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On periodicity of algebraic numbers

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:

Oleg Karpenkov, University of Liverpool On Hermite’s problem



On periodicity of algebraic numbers

Rational numbers: periodic or finite decimal representations.

4

3
= 1.3333333 . . .

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:

Oleg Karpenkov, University of Liverpool On Hermite’s problem



On periodicity of algebraic numbers

Rational numbers: periodic or finite decimal representations.

4

3
= 1.3333333 . . .

Quadratic numbers (roots of quadratic integer polynomials):
periodic continued fractions (J.-L. Lagrange, 1770).

10 + 3
√

7

4
= [4; (2, 15, 2, 3)].

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:

Oleg Karpenkov, University of Liverpool On Hermite’s problem



On periodicity of algebraic numbers

Rational numbers: periodic or finite decimal representations.

4

3
= 1.3333333 . . .

Quadratic numbers (roots of quadratic integer polynomials):
periodic continued fractions (J.-L. Lagrange, 1770).

10 + 3
√

7

4
= [4; (2, 15, 2, 3)].

Cubic numbers (roots of cubic integer polynomials):

Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:

Oleg Karpenkov, University of Liverpool On Hermite’s problem



On periodicity of algebraic numbers

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:

Oleg Karpenkov, University of Liverpool On Hermite’s problem



On periodicity of algebraic numbers

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

First steps.
— C. G. J. Jacobi (1868): algorithmic approach

— O. Perron (1907): first realisation of algorithmic approach,
which is believed to be non-periodic.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:
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On periodicity of algebraic numbers

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Development of geometry of numbers.
— F. Klein, V. Arnold, A. Veselov, E. Korkina, O. German,
A.Ustinov, O.K., etc.: geometric approach to continued fractions.

Remark: geometry of numbers was limitedly used (overlooked) for
multidimensional Euclidaen algorithms.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:
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On periodicity of algebraic numbers

Cubic numbers (roots of cubic integer polynomials):
Hermite’s problem (1848): Find a periodic description of cubic
numbers.

Periodic modifications of the J-P algorithm.
— O.K. (2021) based on the geometry of c.f.:

I Totally real case: periodicity is proved for sin2-algorithm.

I Complex case: heuristic APD-algorithm that provides
periodicity (no proof).

I Algebraic case of degree > 3: higher-dimensional heuristic
APD-algorithm provides periodicity (no proof).

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Part II

II. Euclidean algorithm and its generalisations
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Euclid’s algorithm (∼ 300 BC)

Extended Euclid’s algorithm

Input: real numbers (p, q) = (p0, q0) such that q0 > 0.

Step of the algorithm: If qi ≥ 0:

(pi , qi ) 7→ (pi+1, qi+1) = (qi , pi − bpi/qicqi )

ai = bpi/qic — the i -th element of the algorithm.

Termination of the algorithm: (pi , qi ) with qi = 0.
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Euclid’s algorithm (∼ 300 BC)

Example

For (21, 15) we have:

(21, 15) 7→ (15, 6) 7→ (6, 3) 7→ (3, 0).

Output:
a1 = 1, a2 = 2, and a3 = 2.

Note that

gcd(21, 15) = 3 and
21

15
= 1 +

1

2 + 1/2
.
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Euclid’s algorithm (∼ 300 BC)

Example

Now for (2
√

5, 1):

(2
√

5, 1) 7→ c1(1+
√

5/2, 1) 7→ c2(4+2
√

5, 1) 7→ c3(1+
√

5/2, 1) 7→ . . .

where

c1 = 2
√

5− 4, c2 = 9− 4
√

5, c3 = 34
√

5− 76, . . .

The vectors obtained on Step 1 and Step 3 are proportional.
Hence the output is periodic:

a1 = 4, a2k = 2, and a2k+1 = 8

So 2
√

5 = [4; 2 : 8 : 2 : 8 : 2 : 8 : . . .] = [4; (2 : 8)].
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Jacobi-Perron algorithm (1907)

Jacobi-Perron algorithm

Input: triples of real numbers (x , y , z).

