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Representations of real numbers

Integer case:

(Euclid) Any integer greater than 1 is either a prime number,
or can be written as a unique product of prime numbers
(ignoring the order);

(Lagrange) Every positive integer can be represented by the
sum of four squares. Generally, we have the Waring problem;

(Goldbach’s conjecture)Every even integer n greater than two
is the sum of two primes;

· · · .
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Representations of real numbers

Continuous case:

β-expansions;

continued fractions;

Lüroth expansions;

f -expansions;

· · · .
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Representations of real numbers on fractal sets

Given two non-empty sets A,B ⊂ R. Define

A ∗ B = {x ∗ y : x ∈ A, y ∈ B, }, ∗ = +,−, ·,÷.

Suppose that f is a continuous function defined on an open set
U ⊂ R2. Denote the continuous image of f by

fU(A,B) = {f (x , y) : (x , y) ∈ (A× B) ∩ U}.
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Some results

(1) (Steinhaus, 1917) C + C = [0, 2],C − C = [−1, 1], where C is
the middle-third Cantor set;

(2) (Athreya, Reznick and Tyson, 2017) 17/21 ≤ L(C · C ) ≤ 8/9;

(3)

C ÷ C =
+∞⋃
−∞

[
2

3
3m,

3

2
3m
]
∪ {0}.

It is natural to ask what is the topological sturcture of C · C .
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Our results

Theorem (Jiang and Xi)

Let C be the middle-third Cantor set. If ∂x f , ∂y f are continuous
on U, and there is a point (x0, y0) ∈ (C × C ) ∩ U such that one of
the following conditions is satisfied,

1 <

∣∣∣∣∂y f |(x0,y0)∂x f |(x0,y0)

∣∣∣∣ < 3, or 1 <

∣∣∣∣∂x f |(x0,y0)∂y f |(x0,y0)

∣∣∣∣ < 3,

then fU(C ,C ) has an interior.
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Some examples

Example

f (x , y) = xαyβ(αβ 6= 0), xα ± yα(α 6= 0), sin(x) cos(y), x sin(xy).

then fU(C ,C ) contains an interior.

For the function f (x , y) = xy , we let (x0, y0) = (8/9, 2/3) and
have

1 <

∣∣∣∣∂y f |(x0,y0)∂x f |(x0,y0)

∣∣∣∣ =
4

3
< 3,

Therefore, C · C contains interior.
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Main result

Theorem (Jiang and Xi)

C · C = ∪∞n=1An ∪ B,

where An is a closed interval, and B has Lebesgue measure zero.

Remark

For some n 6= m, we may have An ∩ Am 6= ∅.
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Lebesgue measure

With the help of computer program (Python), we are able to
calculate the Lebesgue measure of C · C .

Theorem (Jiang and Xi)

L(C · C ) ≈ 0.80955....

Similar results can be obtained for uniform λ-Cantor sets.
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Multiple respresentations of real numbers

We go back to the middle-third Cantor. Note that

−C + C = {−x + y : x , y ∈ C} = [−1, 1].

Therefore, for any t ∈ [−1, 1], there exist some x , y ∈ C such that

t = −x +y(t can be viewed as the intercept of the line y = x + t).

We may ask a natural question:
how many solutions (x , y) ∈ C × C can we find such that

t = −x + y .
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Key observation

Figure:
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Multiple respresentations of real numbers

Let t ∈ [−1, 1]. Define

St = {(x , y) : y − x = t, x , y ∈ C} ,

and

Ur = {t : Card(St) = r}, r = 1, 2, · · · ,
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Multiple representations of real numbers

Theorem (Jiang and Xi)

dimH(U2k ) =
log 2

log 3
, k ∈ N;

U3·2k is countable , k ∈ N;

Uk = ∅ for other cases.
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Multiple representations of real numbers

Theorem (Jiang and Xi)

Let λ ∈ Q \ {0}. If

(−1, λ) · (C × C ) = {−x + λy : (x , y) ∈ C × C}

is an interval, then we can calculate the Hausdorff dimension of
Ur , where

Ur = {t : Card(St) = r}, r ∈ Z+,

t ∈ −C + λC

St = {(x , y) : λy − x = t, x , y ∈ C} .
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Representations on self-similar sets with overlaps

Let K be the attractor of the following IFS:

{f1(x) = λx , f2(x) = λx+c−λ, f3(x) = λx+1−λ}, 1−λ ≥ c ≥ λ,

0 λ

c − λ c

1− λ 1

f1([0, 1])

f2([0, 1]) f3([0, 1])

Figure: First iteration
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Representations on self-similar sets with overlaps

Theorem (Jiang et al.)

