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Lüroth expansions

In 1883 J. Lüroth introduced number representations that are now called
Lüroth series expansions:

For each x ∈ (0, 1] there is an infinite sequence (an)n≥1 with an ∈ N≥2 ∪ {∞}
for all n such that

x =
1

a1
+

1

a1(a1 − 1)a2
+

1

a1(a1 − 1)a2(a2 − 1)a3
+ · · · =

∑
k≥1

ak − 1∏k
i=1 ai (ai − 1)

.

A Lüroth expansion is called ultimately periodic if there are n ≥ 0, r ≥ 1 such
that an+j = an+r+j for all j ≥ 1 and periodic if n = 0.

Property:
x has an ultimately periodic Lüroth expansion if
and only if x is rational.
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Lüroth transformation

In 1968 H. Jager and C. de Vroedt proved that Lüroth expansions are
generated by iterations of the Lüroth transformation TL : [0, 1]→ [0, 1] given
by TL(0) = 0, TL(1) = 1 and for x ∈ (0, 1),

TL(x) = n(n − 1)x − (n − 1), if x ∈
[1

n
,

1

n − 1

)
, n ≥ 2.
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a1(3/7) = 3, a2(3/7) = 2, a3(3/7) = 7.
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1

3
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1

3 · 2 · 2 +
1

3 · 2 · 2 · 1 · 7
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Property:
The digits an(·) are i.i.d. random variables
with respect to Lebesgue measure with

Leb(an = k) =
1

k(k − 1)
, k ∈ N≥2.
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Lüroth transformation

In 1968 H. Jager and C. de Vroedt proved that Lüroth expansions are
generated by iterations of the Lüroth transformation TL : [0, 1]→ [0, 1] given
by TL(0) = 0, TL(1) = 1 and for x ∈ (0, 1),
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Property:
TL is measure preserving and ergodic wrt
Lebesgue, so for all Borel sets A,

Leb(T−1
L A) = Leb(A)

and if T−1
L A = A, then Leb(A) ∈ {0, 1}.
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Bounds on digits

For each D ∈ N≥2 consider the set

ED = {x ∈ [0, 1] : an(x) ≤ D for all n ≥ 1}.
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From the Birkhoff ergodic theorem it fol-
lows that Leb(ED) = 0 for each D.

In 1968 T. S̆alát proved that dimH(ED) <
1 for each D with

lim
D→∞

dimH(ED) = 1.
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Convergents and Lyapunov exponent

Approximation of irrationals by Lüroth expansions was considered by various
people.

If x ∈ [0, 1] \Q with

x =
∑
k≥1

ak − 1∏k
i=1 ai (ai − 1)

,

then the convergents are the rational numbers

pn
qn

=
n∑

k=1

ak − 1∏k
i=1 ai (ai − 1)

.

Barreira and Iommi, 2009: For Leb-a.e. x ∈ (0, 1),

lim
n→∞

1

n
log
∣∣∣x − pn

qn

∣∣∣ = −
∑
d≥2

log d(d − 1)

d(d − 1)
= −2.04 . . .

and the range of possible values is (−∞,− log 2].
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Approximation coefficients

For x ∈ [0, 1] \Q the approximation coefficients are

θLn(x) = qn
∣∣∣x − pn

qn

∣∣∣, where qn = an

n−1∏
i=1

ai (ai − 1), n ≥ 1.

Dajani and Kraaikamp, 1996: For Leb-
a.e. x ∈ (0, 1) and every z ∈ (0, 1] the
limit

lim
N→∞

#{1 ≤ j ≤ N : θLj (x) < z}
N

exists and equals

FL(z) =

b 1
z
c+1∑

k=2

z

k
+

1

b 1
z
c+ 1

.
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Alternating Lüroth expansions

In 1990 S. Kalpazidou, A. Knopfmacher and J. Knopfmacher introduced
alternating Lüroth series expansions:

For each x ∈ (0, 1] there is a sequence (an)n≥1 with an ∈ N≥2 ∪ {∞} for all n
such that

x =
1

a1 − 1
− 1

a1(a1 − 1)(a2 − 1)
+

1

a1(a1 − 1)a2(a2 − 1)(a3 − 1)
− · · ·

=
∑
k≥1

(−1)k−1 ak∏k
i=1 ai (ai − 1)

.
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Alternating Lüroth expansions

In 1990 S. Kalpazidou, A. Knopfmacher and J. Knopfmacher introduced
alternating Lüroth series expansions:
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such that
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x has an ultimately periodic Lüroth expansion if and only if x is rational.
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The digits an(·) are i.i.d. random variables with respect to Lebesgue measure
with

Leb(an = k) =
1

k(k − 1)
, k ∈ N≥2.
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Generalised Lüroth expansions

In 1996 J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp placed both
types of expansions in the framework of generalised Lüroth series expansions:

Let ε = (εn)n≥1 ∈ {0, 1}N be a sequence
of 0’s and 1’s.

