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Introduction

We present some applications of descriptive set theory to
numeration systems and dynamics.

Part of the work is joint with D. Airey, D. Kwietniak, and B. Mance.
Part is joint with B. Mance and J. Vandehey. We also mention
some work with P. Allaart, R. Jones, and D. Lambert

The results we present connect descriptive set theory with
numeration systems and dynamics.

In particular we will be concerned with continued fractions,
β-expansions, and GLS-expansion.
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Introduction

Descriptive set theory provides a way to calibrate the complexity of
sets in Polish spaces. Two motivations for doing this:

▶ By computing the exact complexity of a set we show there are
no further theorems that would result in yet simpler
characterizations.

▶ By computing the exact complexity of the difference of two
sets, we establish a notion of the logical independence of the
two sets.
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Recall that in any uncountable Polish space we have the Borel
hierarchy of sets:
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All of these collections are pointclasses.

In any uncountable Polish space there is no collapsing in any of
these levels.
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We have the following classical result of Ki-Linton concerning
N(b) =the set of base b normal numbers.
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Recall x is b-normal if for every B = (i0, . . . , iℓ−1) ∈ b<ω we have
that limN→∞

1
N |I(x,B ,N)| = 1

bℓ , where
I(x,B ,N) = {i < N : (ci , ci+1, . . . , ci+ℓ−1) = B}.

Theorem
(Ki, Linton) N(b) is a Π0

3-complete set.
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Let
N⊥(b) = {y : ∀x ∈ N(b) (x + y) ∈ N(b)}

be the set of reals x which preserve normality under addition.

▶ Wall showed that adding or multiplying by a non-zero rational
preserves normality in all bases.

▶ From the definition we have that N⊥(b) is a Π1
1 set.

However, a theorem of Rauzy reduces the computation of the
complexity.
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Rauzy introduces a quantity of a base-b expansion called the
noise, which is an entropy-like quantity (noise 0 is equivalent to
entropy 0).

Theorem (Rauzy)
y ∈ N⊥(b) iff y has noise 0.

The set of y ∈ bω of noise 0 is a Π0
3 set, so N⊥(d) ∈ Π0

3.

Theorem (Airey, J, Mance)
The set of y ∈ bω of noise 0 is a Π0

3 complete set, so N⊥(d) is
Π0

3-complete.

This says there are no further theorems which would would result
in a simpler criterion for checking membership in N⊥(b).
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Some other complexity results along these lines:

Theorem (Becher, Heiber, Slaman)
The set of absolutely normal numbers is Π0

3-complete.

(This was conjectured by Kechris)

Theorem (Becher, Slaman)
The set of numbers normal in at least one base if Σ0

4-complete.

Theorem (Beros)
For s > r, the set Nr(b) \ Ns(b) is D2(Π

0
3)-complete.
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For any pointclass Γ, the pointclass D2(Γ) is defined by:

D2(Γ) = {A \ B : A ,B ∈ Γ}.

There is also a more general definition of Dα(Γ).

So, one can define Dα(Π0
β) for any α, β < ω1. There is no collapse

in this hierarchy as well.
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Connection with Dynamics

Let (X ,T , µ) be a dynamical system: X a Polish space, T : X → X
continuous, and µ a T -invariant Borel probability measure on X .

Given a finite or countably infinite partition X =
⋃

k∈D Xn, every
x ∈ X creates an itinerary i(x) ∈ Dω.

i(x)(n) is the k ∈ D such that Tn(x) ∈ Xk .

This can be viewed as a general numeration system for the x ∈ X .
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Base b expansions: T : [0, 1]→ [0, 1] where T(x) = bx mod 1.
Partition [0, 1] into b intervals [ i

b ,
i+1
b ) for i ∈ {0, . . . , b − 1} = D.

µ =Lebesgue measure.

Continued fractions: T : [0, 1]→ [0, 1] where T(x) = 1
x mod 1.

Xi = [ 1
i+1 ,

1
i ), for i ∈ D = {1, 2, 3, . . . }. Equivalently

i(x)(k) = ⌊Tk+1(x)⌋. µ =Gauss measure.

β-expansions: T : [0, 1]→ [0, 1] where T(x) = βx mod 1.
D = {0, 1, . . . , ⌊β⌋}. µ =Parry measure.

Generalized GLS expansions: T is piecewise linear on countable
partition on (0, 1). D indexed by partition. Includes tent map.
µ=Lebesgue measure.
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The notion of normal number is an instance of a more general
defiition.

Definition
x is a generic point for (X ,T , µ) if the measures
1
n (δx + δT(x) + · · ·+ δTn−1(x)) converge weakly to µ.

When X is a subshift of a shift space and T the shift map, this is
saying that the limiting frequency limn→∞

1
n Nu(x, n) of a word u in

x ↾ n is equal to µ(Cu), where Cu is the cylinder determined by u.

The set of generic points Gµ is a Π0
3 set.
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To obtain the complexity results for these numeration systems, we
establis a general result for generic points in dynamical systems
satisfying a certain property.

