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Liiroth expansions

In 1883 J. Liiroth introduced number representations that are now called
Liiroth series expansions:

For each x € (0, 1] there is an infinite sequence (ap)n>1 with a, € N>, U {co}
for all n such that

x=1t 1 n 1 =Sl
o ai 21(31 — 1)32 31(31 — 1)32(32 — 1)33 - = H,I'(:I ai(ai — ]_) ’

A Liiroth expansion is called ultimately periodic if there are n > 0, r > 1 such
that an+j = antr4j for all j > 1 and periodic if n = 0.

Property:
x has an ultimately periodic Liiroth expansion if
and only if x is rational.
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Liuroth transformation

In 1968 H. Jager and C. de Vroedt proved that Liiroth expansions are
generated by iterations of the Liiroth transformation T, : [0, 1] — [0, 1] given

by T.(0) =0, T.(1) =1 and for x € (0,1),

Ti(x)=n(n—1)x—(n—-1), ifxe [%,nil),nzz.

a4 3 2
a1(3/7) =3, a(3/7) =2, a3(3/7) = 7.
§71+ 1 + L
”/ 7 3'3.2.2 3.2.2.1-7
01 3 4 1
7 7 7
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Liroth transformation

In 1968 H. Jager and C. de Vroedt proved that Liiroth expansions are
generated by iterations of the Liiroth transformation T, : [0, 1] — [0, 1] given
by T.(0) =0, T,(1) =1 and for x € (0,1),

To(x) = n(n— 1)x — (n— 1), ifxe[l, L ).n>2.

G
S
Wi
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Property:
The digits an(+) are i.i.d. random variables
with respect to Lebesgue measure with

Leb(a, = k) = P 1

m, k € N>s.

ED



Liroth transformation

In 1968 H. Jager and C. de Vroedt proved that Liiroth expansions are
generated by iterations of the Liiroth transformation T, : [0, 1] — [0, 1] given
by T.(0) =0, T,(1) =1 and for x € (0,1),

Ti(x) =n(n—1)x — (n—1), ifxe[l, 1 ),n22.

G
S
Wi

NI=

nn—1

Property:
T. is measure preserving and ergodic wrt
Lebesgue, so for all Borel sets A,

Leb(T; 'A) = Leb(A)
and if T, 'A = A, then Leb(A) € {0,1}.
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Bounds on digits

For each D € N, consider the set

Ol=
FNT
Wi
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Ep ={x€[0,1] : an(x) < D for all n > 1}.

N=

From the Birkhoff ergodic theorem it fol-
lows that Leb(Ep) = 0 for each D.

In 1968 T. Sal4t proved that dimy(Ep) <
1 for each D with

lim dimH(ED) =1.
D— oo

D



Convergents and Lyapunov exponent

Approximation of irrationals by Liiroth expansions was considered by various
people.

If x € [0,1] \ Q with
akx — 1
X=2 Tk i v
kzzl [Tis; ai(ai — 1)
then the convergents are the rational numbers

Pn _ : ax—1
Gn Z Hﬁ(:l ai(ai— 1)

k=1
Barreira and lommi, 2009: For Leb-a.e. x € (0,1),

—Zw:—z.om..

lim = Iog ‘
= d(d—1)

n—oo N

and the range of possible values is (—oo, — log 2].
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Approximation coefficients

For x € [0,1] \ Q the approximation coefficients are

Pn

x — £
dn

05(x) = gn

n—1
,  where g, = a, H ai(ai—1), n>1.
i=1

Dajani and Kraaikamp, 1996: For Leb-
a.e. x € (0,1) and every z € (0,1] the
limit

#H1<j<N: 0/ (x) <z}

lim 06
N— oo N

exists and equals

L2141
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Alternating Liiroth expansions

In 1990 S. Kalpazidou, A. Knopfmacher and J. Knopfmacher introduced
alternating Liiroth series expansions:

