was essentially observed by Khinchine in 1935 that for Lebesgue
almost every x = [a1, a2, . . . ] the arithmetic average of the digits is
infinity:

lim
n→∞

a1 + · · ·+ an
n

=∞.

For α ≥ 1 let

A(α) =

{
x ∈ (0, 1] : lim

n→∞

a1 + · · ·+ an
n

= α

}

Theorem (I-Jordan)

The function α 7→ dimH A(α) in (1,∞) is real analytic, strictly
increasing and limα→∞ dimH A(α) = 1.

Godofredo Iommi Arithmetic averages and normality in continued fractions



Arithmetic Mean

It was essentially observed by Khinchine in 1935 that for Lebesgue
almost every x = [a1, a2, . . . ] the arithmetic average of the digits is
infinity:

lim
n→∞

a1 + · · ·+ an
n

=∞.

For α ≥ 1 let

A(α) =

{
x ∈ (0, 1] : lim

n→∞

a1 + · · ·+ an
n

= α

}

Theorem (I-Jordan)

The function α 7→ dimH A(α) in (1,∞) is real analytic, strictly
increasing and limα→∞ dimH A(α) = 1.

Godofredo Iommi Arithmetic averages and normality in continued fractions



Arithmetic Mean

It was essentially observed by Khinchine in 1935 that for Lebesgue
almost every x = [a1, a2, . . . ] the arithmetic average of the digits is
infinity:

lim
n→∞

a1 + · · ·+ an
n

=∞.

For α ≥ 1 let

A(α) =

{
x ∈ (0, 1] : lim

n→∞

a1 + · · ·+ an
n

= α

}

Theorem (I-Jordan)

The function α 7→ dimH A(α) in (1,∞) is real analytic, strictly
increasing and limα→∞ dimH A(α) = 1.

Godofredo Iommi Arithmetic averages and normality in continued fractions



Power Mean

Let γ ∈ (0, 1] and

Aγ(α) =

{
x ∈ (0, 1] : lim

n→∞

(
aγ1 + · · ·+ aγn

n

)1/γ

= α

}

Theorem (I-Jordan)

If γ ∈ (0, 1) then there exists K (γ) > 1 such that the function
α 7→ dimH Aγ(α) is real analytic, strictly increasing in (1,K (γ))
and dimH Aγ(α) = 1 for α ≥ K (γ).
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Power Mean

Figure: Arithmetic and Weighted Arithmetic means
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Power Mean

If ϕγ([a1, a2, . . . ]) = aγ1 then

lim
n→∞

aγ1 + · · ·+ aγn
n

= lim
n→∞

1

n

n−1∑
i=0

ϕγ(T ix).

Remark

The shape of α 7→ dimH(Aγ(α)) depends on the behaviour of ϕγ
near zero. More precisely, it depends on whether

∫
ϕγdµG =∞ or∫

ϕγdµG <∞.
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Geometric Mean

Khinchine observed in 1935 that for Lebesgue almost every
x = [a1, a2, . . . ] the geometric average of the digits is:

lim
n→∞

n
√
a1a2 · · · an =

∞∏
a=1

(
(a + 1)2

a(a + 2)

)log a/ log 2

:= K

For α ≥ 1 let

G (α) =
{
x ∈ (0, 1] : lim

n→∞
n
√
a1a2 · · · an = α

}
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Geometric Mean

Theorem (Fan, Liao, Wang, Wu, 2009)

The function α 7→ dimH G (α) in (1,∞) is real analytic, it has a
unique maximum at K and limα→∞ dimH G (α) = 1/2.

Figure: Geometric mean
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Geometric Mean

Theorem (I-Jordan)

dimH G (∞) =
1

2
.

Remark

The above result is related to the Hausdorff dimension at infinity,

sup

{
lim sup
n→∞

dimH µn : µn ∈MT and µn → δ0

}
=

1

2
.

It is a measure theoretic version of Good’s theorem (1941).
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Speed of approximation

For x = [a1a2 . . . ] let pn/qn = [a1a2 . . . an]. Let

S(α) =

{
x ∈ (0, 1) : − lim

n→∞

1

n
log

∣∣∣∣x − pn
qn

∣∣∣∣ = α

}
.

Theorem (Pollicott-Weiss, Kesseböhmer-Stratmann)

The function α 7→ dimH S(α) in (2 log(1 +
√

5)/2,∞) is real
analytic. It attains a maximum at α = π2/(6 log 2).
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Speed of approximation

Figure: Speed of approximation by rationals
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Sketch of proof Power Mean result

Proof.

Recall that ϕγ([a1, a2, . . . ]) = aγ1 . To simplify, we remove the
power 1/γ.

Aγ(α) =

{
x ∈ (0, 1] : lim

n→∞

aγ1 + · · ·+ aγn
n

= α

}

=

{
x ∈ (0, 1) : lim

n→∞

1

n

n−1∑
i=0

ϕγ(T ix) = α

}
.

Let µ be an ergodic G -invariant probability measure and

λ(µ) =

∫
log |T ′|dµ.
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Sketch of proof Power Mean result

Proof.

If µ be an ergodic G -invariant probability measure then

1 dimH(µ) = h(µ)/λ(µ).

2 If
∫
ϕγdµ = α then µ(Aγ(α)) = 1.

dimH Aγ(α) = sup
µ ergodic

{dimH(µ) : µ(Aγ(α)) = 1, λ(µ) <∞}

= sup
µ ergodic

{
h(µ)

λ(µ)
:

∫
ϕγdµ = α, λ(µ) <∞

}
.

