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Classical (integer base) number systems

▶ Let D = {d1, d2, . . . , dk} ⊂ Z be finite; fix a a ∈ Z,
|a| ⩾ 2. The finite sum

z = εka
k + εk−1a

k−1 + · · ·+ ε1a + a0 = εk . . . ε1ε0.

is called a (radix, or, digital) expansion of z ∈ Z in base a
and digits ε0, ε1, . . . , εk ∈ D.

▶ Example: 62 = 2 + 10 · 6 = 14 + 3 · 16 = 3E16, o
2021 = 56157.

▶ The pair (a,D) is called a (positional) number system in
S ⊂ Z, if each number s ∈ S has a finite expansion.



Number systems for computers

▶ With the advent of a digital computer, different digit
systems were considered. The most simple – binary
system (2, {0, 1}) was standardized by electronics
industry.
▶ 1950 C. Shannon: symmetric systems (with negative

digits).
▶ 1958 SSRS Setun computer, used balanced ternary

(3, {−1, 0, 1}).

Figure: Setun computer

▶ For optical computer, ternary is perfect (polarization!)



N.S. in algebraic number rings, I

▶ Number systems with complex bases α in place of a:
▶ 1960: D. Knuth (2i , {0, 1, 2, 3}).
▶ 1965: D. Penney (−1 + i , {0, 1}).

▶ 1975, 1980–1990: Kátai, Szabó, Kovács, Indlekofer,
Gilbert ir kt. defined and studied number systems in
orders of algebraic number fields.

▶ A number α ∈ C is an algebraic integer, if it is a root of
the monic polynomial with integer coefficients:

p(x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ Z[x ]

For instance, α = −1 + i , p(x) = x2 + 2x + 2.



N.S. in algebraic number rings

▶ The order Z[α] is a simplest ring generated by 1 and α:

Z[α] = {b0 + b1α + · · ·+ bn−1α
n, bj ∈ Z, 0 ⩽ j < n}.

For instance, Z[−1 + i ] = Z[i ] - Gaussian integers.

▶ Let D ⊂ Z[α] be finite digit set, (typically, D ⊂ Z). N.s.
(α,D) is defined in the same way as in rational integer
case: just replace a by α.

▶ In 1990-present: many different variants of n.s. in
number fields and more abstract polynomial rings
(canonical, symmetric n.s.) were considered by Akiyama,
Kovács , Pető, , Scheicher, Steiner, Surer, Thuswaldner,
Woestijne , Zäımi, and many many other authors.



Motivation

▶ Applications:
▶ Representation of complicated algebraic sturctures in

computer hardware (CPU) and software (computer
algebra systems)

▶ Faster/more reliable data transmission
▶ Cryptography



Motivation II: beauty of mathematics

▶ 1970 D. Knuth ir C. Davis:

Figure: Elements of Z[i ] with representations in n.s.
(−1 + i , {0, 1}) of fixed length. Source:
https://bentrubewriter.com

▶ One can think of n.s. as the ways to write elements of
locally compact groups (i.e.. p-adic numbers Zp).

https://bentrubewriter.com


Digit systems (A,D) in lattices

▶ A. Vince, Replicating tessellations, SIAM J. Discrete Math. 6 (3)

(1993).

▶ Base: A ∈ Mn(Z) – n × n integer matrix.
▶ Digit set: D = {d1, . . . ,dk} ⊂ Zn

▶ Digit system: the pair (A,D) with the set of possible
radix expansions of finite length:

D[A] =
{
ϵ0 + Aϵ1 + · · ·+ Al−1ϵl−1, ϵj ∈ D

}
.

▶ Finiteness: ∀z ∈ Zn, z = ϵl−1ϵl−2 . . . ϵ0, ϵj ∈ D.

D[A] = Zn.

▶ Uniqueness: ϵl−1ϵl−2 . . . ϵ0 = δk−1δk−2 . . . δ0 ⇐⇒

k = l , δj = ej .

▶ Standard d.s.: both (F) and (U) holds (some authors
also require 0n ∈ D).



Facts about D.S. (A,D) in lattices Zd .

▶ Necessary conditions for standard d. s.
• A must be expanding: ∀ eigenvalue |λ| > 1;

• det (Id − A) ̸= ±1;

• D = Zn/AZn = D, and #D = |detA|.

▶ If A is expanding, there always ∃ some finite set D ∈ Zn,
s.t. (A,D) has property (F). Note: such a D.S. will be,
in general, not standard.

▶ The mapping Φ : Zn 7→ Zn

Φ(x) = A−1(x− d(x)),

with the digit function

d : Zn 7→ D,d(x) ≡ x (mod AZn).

has finite attractor set in Zn.



Example of standard D.S. in Z2

.