Step of the algorithm: If yi 6= 0.

(xi , yi , zi ) 7→ (xi+1, yi+1, zi+1) =
(
yi , zi−

⌊zi
yi

⌋
yi , xi−

⌊xi
yi

⌋
y
)
.

The i -th element of the multidimensional continued fraction
is (⌊zi

yi

⌋
,
⌊xi
yi

⌋)
.

Termination of the algorithm: (xi , yi , zi ) with yi = 0.
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Jacobi-Perron algorithm (1907)

Let ξ be a real root of the polynomial x3 + 2x2 + x + 4, namely

ξ = −(53 + 6
√

78)1/3

3
− 1

3(53 + 6
√

78)1/3
− 2

3
.

Now consider the vector (not a single number, which is
senseless! One can have different periods with the same
number)

(1, ξ, ξ2 + ξ).

Jacobi-Perron algorithm periodic output:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7

bz/yc -2 0 0 0 2 4 1 1

Oleg Karpenkov, University of Liverpool On Hermite’s problem
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Jacobi-Perron algorithm (1907)

Problem
(Jacobi’s Last Theorem.) Let K be a totally real cubic field.
Let y , z ∈ K satisfy
I 0 < y , z < 1;

I 1, y , and z are independent over Q.

Does Jacobi-Perron algorithm generate an eventually periodic
continued fraction starting with v = (1, y , z)?

It is believed that the answer is negative.

(I have learnt this fact from Cor Kraaikamp in 2006 in Leiden.)

Oleg Karpenkov, University of Liverpool On Hermite’s problem
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Jacobi-Perron algorithm (1907)

Example

Let us consider the vector

v = (1,
3
√

4,
3
√

16).

Numerical computations (e.g., by L. Elsner and H. Hasse., 1967)
shows

1 2 3 4 5 6 7 8 9 10 11 12 . . . 94 . . .

bx/yc 0 1 13 1 6 1 1 3 2 3 4 1 . . . 476 . . .

bz/yc 1 1 9 1 2 0 0 2 0 1 1 1 . . . 388 . . .

Compare:

π = [3 : 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; 2; 1; 1; 2; 2; 2; 2; 1; 84; . . .]

Oleg Karpenkov, University of Liverpool On Hermite’s problem
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Jacobi-Perron algorithm (1907)

Gauss-Kuzmin statistics:

1

ln(2)
ln

(
1 +

1

k(k + 1)

)
.
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Jacobi-Perron algorithm (1907)

Gauss-Kuzmin statistics:

1

ln(2)
ln

(
1 +

1

k(k + 1)

)
.

Observe:

1

ln(2)
ln

(
1 +

1

k(k + 1)

)
=

ln[−1, 0, k , k + 1]

ln[−1, 0, 1,∞]
.

Hint for us: this question involves geometry.

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Jacobi-Perron algorithm (1907)

The same problem arise with the other Jacobi-Perron type
algorithms:

I V. Brun (subtractive algorithm) 1958

I E. S. Selmer (general subtractive algorithm) 1961

I F. Schweiger (fully subtractive algorithm) 1995

etc.

Oleg Karpenkov, University of Liverpool On Hermite’s problem
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III. New algorithms
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Markov-Davenport Characteristic

Definition
Consider u, v ,w ∈ C3:

u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1,w2,w3)

The Markov-Davenport characteristic is the form χu,v ,w :

det

 x y z
v1 v2 v3
w1 w2 w3

·det

 u1 u2 u3
x y z
w1 w2 w3

·det

 u1 u2 u3
v1 v2 v3
x y z


in variables x , y , and z (with respect to u, v ,w).

Remark: MD-characteristic provides a “proper distance” to the
cone generated by u, v , and w .

Oleg Karpenkov, University of Liverpool On Hermite’s problem
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Markov-Davenport Characteristic

I JP-algorithm searching for the nearest lattice point. in a
2-plane y = 1.

I While a proper point could be different.

I Here are the “closest” integer points w.r.t.
MD-characteristics:
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Heuristic algebraic periodicity detecting algorithm

Heuristic APD-algorithm

Input: atriple of real vectors (ξ, ν, µ) where ξ = (x0, y0, z0)
with z0 > 0.