The map Tε that maps each interval
( 1
n
, 1
n−1

), n ≥ 2, linearly onto (0, 1) with
positive slope if εn−1 = 0 and negative
slope if εn−1 = 1.
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ε3

ε = (0)n≥1 gives the Lüroth transformation TL.

ε = (1)n≥1 gives the alternating Lüroth transformation TA.
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For each x ∈ (0, 1] there is a sequence (an)n≥1 with an ∈ N≥2 for all n such that

x =
∑
n≥1

(−1)
∑n−1

i=1 εi an − 1 + εn∏n
i=1 ai (ai − 1)

.
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Approximations by GSL expansions

For each ε and n ≥ 1 we can also define

θεn(x) = qn
∣∣∣x − pn

qn

∣∣∣, n ≥ 1.

J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp, 1996:

The limit

Fε(z) := lim
N→∞

#{1 ≤ j ≤ N : θεn(x) < z}
N

exists for Lebesgue almost all x ∈ [0, 1] and all z ∈ (0, 1].

One has

FA(z) =

b 1
z
c∑

k=2

z

k − 1
+

1

b 1
z
c

and
FA ≤ Fε ≤ FL. 0.2 0.4 0.6 0.8 1.0
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First moments

J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp, 1996:

For each ε there is a constant Mε such that for Lebesgue a.e. x ∈ [0, 1],

lim
N→∞

1

N

N∑
i=1

θεi = Mε.

For each ε,

MA = 1− 1

2
ζ(2) ≤ Mε ≤ ML =

1

2
(ζ(2)− 1).

Not every value in [MA,ML] can be obtained for Mε by choosing ε appropriately.
It is conjectured that the set of values Mε can take is a Cantor set.
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Random systems

To further investigate the properties of Lüroth expansions we introduce a
family of random Lüroth systems.

Set T0 = TL and T1 = TA.
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Parameter: cut-off point c ∈ [0, 1
2
].
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Random systems

c 1

1

T0,c

c 1

1

T0,c

c 1

1

T1,c

Let ω = (ωn)n≥1 ∈ {0, 1}N and σ : {0, 1}N → {0, 1}N the left shift.

The random Lüroth transformation is the map
Lc : {0, 1}N × [c, 1]→ {0, 1}N × [c, 1] given by

Lc(ω, x) = (σ(ω),Tω1,c(x)).

In the second coordinate this yields compositions

T n
ω,c(x) = Tωn,c ◦ · · · ◦ Tω2,c ◦ Tω1,c(x).
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Random systems

For each (ω, x) we define two sequences:

1. A sequence of signs (sn)n≥1, where sn = 0 if the slope of Tωn,c at T n−1
ω,c (x) is

positive and 1 otherwise.
2. A sequence of digits (dn)n≥1, where dn = k if T n−1

ω,c (x) ∈ [ 1
k
, 1
k−1

).

c 1

1

T0,c

c 1

1

x

T1,c

ω1 = 1, ω2 = 0, ω3 = 1, . . .

s1 = 0
d1 = 2
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Random systems

For each (ω, x) we define two sequences:
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Random Lüroth expansions

The sequences (sn)n≥1 and (dn)n≥1 give a c-Lüroth expansion of x :

x =
∑
k≥1

(−1)
∑k−1

i=1 si dk − 1 + sk∏k
i=1 di (di − 1)

.

Or: x has digit sequence (sn, dn)n≥1.

First observations:

1. For each D ≥ 2,

ẼD =
{
x ∈

[ 1

D
, 1
]

: ∃ ω s.t. dn ≤ D for all n
}

=
[ 1

D
, 1
]
.

2. A c-Lüroth expansion is called ultimately periodic if there are n ≥ 0 and
r ≥ 1 such that

T n+j
ω (x) = T n+r+j

ω (x) for all j ≥ 1.