For each x € (0, 1] there is a sequence (a5)n>1 with a, € N>, U {oo} for all n
such that
1 1 1
X = — + -
a—1 a(a— 1)(a2 —1)  ai(ar —1)ap(az — 1)(az — 1)

_ 1)1
2 1, ai(a— 1) ar(af -1)

k>1

1

gl
ENTES
Wl
N=

10 / 34

Charlene Kalle, Leiden University



Alternating Liiroth expansions

In 1990 S. Kalpazidou, A. Knopfmacher and J. Knopfmacher introduced
alternating Liiroth series expansions:

For each x € (0, 1] there is a sequence (a5)n>1 with a, € N>, U {oo} for all n
such that
1 1 n 1
a—1 a(a— 1)(32 —1)  ai(ar —1)az(az —1)(az — 1)
_ Z( 1)<
[T a:(a: -1)

k>1

X =

Property 1:
x has an ultimately periodic Liiroth expansion if and only if x is rational.
Property 2:
The digits an(-) are i.i.d. random variables with respect to Lebesgue measure
with 1
Leb(a, = k) = ———, k €ENso.
eblan =k) = =1y kEN=2
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Generalised Liiroth expansions

In 1996 J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp placed both
types of expansions in the framework of generalised Liiroth series expansions:

1 €3 €2 €1
Let & = (€n)n>1 € {0,1}" be a sequence o1 !
of O’s and 1's.
The map T. that maps each interval
(%,-15), n> 2, linearly onto (0, 1) with
positive slope if e,_1 = 0 and negative
slope if e,—1 = 1.

0 111 1 1
543 2

€ = (0)n>1 gives the Liiroth transformation T;.
€ = (1),>1 gives the alternating Liroth transformation Ta.
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Generalised Liiroth expansions

In 1996 J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp placed both
types of expansions in the framework of generalised Liiroth series expansions:

1 €3 €2 €1
Let & = (gn)n>1 € {0,1}" be a sequence o1 !
of 0's and 1's.
The map T. that maps each interval
(%,-15), n > 2, linearly onto (0, 1) with
positive slope if e,—1 = 0 and negative
slope if e,—1 = 1.
0 111 1 1
543 2

For each x € (0, 1] there is a sequence (a,)s>1 With a, € N>, for all n such that

1. a,—14¢,
x=Y (-1)Zm s o T
; [T, ai(ai — 1)
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Approximations by GSL expansions

For each € and n > 1 we can also define

Pn

x_ Pn
Gn

n>1.

) -

ei(x) =dQn

J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp, 1996:

The limit L<icN .o
F) e fim SISV 009 <2)
N— oo N

exists for Lebesgue almost all x € [0, 1] and all z € (0, 1].

One has 10

L%J 08

z 1 .

FA(Z) = k—1 + TJ /

k=2 z 04

and "'
FA<F.<F 5 : ; ;
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First moments

J. Barrionuevo, R. Burton and K. Dajani and C. Kraaikamp, 1996:

For each ¢ there is a constant M. such that for Lebesgue a.e. x € [0, 1],
L
Jim, 3y 207 = M.

For each ¢, L 1
Ma=1-3¢(2) <M. < M= S({(2) — 1)

Not every value in [Ma, M(] can be obtained for M. by choosing ¢ appropriately.
It is conjectured that the set of values M. can take is a Cantor set.
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Random systems

To further investigate the properties of Liiroth expansions we introduce a
family of random Liiroth systems.

Set To = T, and T1 = Ta.

1 1
0 111 1 1 0 111 1 1
543 2 543 2
To T
m] = = =

Charlene Kalle, Leiden University



Random systems

To further investigate the properties of Liiroth expansions we introduce a
family of random Liiroth systems.

Set To = T, and T1 = Ta.

0 111 1 1
543 2
To and Ty
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Random systems

To further investigate the properties of Liiroth expansions we introduce a
family of random Liiroth systems.

Set To = T, and T1 = Ta.