K · K = [0, 1] if and only if c ≥ (1− λ)2.
√
K +

√
K = {

√
x +
√
y : x , y ∈ K} = [0, 2]

if and only if √
c + 1 ≥ 2

√
1− λ.
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Representations on self-similar sets with overlaps

Theorem (Jiang et al.)

We also prove that the following conditions are equivalent:

(1) For any u ∈ [0, 1], there are some x , y ∈ K such that u = x · y ;

(2) For any u ∈ [0, 1], there are some
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 ∈ K such that

u = x1 + x2 = x3 − x4 = x5 · x6 = x7 ÷ x8 =
√
x9 +

√
x10;

(3) c ≥ (1− λ)2.
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Back to the continuous image of fractal sets

It is natural to consider the when f (A,B) is a closed interval. For
this problem, we give a nonlinear version of thickness theorem.
This thickness theorem allows us to find many nonlinear equations
which can represent real numbers.
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Definition of Cantor sets

Let I0 = [0, 1]. In the first level, we delete an open interval from
[0, 1], denoted by O. Then there are two closed intervals left, we
denote them by B1 and B2. Therefore, [0, 1] = B1 ∪ O ∪ B2. Let
E1 = B1 ∪ B2.
In the second level, let O0 and O1 are open intervals that are
deleted from B1 and B2 respectively, then we clearly have

B1 = B11 ∪ O0 ∪ B12,B2 = B21 ∪ O1 ∪ B22.

Let
E2 = B11 ∪ B12 ∪ B21 ∪ B22.
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Definition of Cantor sets

Repeating this process, we can generate En+1 from En by removing
an open interval from each closed interval in the union which
consists of En. We let

K = ∩∞n=1En,

and call K a Cantor set.
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Definition of Cantor sets

(1) Let O ∪ ∪∞i=0Oi be all the deleted open intervals. We assume
that

|O| ≥ |O0| ≥ |O1| ≥ · · · ≥ |On| ≥ |On+1| ≥ · · · .

(2) Let Bω be a closed interval in some level, then we delete an
open interval Oω from Bω, i.e.

Bω = Bω1 ∪ Oω ∪ Bω2.

We assume that

0 <
|Oω|
|Bω|

< 1,

where | · | means length.
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Definition of thickness

Let Bω be a closed interval in some level. Then by the
construction of K , we have

Bω = Bω1 ∪ Oω ∪ Bω2,

where Oω is an open interval while Bω1 and Bω2 are closed
intervals. We call Bω1 and Bω2 bridges of K , and Oω gap of K . Let

τω(Bω) = min

{
|Bω1|
|Oω|

,
|Bω2|
|Oω|

}
.

We define the thickness of K by

τ(K ) = inf
Bω

τω(Bω).

Here the infimum takes over all bridges in every level.
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Some examples

Example

(1) τ(C ) = 1 (middle-third Cantor set);

(2) τ(Kλ) =
λ

1− 2λ
, where Kλ is the attractor of

{f1(x) = λx , f2(x) = λx + 1− λ, 0 < λ < 1/2}.
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Some classical results

Theorem (Newhouse)

Let K1 and K2 be two Cantor sets with convex hull [0, 1]. If

τ(K1)τ(K2) ≥ 1,

then
K1 + K2

is an interval.
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Some classical results

Theorem (Astels)

Let Ki , 1 ≤ i ≤ n be Cantor sets with convex hull [0, 1]. If

n∑
i=1

τ(Ki )

1 + τ(Ki )
≥ 1

then
n∑

i=1

Ki =

{
n∑

i=1

xi : xi ∈ Ki

}
is an interval.
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Some applications of thickness theorem

Let C be the middle-third Cantor set. Then

Theorem (Wang, Jiang, Li, Zhao)

C 2 + C 2 + C 2 + C 2 = [0, 4].

Equivalently, for any u ∈ [0, 4], there exist some xi , 1 ≤ i ≤ 4 such
that

u = x21 + x22 + x23 + x24 .