Step 0: Similar to JP-algorithm:

T0 : (x , y , z) 7→
(
x −

⌊x
z

⌋
z , y −

⌊y
z

⌋
z , z
)
,

namely we consider

(ξ1, ν1, µ1) =
(
T0(ξ),T0(ν),T0(µ)

)
.

Consider:
ξ = (1,

3
√

4,
3
√

16) = (1,
3
√

4, (
3
√

4)2).

Note that 3
√

4 is a root of x3 − 4.

Let β and γ be the complex roots of x3 − 4. Consider:

ν = (1, β, β2) and µ = (1, γ, γ2).

The output of the heuristic APD-algorithm for the triple (ξ, ν, µ)
is periodic:

0 1 2 3 4 5 6 4k + 3 4k + 4 4k + 5 4k + 6

a1 0 0 1 0 0 0 1 1 1 0 0

b1 0 0 2 1 1 1 5 0 1 1 6

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Heuristic algebraic periodicity detecting algorithm

Heuristic APD-algorithm

Step i for i ≥ 1: We have (ξi (xi , yi , zi ), νi , µi ) with ξi ∈ R3
+.

I Stage 1: Determination of the element of the CF:
we pick (ai , bi ) satisfying:
— 0 ≤ ai ≤ bxi/zic;
— 0 ≤ bi ≤ byi/zic;
— (ai , bi ) 6= (0, 0)
(exception: (0, 0) if bxi/zic < 1 and byi/zic < 1);

such that the triple (ai , bi , 1) has minimal possible
abs. value of the MD-characteristic |χξ,ν,µ|.

Consider:
ξ = (1,

3
√
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3
√
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3
√
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√
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Heuristic algebraic periodicity detecting algorithm

Conjecture

Heuristic APD-algorithm is periodic for all cubic triples of vectors.

Remark
A triple of cubic vectors
“=”
a triple of linearly independent eigenvectors for an integer matrix
(and irreducible characteristic polynomial).
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APD algorithm is defined for both totally real and complex cases.
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sin2-algorithm (skipping technical details)

In a few words:
the sin2-algorithm repeats heuristic APD-algorithm but it works
with sin2 α(u, v ,w), where α(u, v ,w) is the angle between the
planes spanned by (u, v) and by (u,w).

The sin2-algorithm is proven to be periodic for algebraic triples.

Remark
It is defined for the totally real case (when all u, v and w are real
vectors).
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sin2-algorithm

sin2-algorithm

Input: We are given three vectors ξ, ν, µ such that

— ξ(x , y , z) satisfy x > y > z > 0;
— all coordinates for ν and µ are neither simultaneously pos-
itive nor simultaneously negative.

Step of the algorithm: Let us apply the following linear
transformation

(ξi , νi , µi )→ (Φi (ξi ),Φi (νi ),Φi (µi ))

with
Φi = TiMi .
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sin2-algorithm

sin2-algorithm

Φi = TiMi .

Here Mi is taken to be the minimiser of the value of sin2.
The minimisation is done among all the transformations

Nα,β,γ : (x , y , z) 7→
(
x − αz − γ(y − βz), y − βz , z

)
with

0 ≤ α ≤
⌊xi
zi

⌋
, 0 ≤ β ≤

⌊yi
zi

⌋
, and 0 ≤ γ ≤

⌊xi/zi − α
yi/zi − β

⌋
,

and the transformation

N0 = (x , y , z) 7→
(
x − y , y , z − (x − y)

)
,

which is considered only in case zi > xi − yi > 0.
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sin2-algorithm

sin2-algorithm

Φi = TiMi .

Set Ti as a basis permutation that puts the coordinates of
Mi (ξ) in decreasing order.

At each step the algorithm returns Φi as an output.

Termination of the algorithm: In the case that the last
coordinate of ξi is zero (i.e. zi = 0).

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Part IV

IV. Application to Dirichlet groups

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Example

Let

A =

 2 5 −1
3 6 1
4 7 1

 .