Parameter: cut-off point c € [0, 3].
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Random systems

To further investigate the properties of Liiroth expansions we introduce a
family of random Liiroth systems.

Set To = T, and T1 = Ta.

1
c
0 c1 1 1
3 2
To and Ty

Parameter: cut-off point c € [0, 3].
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Random systems

To further investigate the properties of Liiroth expansions we introduce a
family of random Liiroth systems.

Set To = T, and T1 = Ta.

1
c
0 c1 1 1
3 2
To and Ty

Parameter: cut-off point c € [0, 3].
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Random systems

To further investigate the properties of Liiroth expansions we introduce a
family of random Liiroth systems.

Set To =T, and T1 = Ta.

Wl
NI=

Parameter: cut-off point c € [0, 3].
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Random systems

To,c Ti,c

’ ’

Let w = (wn)n>1 € {0,1} and o : {0,1}Y — {0,1}" the left shift.

The random Liiroth transformation is the map
Le: {0, 13N x [c,1] = {0,1}" x [c, 1] given by

Le(w,x) = (0(w), Ture(x))-

In the second coordinate this yields compositions

Tw",c(x) = Tu,c0 0 Ty c0 Ty o(x).
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Random systems

For each (w, x) we define two sequences:
= 0 if the slope of T, at TS (x) is

1. A sequence of signs (sp)n>1, where s,

positive and 1 otherwise.
2. A sequence of digits (dn)s>1, where d, = k if T2 N(x) € [+, 25)-

W1:1,W2:0,w3:1,...

s1=0
=2
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Random systems

For each (w, x) we define two sequences:

1. A sequence of signs (sp)n>1, where s, = 0 if the slope of T, at T[J;l(x) is
positive and 1 otherwise.

2. A sequence of digits (dn)s>1, where d, = k if TJH(x) € [£, 29)-

Ti,c(x)1
TO,C

wi=1lLw=0ws=1,...

51=0,%=0
d=2,d=2
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Random systems

For each (w, x) we define two sequences:

1. A sequence of signs (sp)n>1, where s, = 0 if the slope of T, at T[J;l(x) is
positive and 1 otherwise.

2. A sequence of digits (dn)s>1, where d, = k if TJH(x) € [£, 29)-

/

Ti,c(x)1
TO,C

wi=1lLw=0ws=1,...

S1:0,52:0,53:1
h=2,d=2d=2
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Random Liiroth expansions

The sequences (s,)n>1 and (dn)s>1 give a c-Liiroth expansion of x:

ety dik =1+
x = (—1)xim ST
k>1 Hi:l di(di — 1)

Or: x has digit sequence (i, dn)n>1.

First observations:

1. For each D > 2,

ED:{xe [%,1} “Jw st dy <D forall n}: [%71].
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Random Liiroth expansions

The sequences (s,)n>1 and (dn)s>1 give a c-Liiroth expansion of x:

ety dik =1+
x = (—1)xim ST
k>1 Hi:l di(di — 1)

Or: x has digit sequence (i, dn)n>1.

First observations:

1. For each D > 2,

ED:{xe [%,1} “Jw st dy <D forall n}: [%71].

2. A c-Liiroth expansion is called ultimately periodic if there are n > 0 and
r > 1 such that ) )
ToH(x) = ToY(x) forallj>1.

If x € [c,1] \ Q, then the c-Liiroth expansion cannot be ultimately periodic.
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Periodicity

Let c € [0, 1] and x € [c,1] N Q. One of the following cases occurs.

» x has a unique and ultimately periodic c-Liiroth expansion.

» All c-Liiroth expansions are ultimately periodic (so there are at most

countably many).

» x has uncountably many c-Liiroth expansions that are not ultimately
periodic and countably many c-Liiroth expansions that are ultimately

periodic.

W=
N[

% has unique digit sequence

(1,3)(0,2).
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Periodicity

Let c € [0, 1] and x € [c,1] N Q. One of the following cases occurs.
» x has a unique and ultimately periodic c-Liiroth expansion.