▶ Standard d.s. in Z2:

A =

(
0 −2
1 −2

)
, D =

{(
0
0

)
,

(
1
0

)}
.

▶ (A,D) generalize n.s. (α, E) in orders (take A to be
companion matrix of α with D = {εe1, ε ∈ E}

▶ Zn is not a ring (this means no digit wise multiplication
(A,D), unless specially defined for appropriate A and D).



Generalizing finiteness result for (A,D).

▶ We allow A ∈ Mn(Q), also with eigenvalues |λ| = 1.

▶ Minimal A-invariant Z-module that contains Zn:

Zn[A] :=
∞⋃
k=1

(
Zn + AZn + · · ·+ Ak−1Zn

)
.

Theorem 1 (J.J. & J.T.)
Let A be an n× n matrix with rational entries. There is a digit
set D ⊂ Zn[A] that makes (A,D) a digit system in Zn[A] with
finiteness property iff A has no eigenvalue λ with |λ| < 1. The
digit set D can even be chosen to be a subset of Zn.

Note: Thm. 1 is based on (and generalizes) an earlier result
of Akiyama, Thuswaldner, Zäımi from 2015.



Goals

▶ Earlier proofs were indirect (using n.s.)

▶ We are interested in pure-matrix proof of Property (F)

▶ We need linear algebra machinery for actual computations



Key difficulties

▶ When |λ| = 1, A−1 not contractive; if λ not a root of
unity, infinite orbits {A−nx, x ∈ Rn} show up.

▶ When A contains Jordan blocks J(λ) of order ⩾ 2,
|λ| = 1, unbounded orbits show up, i.e.

A =

(
1 1
0 1

)
, x =

(
x1
x2

)
,A−nx =

(
x1 − nx2

x2

)
▶ When A ̸∈ Mn(Z), usually Zn[A] ⊂ Rn no longer a

lattice, for instance, Z[3/2].
▶ The residue group of Zn[A]/AZn[A] is now much more

difficult to compute!



Auxiliary lattice

▶ Define the auxiliary lattice and its simplified residue set by

L = Zn ∩ AZn, R = Zn/L.

▶ R is much simpler and contains Zd [A]/AZd [A]!

Theorem 2 (J. T. & J. J.)
Tegul B ∈ Zn×n be non degenerate, and let A = q−1B, where
q ∈ N. Then:

#R = [Zn : L] = |det(B)|
cont (φD(qx))

,

where φD(x) is the char. polynomial of D = SNF(B) and
cont(φD(qx)) denotes the g.c.d. of its coefficients.



Restricted and extended remainder division

▶ Restricted division (preserves Zn):

dr : Zn 7→ R, dr (x) ≡ x (mod L).

Φr : Zn 7→ Zn, Φr (x) = A−1(x− dr (x))

▶ Extended division Ψ : Zd [A] 7→ Zd [A]

Ψ(z0+ · · ·+Anzn) = dr (z0)+A(z1+Φr (z1))+ · · ·+Anzn.

▶ If matrix A is expanding, then Φ and Ψ have finite
attractors, and this can be used to produce the digit
systems in Zd [A] that have propety (F) as in classical
case.



D.S. with (F) for Rotation Matrices

▶ For practical computation of D.S. with (F), one needs
effective version of 2015 result of Akiyama, Thuswaldner
and Zäımi.

▶ A real matrix A ∈ Mn(Q) is called general rotation, if it
is fully diagonalizable over C and all eigenvalues λ ∈ C of
A are of absolute value |λ| = 1.

▶ If A is a general rotation, ∃Q ∈ Mn(R), such that
Q−1AQ takes block–diagonal form with blocks

(±1),

(
cosϕ − sinϕ
sinϕ cosϕ

)

▶ A−1–invariant norm on Rn is defined by

||x||A−1 =
∣∣∣∣Q−1x

∣∣∣∣
Euclidean

,
∣∣∣∣A−1x

∣∣∣∣
A−1 = ||x||A−1 .



Digit sets with good convex enclosure

▶ A digit set D ⊂ Zn is said to have a good enclosure
with respect to R, when, for every r ∈ R, the interior of
the convex hull of

D(r) := {d ∈ D : d ≡ r (mod L)} .

contains the origin 0n.

▶ Division function Φr : Zn 7→ Zn by

Φr (x) := A−1(x− dr (x)).

with reminder function r(x) : Zn
k [A] 7→ D

dr (x) =

{
dr (x) ≡ x (mod R);

minimizes ||x− dr (x)||A−1 in D;



New results

Theorem 3 (J.J. & J. Thuswaldner)
Let A ∈ Qn×n be generalized rotation and suppose that
D ⊂ Zn has a good convex enclosure with respect to
R = Zn/L. Then the division mapping Φr : Zn 7→ Zn has
finite attractor AΦr ⊂ Zn: Φr is ultimately periodic with a
finite number of possible smallest periods all of which lie in Zn.