We first recall the specification property, which was introduced by
R. Bowen

Let T [a,b](x) = ⟨Ta(x), . . . ,Tb(x)⟩ denote an orbit segment. Let
⟨x, n⟩ abbreviate the orbit segment
T [0,n−1](x) = ⟨x,T(x), . . . ,Tn−1(x)⟩.

A specification of rank k is a k -sequence of orbit segments
ξ = ⟨⟨x1, n1⟩, . . . ⟨xk , nk ⟩⟩.
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We say a point y ϵ-traces the specification
ξ = ⟨⟨x1, n1⟩, . . . ⟨xk , nk ⟩⟩ provided there are integers (“gaps”)
s1, . . . , sk such that for all j < k :

ρ(T
∑j−1

i=1(ni+si)+t(y),T t(xj)) < ϵ

for all 0 ≤ t < nj .

Definition
(X ,T) has the specification property if for every ϵ > 0 there is an
Nϵ such that for every k and every specification ξ there is a point y
which ϵ-traces ξ with gap sized ≤ Nϵ .
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For subshifts X of a shift space Dω on a finite or countable
alphabet D, the specification property is equivalent to:

▶ There is an integer N such that if w1, . . . ,wn are admissible
words, then there are v1, . . . , vn−1 ∈ D

N such that
w1v1 . . .wn−1vn−1wn is admissible.

However, some numeration systems of interest such as the β-shift
don’t satisfy the full specification property.
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For the symbolic case (subshifts of Dω) we require (where L(X) is
the set of admissible words, and dH is the Hamming distance):

Definition
We say that a subshift X has the right feeble specification property
if there exists a set G ⊆ L(X) satisfying:

1. a concatenation of words in G stays in G, that is, if u, v ∈ G,
then uv ∈ G;

2. for any ϵ > 0 there is an N = N(ϵ) such that for every u ∈ G
and v ∈ L(X) with |v | ≥ N, there are s, v′ ∈ D<ω satisfying
|v′| = |v |, 0 ≤ |s| ≤ ϵ|v |, dH(v , v′) < ε, and usv′ ∈ G.
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Theorem (Airey, J, Kwietniak, Mance)
Assume that D is at most countable and X is a subshift over D
with the right feeble specification property and at least two
shift-invariant Borel probability measures. If µ is a shift-invariant
Borel probability measure on X, then Gµ is Π0

3-complete.

Remark
The assumption of at least two invariant measures is automatically
satisfied when X is compact and |X | ≥ 2.
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All of the above numeration systems satisfy this feeble right
specifcation.

Corollary
The set of generic points (normal numbers) with respect to
continued fractions, β-shifts, generalized GLS expansions, are all
Π0

3-complete.

There is also a version of this theorem for dynamical systems
using a weakening of the specification property which we call the
strong approximate product structure.
▶ Pfister and Sullivan introduced the notion of an approximate

product structure.
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We now discuss the logical independence of the notions of
normality for numerations systems.

The logical independence of two notions, which define two sets A
and B, can be measured by the descriptive complexity of the set
A \ B.

If A ,B are Γ-complete sets and A \ B is D2(Γ)-complete, then
there is no logical reduction in the complexity of A \ B.

That is, x ∈ A does not simplify x ∈ B, so being in A does not
imply any information about being in B.
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Theorem (J, Mance, Vandehey)
The set of x ∈ (0, 1) which are continued fraction normal but not
base b normal is D2(Π

0
3)-complete.

Theorem (J, Mance, Vandehey)
The set of x ∈ (0, 1) which are continued fraction normal but not
base b normal for all b ≥ 2 is D2(Π

0
3)-hard.

Previously Vandehey had shown that NCF \ Nb is uncountable
using the GRH.
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Application: There is no Gδ set M ⊇ NCF ∩ Nb such that
M ∩ NCF ⊆ M ∩ Nb .

If F is any Fσ set, then either F contain a point of NCF ∩ Nb or Fc

contains a point of NCF \ Nb .

In the above, Gδ could be replaced by Σ0
3.

Proof.
If M ⊇ NCF ∩ Nb were Σ0

3 and M ∩ NCF ⊆ Nb , then
NCF \ Nb = NCF \M ∈ Π0

3, a contradiction. □
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We also the following result concerning normality in different
bases.

Theorem
If b , c ≥ 2 are relatively prime then Nb \ Nc is D2(Π

0
3)-complete.

The same application above for Nb , Nc normality when (b , c) = 1.

The following is open.

Question
Is N2 \ NCF a D2(Π

0
3)-complete set?
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Comparing the sets of normal numbers for base b, base c, and
continued fractions can be viewed a form of comparing the
itineraries of different dynamical systems.

One could ask to what extent the itineraries of a point x ∈ X under
two different systems on X could be similar.

Definition
An x ∈ (0, 1) is a Trott number base b if x has an infinite CF
expansion x = [a1, a2, . . . ] and a base b expansion x = 0.â1â2 · · · ,
where âi is the base b expansion of ai .
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We can characterize for which bases Trott numbers exist.