» All c-Liiroth expansions are ultimately periodic (so there are at most
countably many).

» x has uncountably many c-Liiroth expansions that are not ultimately
periodic and countably many c-Liiroth expansions that are ultimately

periodic.
-1
i /’/
] Z
' 7 3 has the two digit sequences:
1
VL (0,2)(1,2)(0,2),
Y (1,2)(1,2)(0,2)
.
1 1 3 1
3 2 a
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Periodicity

Let c € [0, 1] and x € [c,1] N Q. One of the following cases occurs.
» x has a unique and ultimately periodic c-Liiroth expansion.

» All c-Liiroth expansions are ultimately periodic (so there are at most
countably many).

» x has uncountably many c-Liiroth expansions that are not ultimately
periodic and countably many c-Liiroth expansions that are ultimately
periodic.

1
Y
,
3
7

No - - ===
-
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Universal expansions

Results on numbers of different expansions:

L. Let c € [0, 2]. Then any x € [c, 1] has uncountably many different c-Liiroth
expansions.

2. Let ¢ = £ for some D € N>3 and consider the alphabet
Ac={(s,d) : s €{0,1}, d € {2,3,...,D}}.

A c-Liiroth expansion

R R Lt
k>1 [T, di(di — 1)

is called universal if all blocks (1, b1), ..., (t;, bj) € AL occur in the expansion,
so if there is a k > 1 such that s,y; = tj and diti = b; for all 1 < <.

For any c = % Lebesgue almost every x € [c, 1] has uncountably many
different universal c-Liiroth expansions.

The same holds for ¢ = 0.
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Convergents

Take ¢ = 0.

For any (w, x) € {0,1}" x [0, 1] set, like before,
P _ i(,l)zf; s_Ge—14sc
o [, di(d: — 1)

Fix some 0 < p < 1, let m, be the (p,1 — p)-Bernoulli measure on {0,1}" and
consider the measure m, x Leb on {0,1}" x [0, 1].

For m, x Leb-a.e. (w, x),

B log d(d — 1)
== d(d—1)

.1
lim —log ’X _ b
n—oo N dn

d>2

and the range of possible values is (—oo, — log 2].

Charlene Kalle, Leiden University



Approximation coefficients

Take ¢ =0, fix some 0 < p < 1.

For any (w, x) € {0,1}" x [0, 1] set, like before,

n—1
On(w, x) = @gn . with g, = (dn — s1) H di(di — 1).
i—1

Pn
x_Pn
Gn

For m, x Leb-a.e. (w, x) the limit

exists and equals

The function p — M, maps the interval [0, 1] to the interval [Ma, M.].
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Invariant measures

Both results use the fact that the measure m, X Leb is invariant and ergodic
for the random map L., in particular Birkhoff’s ergodic theorem.

If ¢ > 0, then m, x Leb is no longer invariant, but there exists a unique
invariant and ergodic measure of the form mp X pic p with pcp < Leb a
probability measure.

To obtain the speed of convergence, one needs a good expression for the
density of jic p. In specific cases this can be computed.

1

Example: For ¢ = z and 0 < p < 1 the density of Hp, 1 is

8
8, if x €[1/8,1/4),
1 4p + 4, if x € [1/4,1/2),
fp,é(x):m 4p° +-2p+4,  if x €[1/2,3/4),
4p> 4 6p+4, if x €[3/4,7/8),

4p° +6p+12, if x €[7/8,1).
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Summary

deterministic random
uncountably many
different,
number of one unique c< %
expansions uncountably many
universal,
c=Zorc=0
periodic periodic iff many possibilities,
expansions rational all ¢
bound on Hausdorff dimension full interval
digits smaller than 1
typical value typical value
speed of Zd>2 = cgdll) Zd>2 Iogdddll)
convergence
range (—oo, —log?2] | range (—o0, —log2],
c=0
approximation My < M. < Mg Ma < M, < M,
coefficients not all values all values,
c=0
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