Consequence: The d.s. (A,D′) with a digits set
D′ = D ∪AΦr has Property (F) in Zd [A] (Hint: apply extened
division Ψ to elements of Zd [A] – it has the same attractor as
Φr ).



Example I (beginning)

▶ The 2× 2 matrix

A =

(
3/5 −4/5
4/5 3/5

)
, (3/5)2 + (4/5)2 = 1.

▶ This is a rotation by the angle

θ = 53.1301 . . .◦

that is not a rational multiple of 2π.

▶ Since A is orthogonal, ||x||A−1 = ||x||Euclidean, Q = 12.



Example I: residue set R

▶ Auxiliary lattice L = Z2 ∩ AZ2 has the basis L = TZ2:

T :=

(
7 5
1 0

)
.

▶ The residue set

R := Z2/LZ2 =

{(
−2
0

)
,

(
−1
0

)
,

(
0
0

)
,

(
1
0

)
,

(
2
0

)}
=

= {−2e1,−e1, 02, e1, 2e1}.
▶ Remark: Z2/LZ2 is of prime order 5, R is actually a full

residue group for Z2[A]/AZ2[A].



Example: convex enclosure of R:

-4 -3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

Figure: Lattice L = Z2 ∩ AZ2 (blue), residue set R = Z2/L (green).

Triangles (grey and light grey) with vertices in L that enclose R with

vertices T1,−T1, T2 ⊂ L.



Example I: convex digit set D (pre-periodic)

▶ D(02) := 02 − T2 = {(2, 1), (1,−2), (−3, 1)}
▶ D(e1) := e1 − T1 = {(−1,−1), (1, 0), (−2, 1)}
▶ D(−e1) := −e1 + T1 = {(−1, 0), (2,−1), (1, 1)}
▶ D(2e1) := 2e1 − T1 = {(0,−1), (2, 0), (−1, 1)},
▶ D(−2e1) := −2e1 + T1 = = T {(−2, 0), (1,−1), (0, 1)} .
▶ Pre-periodic digit set is defined

D′ :=
⋃
r∈R

D(r)

has good enclosure.



Example I continued: attractor set in Z2
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(a) r = (−2, 0)T
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(b) r = (2, 0)T

Figure: Attractor points AttrΦr (r) (red) for each residue class r ∈ Z2/L.
Green colored are points from r + L.



Example I continued: attractor set in Z2
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(a) r = (−1, 0)T
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(b) r = (1, 0)T

Figure: Attractor points AttrΦr (r) (red) for each r ∈ Z2/L. Green
colored are points from r + L.



Example I continued: attractor set in Z2
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(a) r = (0, 0)T

Figure: Attractor points AttrΦr (r) (red) for each r ∈ Z2/L. Green
colored are points from r + L.



Example I continued: optimizing the final digit set

▶ Φr (0, 0) = Φr (0, 2) = (1, 2),
Φr (0,−2) = Φr (−2,−1) = (−1,−2),
Φr (−1, 2) = (2,−1), Φr (2,−1) = (0, 0),
Φr (1, 2) = (1, 2), Φr (−1,−2) = (−1,−2).

▶ ∀x ∈ Zn, Φk
r (x) always visits

P = {(1, 2), (−1,−2)} .

▶ Final digit set
D = D′ ∪ P ,



Example (end)

-3 -2 -1 1 2 3

-2

-1

1

2

Figure: Final digit set D: Pre-periodic digits (violet) and periodic
digits (orange); Note that 02 ̸∈ D and #D = 17.



Th. 3: Idea of proof

▶ For any x ∈ Zn, ∃k0 : Φk
r (x) ∈ Zn for k > k0.

▶ Φr (x) pulls/pushes/doesn’t move x ∈ Zn to/from 0d :

▶ ||Φr (x)||A−1 < ||x||A−1 , ||Φr (x)||A−1 ⩾ ||x||A−1

▶ ∀r ∈ D(x): ||x− r||A−1 ⩾ ||x||A−1

▶ Set y := Q−1x, v := Q−1r.

▶ ||y − v|| ⩾ ||y|| , ||y||2 − 2vTy + ||v||2 ⩾ ||y||2

▶ It reduces to : vTy ⩽ ||v||2 /2

▶ Inequalities ∀r ∈ D(x): My ⩽ b, M ∈ Rm×n, b ∈ Rm
⩾0.



Th. 3: Heart of proof

Lemma 4
The set {y ∈ Rn : My ⩽ b} where M ∈ Mn(R) and b ∈ Rn

⩾0

is compact iff 0m is an interior point of the Conv(rows(M)).