Theorem (Allaart, J , Jones, Lambert)
There is a Trott number in base b iff b ∈ {3} ∪

⋃∞
k=1[k

2 + 1, k 2 + k ].
For b in this set, the set of Trott numbers is a Gδ complete set.

So, we have Trott numbers in bases
b = 2, 3, 5, 6, 10, 11, 12, 17, 18, 19, 20, . . . .
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Theorem (Allaart, J , Jones, Lambert)
The set of Trott numbers has Hausdorff dimension < 1.

Question
Does Tb have positive Hausdorff dimension?

S. Jackson Descriptive Complexity in Numeration Systems



Introduction

Sketch of Proof

We outine the proof that NCF \ N2 ∈ D2(Π
0
3)-complete.

We use the method of Wadge reduction. Let
C = {z ∈ ωω : z(2n + 1)→ ∞}, D = {z ∈ ωω : z(2n)→ ∞}.

We easily have that C ,D are Π0
3-complete and C \ D is

D2(Π
0
3)-complete.

We reduce C \ D to NCF \ N2. That is, we find a continuous
function φ : ωω → R such that C \ D = φ−1(NCF \ N2).

This suffices to show that NCF \ N2 is Π0
3 hard, as D2(Π

0
3) is a

pointclass.
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Given a z ∈ ωω, we construct a series of CF blocks Bi , where Bi

depend only on z(2i), z(2i + 1). We take φ(z) to have CF
expansion B1B2 · · · .

Let B̄i denote the concatenation of the blocks B1, . . . ,Bi−1.

We wish to show that in any interval, most 2-adic rationals a
2d for

large enough d will have good CF behavior. To do this, we need to
relate fractions with a fixed denominator with two fractions of a
variable denominator.

This uses an idea of Avdeeva and Bykovski.
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Given B̄i , and a
d with CF expansion B̄iB then B̄iB can, up to at

most 9 digits in the middle, be written as the concatenation of
blocks B′ and (B′′)∗ have denominators at most

√
d.

Here (B′′)∗ is the reversal of B′′.

We take
q(B̄B)

2
≤ m < q(B̄B),

where the CF block B is the rational r(B) =
p(B)
q(B)

.
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Thus, the dyadic rational a
d , which has CF expansion B̄iB, gives

two Farey fractions in Fm.

There is a tight relationship between the number of elements is a
set U ⊆ Fm and the measure of the union of the corresponding
intervals I p

q
:

λ(
⋃

p
q ∈U

I p
q
) ≥ #U

m2

λ(
⋃

p
q ∈U

I p
q
) ≤ 1

m

√
#U [Avdeeva, Bykovsky]
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We need results which control the lengths, the behavior of the
denominators, and the normality properties of most CF
expansions.

1.) (controlling lengths) As a corollary to a result of Hensley we
have:

Let N, ϵ > 0 be given, and let m = e(λKL+ϵ)N. Then the proportion
of elements in Fm having fewer than N digits in their CF expansion
is at most O( 1√

N
).
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2.) (controlling denominators) From a result of Vandehey we have:
Let N, ϵ, m be as above. Let Gm ⊆ Fm be those p

q ∈ Fm with
corresponding block B of CF digits such that for some n which is a
multiple of

√
N we have ∣∣∣∣∣∣qn(B)

n
− λKL

∣∣∣∣∣∣ > ϵ.
Then the proportion of elements in Fm which are in Gm is
O(

log(N)
√

N
).
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A slight refinement of a result of Adrian-Maria Scheerer gives:

3.) (controlling CF normality) Let A be a finite collection of blocks,
and ϵ > 0. Then there are η, ξ > 0 such that for large enough n

µ

 ∞⋃
k=1

Ec
CF(ϵ,A, kn)

 ≤ ξe−η n
log(n) ,

where ECF(ϵ,A, n) is the set of x ∈ (0, 1) whose first n digits are
(ϵ,A) normal.

We get a similar but slightly worse estimate for the reverse of the
blocks:

µ

 ∞⋃
k=1

Ec
CF(ϵ,A, kn,K)

 ≤ Kξe−η
n

log(n) ,

where ECF(ϵ,A, n,K) is the union of the CF cylinders CB with
|B | ≤ K and B∗ is not (ϵ,A , n) normal.
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Using (1), (2) and (3), we can choose a block Bi with the above
CF properties and also base 2 normal:

Choose first N, then let m = e(λKL+ϵ)N, and let d
2 ≤ m2 < d. Let a

d
be such that a

d = rB̄B .

Note that we can’t use all of B as this wouldn’t give base 2

normality. We take logd(d)
(
1 + 1

z(2i)+1

)
many base 2 digits are

determined by B̄B.
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We add a string of 1’s in the CF expansion after B̄B of length
1

z(2i+1) |B̄B |.

If z(2i + 1) does not go to ∞, then φ(z) is not CF normal.

If z(2i + 1)→ ∞ then φ(z) ∈ NCF. Then z(2i)→ ∞ iff φ(z) ∈ N2.
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