If x ∈ [c, 1] \Q, then the c-Lüroth expansion cannot be ultimately periodic.
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Periodicity

Let c ∈ [0, 1
2
] and x ∈ [c, 1] ∩Q. One of the following cases occurs.

I x has a unique and ultimately periodic c-Lüroth expansion.

I All c-Lüroth expansions are ultimately periodic (so there are at most
countably many).

I x has uncountably many c-Lüroth expansions that are not ultimately
periodic and countably many c-Lüroth expansions that are ultimately
periodic.

1
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1
2

1

1

1
3

has unique digit sequence

(1, 3)(0, 2).
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I x has uncountably many c-Lüroth expansions that are not ultimately
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Universal expansions

Results on numbers of different expansions:

1. Let c ∈ [0, 2
5
]. Then any x ∈ [c, 1] has uncountably many different c-Lüroth

expansions.

2. Let c = 1
D

for some D ∈ N≥3 and consider the alphabet

Ac = {(s, d) : s ∈ {0, 1}, d ∈ {2, 3, . . . ,D}}.

A c-Lüroth expansion

x =
∑
k≥1

(−1)
∑k−1

i=1 si dk − 1 + sk∏k
i=1 di (di − 1)

is called universal if all blocks (t1, b1), . . . , (tj , bj) ∈ Aj
c occur in the expansion,

so if there is a k ≥ 1 such that sk+i = ti and dk+i = bi for all 1 ≤ i ≤ j .

For any c = 1
D

Lebesgue almost every x ∈ [c, 1] has uncountably many
different universal c-Lüroth expansions.

The same holds for c = 0.
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Convergents

Take c = 0.

For any (ω, x) ∈ {0, 1}N × [0, 1] set, like before,

pn
qn

=
n∑

k=1

(−1)
∑k−1

i=1 si dk − 1 + sk∏k
i=1 di (di − 1)

.

Fix some 0 < p < 1, let mp be the (p, 1− p)-Bernoulli measure on {0, 1}N and
consider the measure mp × Leb on {0, 1}N × [0, 1].

For mp × Leb-a.e. (ω, x),

lim
n→∞

1

n
log
∣∣∣x − pn

qn

∣∣∣ = −
∑
d≥2

log d(d − 1)

d(d − 1)

and the range of possible values is (−∞,− log 2].
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Approximation coefficients

Take c = 0, fix some 0 < p < 1.

For any (ω, x) ∈ {0, 1}N × [0, 1] set, like before,

θn(ω, x) = qn
∣∣∣x − pn

qn

∣∣∣, with qn = (dn − sn)
n−1∏
i=1

di (di − 1).

For mp × Leb-a.e. (ω, x) the limit

lim
N→∞

1

N

N∑
i=1

θi (ω, x)

exists and equals

Mp = p
2ζ(2)− 3

2
+

2− ζ(2)

2
.

The function p 7→ Mp maps the interval [0, 1] to the interval [MA,ML].
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Invariant measures

Both results use the fact that the measure mp × Leb is invariant and ergodic
for the random map Lc , in particular Birkhoff’s ergodic theorem.

If c > 0, then mp × Leb is no longer invariant, but there exists a unique
invariant and ergodic measure of the form mp × µc,p with µc,p � Leb a
probability measure.

To obtain the speed of convergence, one needs a good expression for the
density of µc,p. In specific cases this can be computed.

Example: For c = 1
8

and 0 < p < 1 the density of µp, 1
8

is

fp, 1
8
(x) =

1

2p2 + 3p + 5



8, if x ∈ [1/8, 1/4),

4p + 4, if x ∈ [1/4, 1/2),

4p2 + 2p + 4, if x ∈ [1/2, 3/4),

4p2 + 6p + 4, if x ∈ [3/4, 7/8),

4p2 + 6p + 12, if x ∈ [7/8, 1).
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Summary

deterministic random
uncountably many

different,
number of one unique c < 2

5

expansions uncountably many
universal,

c = 1
D

or c = 0
periodic periodic iff many possibilities,

expansions rational all c
bound on Hausdorff dimension full interval

digits smaller than 1
typical value typical value

speed of −
∑

d≥2
log d(d−1)
d(d−1)

−
∑

d≥2
log d(d−1)
d(d−1)

convergence
range (−∞,− log 2] range (−∞,− log 2],

c = 0
approximation MA ≤ Mε ≤ ML MA ≤ Mp ≤ ML

coefficients not all values all values,
c = 0
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