Semi-direct (twisted) sums of d.s., I

▶ Let A ∈ Qm×m, B ∈ Qn×n be non-degenerate, O ∈ Qm×n

– zero matrix, and C ∈ Zn×m.

M := A⊕CB =

(
A O
C B

)
, M−1 =

(
A−1 O

−B−1CA−1 B−1

)
,

▶ For two d.s. (A,DA) and (B ,DB) one defines:

dr,A :Zm → DA, dr,A(x) ≡ x (mod Zd ∩ AZd), (1)

Φr,A :Zm → Zm, Φr,A(x) = A−1(x− dr,A(x)), (2)

dr,B :Zn 7→ DB , dr,B(y) ≡ y (mod Zd ∩ BZd), (3)

Φr,B : Zn 7→ Zn, Φr,B(y) = B−1(y − dr,B(y)), (4)

for every x ∈ Zm, y ∈ Zn. These mappings perform
‘remainder division’ in Zm and Zn, respectively.



Semi-direct (twisted) sums of d.s., II

▶ New d.s. (M ,DA ⊕DB) in Zm ⊕ Zn = Zm+n:

dr ,M = dr ,A⊕Cdr ,B , dr ,M(z) ≡ z (mod Zm+n∩MZm+n)

dr,M(z) :=

(
dr,A(x)

dr,B (y − C · Φr,A(x))

)
,

▶ ‘Twisted’ remainder division Φr ,M := Φr ,A ⊕C Φr ,B in
Zm+n performs ‘carry’ from 1st component to 2nd:

Φr,M : Zm+n → Zm+n, Φr,M(z) := M−1(z− dr,M(z)).

Lemma 5
Suppose that 0m ∈ DA, 0n ∈ DB , and the attractors of the
linear mappings Φr,A, Φr,B in Zm and Zn are {0m}, {0n},
respectively. Then the attractor of Φr,M = Φr,A ⊕C Φr,B is
{0m+n} ⊂ Zm+n. In this case, (M ,DA ⊕DB) in Zm+n[M],
where M = A⊕C B has Property (F).



Example II - Twisted d.s.: beginning

▶ The companion matrix of x2 + x/2 + 1

A =

(
0 −1
1 −1/2

)
.

▶ A is generalized rotation:

T =

(
4 0

1
√
15

)
, T−1AT =

 −1/4 −
√
15/4√

15/4 −1/4
.


▶ A−1-invariant norm ||x||A−1 = ||T−1x||2.



Example II - Twisted d.s.: beginning

▶ Auxiliary lattice:

L = Z2 ∩ AZ2 = LZ2, L =

(
2 2
1 0

)
▶ Residue group:

R = Z2/L = {(0, 0), (1, 0)}

2 1 1 2

1.0

0.5

0.5

1.0



Example II: the digit set

▶ Pre-periodic digit set:

D′ = {(2, 0), (−2,−1), (−2, 1), (1, 0), (−1,−1), (−1, 1)} .

▶ Attractor points:

(0,−4), (0,−3), (0,−2), (0,−1), (0, 0),

(0, 1), (0, 2), (2, 4), (2, 5), (−1, 0), (1, 2)



Example II: attractor points

2 1 1 2 3

4
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Example II: twisted d.s.

▶ (A,D′):

2 1 1 2

1.0

0.5

0.5

1.0

▶ We take D = D′ ∪ {(0, 0)} ir

M = A⊕N A =

(
A O2×2

N A

)
=


0 −1 0 0
1 −1/2 0 0
0 1 0 −1
0 0 1 −1/2

 .



Example II continued: twisted d.s.

▶ Twisted d.s. (M ,D ⊕D) has 49 digits:

▶ Pvz.
1
2

−3
4

 =


1
0

−1
1

+M


2
0
2
0

+M2


0
0
1
0

+M3


0
0

−2
−1

+M4


0
0
1
0


▶ We can optimize D ⊕D down to 18 digits:

D′′ = (D′ ⊕R)
⋃

({(0, 0)} ⊕ D′)



Open problems

Problem 1
Let A ∈ Mn(Q). Does there exist an algorithm to check
whether a given vector u ∈ Qn belongs to Zn[A] or not?
(Maybe even a practical algorithm)?

Problem 2
Suppose a matrix A ∈ Mn(Q) has eigenvalues λ with |λ| ≥ 1,
and at least one eigenvalue is of absolute value |λ| = 1. Is it
true that a digit system (A,D) in Zn[A] that has finiteness
property does not admit unique representation property?

Problem 3
Suppose again that A satisfies all the assumptions of P2, and
that (A,D) in Zn[A] has the finiteness property. What is the
smallest possible size #D of the digit set?



The End

Thank you!