Theorem (Yu)

For any k ≥ 2, there exists some n(k) ≤ 2k such that

n(k)C k =


n(k)∑
i=1

xki : xi ∈ C

 = [0, n(k)].
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Some classical results

Theorem (Simon and Taylor)

For any two Cantor sets A ⊂ J1,B ⊂ J2 with τ(A)τ(B) > 1, if
f (x , y) ∈ C2 with non-vanishing partial derivatives on J1 × J2 (J1
and J2 are two closed intervals), then f (A,B) contains some
interiors.

Remark

This result gives the local property of f (A,B).
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Simple observation

Theorem

If ∂x f , ∂y f are continuous on U, and there is a point
(x0, y0) ∈ (C × C ) ∩ U such that

1 <

∣∣∣∣∂x f |(x0,y0)∂y f |(x0,y0)

∣∣∣∣ < 3,

then fU(C ,C ) has an interior.

By the implicit function theorem, we have

dy

dx
= −∂x f

∂y f
for the equation f (x , y) = 0.

The slope of the tangent line of the curve is between 1 and 3.
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Our results

Theorem (Jiang)

Let K1 and K2 be two Cantor sets with convex hull [0, 1]. Suppose
f (x , y) ∈ C1. If for any (x , y) ∈ [0, 1]2, we have

(τ(K1))−1 ≤
∣∣∣∣∂x f∂y f

∣∣∣∣ ≤ τ(K2),

then
f (K1,K2)

is an interval.In particular, if we let

f (x , y) = x + y , and τ(Ki ) ≥ 1, i = 1, 2,

then
K1 + K2

is an interval.
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Our results

Remark

If K1 and K2 do not have the same convex hull, we assume that
they are linked, i.e. K1 is not contained in the gaps of K2, and vice
verse.
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Our results

Theorem

Let {Ki}di=1 be Cantor sets with convex hull [0, 1]. Suppose that
f (x1, · · · , xd−1, z) ∈ C1. If for any (x1, · · · , xd−1, z) ∈ [0, 1]d , we
have

(τ(Ki ))−1 ≤
∣∣∣∣∂xi f∂z f

∣∣∣∣ ≤ τ(Kd), 1 ≤ i ≤ d − 1

then f (K1, · · · ,Kd) is an interval.

For the homogeneous self-similar set, the upper bound can be
improved.
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Applications

Corollary

Let C be the middle-third Cantor set. Suppose f (x , y) ∈ C1. If for
any (x , y) ∈ [0, 1]2 such that

1 ≤
∣∣∣∣∂x f∂y f

∣∣∣∣ ≤ 3,

then f (C ,C ) has a closed interval.
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Applications

We may prove some Waring type results on self-similar sets with
overlaps. Let J be the attractor of the IFS

fi (x) = rix +ai , ri ∈ (0, 1), a1 = 0 < a2 ≤ · · · ≤ an = 1− rn, ai ∈ R.
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Waring type result

Corollary

Let J be the self-similar set defined as above. Given any d ∈ N≥2,
and any α ≥ 1. If{

r1 ≥ a2
τ(J) ≥ a1−α2 ,

then
d∑

i=1

Jα =

{
d∑

i=1

xαi : xi ∈ J

}
= [0, d ].
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Continued fraction with deleted digits

Corollary

F 3(7)± F (7) = R, (C + 1)2 + 2F (6) = R, f (K1,K2,K3) = R,

where

K1 = K2 = C + 1,K3 = F (6), f (x , y , z) = 0.1x + xy + z ,

and C is the middle-third Cantor set,

F (m) = {[t, a1, a2, · · · ] : t ∈ Z, 1 ≤ ai ≤ m for i ≥ 1},
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A resonant result

Corollary

Let K be the attractor of the following IFS

{f1(x) = λ1x , f2(x) = λ2x + 1−λ2, 0 < λ2 ≤ λ1 < 1, λ1 +λ2 < 1}.

Then the following conditions are equivalent:

(1)
K · K = {x · y : x , y ∈ K} = [0, 1];

(2) λ1 ≥ (1− λ2)2;

(3)

K ÷ K =

{
x

y
: x , y ∈ K , y 6= 0

}
= R.

Kan Jiang 2020.10.13



Thank you.
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