Use thermodynamic formalism to find a measure attaining the
supremum.
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Sketch of proof Power Mean result

Proof.

Recall that the pressure of a function ψ is defined by

P(ψ) = sup

{
h(µ) +

∫
ψ dµ : µ ∈MT and

∫
ψ dµ > −∞

}
.

Figure: Map t 7→ P(−t log |T ′|)

Godofredo Iommi Arithmetic averages and normality in continued fractions



Sketch of proof Power Mean result

Proof.

Recall that the pressure of a function ψ is defined by

P(ψ) = sup

{
h(µ) +

∫
ψ dµ : µ ∈MT and

∫
ψ dµ > −∞

}
.

Figure: Map t 7→ P(−t log |T ′|)

Godofredo Iommi Arithmetic averages and normality in continued fractions



Sketch of proof Power Mean result

Proof.

Study of the function on R2 defined by

(q, δ) 7→ P(q(ϕγ − α)− δ log |T ′|).

Note that, if µq is an equilibrium measure for the function
q(ϕγ − α)− δ log |T ′| then,

∂

∂q
P(q(ϕγ − α)− δ log |T ′|) =

∫
ϕγdµq − α.

Remark

If ∂
∂qP(q(ϕγ − α)− δ log |T ′|) = 0 then

µq(Aγ(α)) = 1.
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Sketch of proof Power Mean result

Proof.

If δ = dimH Aγ(α) then

Figure: Map q 7→ P(q(ϕγ − α)− dimH Aγ(α) log |T ′|)
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Sketch of proof Power Mean result

Proof.

Thus, at the point (qα, dimH Aγ(α)) the pressure P(q, δ) is zero
and its derivative w/r to q is also zero.

Therefore,

1 µqα(Aγ(α)) = 1

2 0 = P(qα, dimH Aγ(α)) = h(µqα)− dimH Aγ(α)λ(µqα) that is

dimH Aγ(α) =
h(µqα)

λ(µqα)
.
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Normal numbers

Definition

A number x ∈ (0, 1] is continued fraction normal if the frequency
of appearance of every string of digits (d1, . . . , dm) ∈ Nm in the
expansion x = [a1, a2, . . . ] is equal to µG ([d1, . . . dm]), where

[d1, . . . dm] = {x ∈ (0, 1] : (a1(x), . . . , am(x)) = (d1, . . . , dm)} .

Remark

Lebesgue almost every point is continued fraction normal.
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Normal numbers

Theorem (Moshchevitin and Shkredov 2003, Airy and Mance 2019)

The number x ∈ (0, 1] is continued normal if and only if the
sequence (νn)n, with νn = 1

n

∑n−1
i=0 δT ix , is tight in (0, 1] and there

exists a constant B > 0 such that for every interval [a, c] ⊂ (0, 1],

lim sup
n→∞

1

n
#
{
i ∈ {1, . . . , n} : T i (x) ∈ [a, c]

}
≤ BµG ([a, c]).

Example

If x = [1, 2, 3, . . . , n, n + 1, . . . ] then (νn) has no convergent
sub-sequence in (0, 1] and the frequency of appearance of every
string is equal to zero.
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Normal numbers

Definition

Let α ∈ (0, 1). A real number x ∈ (0, 1] is α−continued fraction
normal if for every string of digits (d1, . . . , dm) ∈ Nm we have

lim
n→∞

1

n
# {i ∈ {1, . . . , n} : (ai (x), . . . , ai+m(x)) = (d1, . . . , dm)}

= αµG ([d1, . . . dm])

We denote this set by G (αµG )

Construction of such numbers: There exists a sequence of ergodic
measures supported on periodic orbits (νn)n that converges to the
measure αµG + (1− α)δ0.

Theorem (I-Velozo)

If α ∈ (0, 1) then dimH G (αµG ) = 1
2 .
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Normal numbers

Theorem (Good 1941)

dimH

({
x = [a1, a2, . . . ] ∈ (0, 1] : lim

n→∞
an =∞

})
=

1

2

Theorem (I-Jordan 2015)

dimH

({
x ∈ (0, 1] : lim

n→∞

1

n

n−1∑
i=0

log |T ′(T ix)| =∞

})
=

1

2

Theorem (Fan, Jordan, Liao, Rams 2015)

If (µn)n ⊂MG is such that limn→∞
∫

log |T ′| dµn =∞ then

lim sup
n→∞

(dimH µn) ≤ 1

2
.

Moreover, there exists (νn) s.t. limn→∞ dimH νn = 1/2.
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dimH

({
x ∈ (0, 1] : lim

n→∞

1

n

n−1∑
i=0

log |T ′(T ix)| =∞

})
=

1

2

Theorem (Fan, Jordan, Liao, Rams 2015)

If (µn)n ⊂MG is such that limn→∞
∫

log |T ′| dµn =∞ then

lim sup
n→∞

(dimH µn) ≤ 1

2
.

Moreover, there exists (νn) s.t. limn→∞ dimH νn = 1/2.
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Remark

The pressure of the geometric potential satisfies:

P(−t log |T ′|) =

{
∞ if t ≤ 1/2;

finite if t > 1/2.
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Remark

The above results are related to the entropy at infinity. If Φ is the
suspension flow over T with roof function log |T ′| then Abramov’s
formula yields,

dimH µ = hΦ(µ× Leb) =
h(µ)∫

log |T ′| dµ
.
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