Find an integer matrix with unit determinant commuting with A?

Let us first peek the answer to this question.

B=

 88778750433916 1881948516620816 −1642359549748757
−77918418013751 −849278651461089 759124773173459
534000559063825 −721564227716990 360094549931638


Brute force algorithm does not work... even if one notices that

B = −147205796095883A2+1347947957556991A−399030223241821

Note: Input is nine 4-bit elements.
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Dirichlet groups, Dirichlet’s unit theorem

Definition. A ∈ SL(n,R). Γ(A) — all integer matrices commuting
with A.

(i) The Dirichlet group Ξ(A) — all invertible matrices in Γ(A).

(ii) The positive Dirichlet group Ξ+(A) ⊂ Ξ(A): only positive real
eigenvalues.

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Dirichlet groups, Dirichlet’s unit theorem

Definition. A ∈ SL(n,R). Γ(A) — all integer matrices commuting
with A.

(i) The Dirichlet group Ξ(A) — all invertible matrices in Γ(A).

(ii) The positive Dirichlet group Ξ+(A) ⊂ Ξ(A): only positive real
eigenvalues.

Dirichlet’s unit theorem. Let K be a field of algebraic numbers
of degree n = s + 2t, (s – number of real roots; 2t – number of
complex roots). Consider an arbitrary order D in K. Then D
contains units ε1, . . . , εr for r = s + t − 1 such that every unit ε in
D has a unique decomposition of the form

ε = ξεa11 · · · ε
ar
r ,

where a1, . . . , ar are integers and ξ is a root of 1 contained in D.
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Dirichlet groups, Dirichlet’s unit theorem

Definition. A ∈ SL(n,R). Γ(A) — all integer matrices commuting
with A.

(i) The Dirichlet group Ξ(A) — all invertible matrices in Γ(A).

(ii) The positive Dirichlet group Ξ+(A) ⊂ Ξ(A): only positive real
eigenvalues.

Dirichlet’s unit theorem in the matrix form. Let A ∈ SL(n,Z)
with irreducible characteristic (s real and 2t complex eigenvalues).
Then there exists a finite Abelian group G such that

Ξ(A) ∼= G ⊕ Zs+t−1.
Ξ+(A) ∼= Zs+t−1.
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Dirichlet groups, Dirichlet’s unit theorem

Definition. A ∈ SL(n,R). Γ(A) — all integer matrices commuting
with A.

(i) The Dirichlet group Ξ(A) — all invertible matrices in Γ(A).

(ii) The positive Dirichlet group Ξ+(A) ⊂ Ξ(A): only positive real
eigenvalues.

Example

In the three-dimensional case:

I Complex case: s = 1, t = 1 then

Ξ(A) ∼= Ξ+(A) ∼= Z.

I Totally real case: s = 3, t = 0. Then

Ξ(A) ∼= G ⊕ Z2 and Ξ+(A) ∼= Z2.
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Questions that JP-type algorithms answer

Question 1. Given ξ — a cubic vector.
Find A ∈ SL(3,Z) such that

Aξ = λξ.

Question 2. Given M ∈ Mat(3,Z) with irreducible characteristic
polynomial over Q.
Find an A ∈ SL(3,Z) such that

AM = MA.

Question 3. (in totally real case). Let M ∈ SL(3,Z)-matrix.
Find an SL(3,Z)-matrix commuting with M that is not a power of
M.

Oleg Karpenkov, University of Liverpool On Hermite’s problem
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Answer to Question 1: Example 1

Consider (1, ξ, ξ2 + ξ) with ξ satisfying

x3 + 2x2 + x + 4 = 0.

The JP-algorithm generates a periodic sequence:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7

bz/yc -2 0 0 0 2 4 1 1

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Answer to Question 1: Example 1

Consider (1, ξ, ξ2 + ξ) with ξ satisfying

x3 + 2x2 + x + 4 = 0.

The JP-algorithm generates a periodic sequence:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7

bz/yc -2 0 0 0 2 4 1 1

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Answer to Question 1: Example 1

Consider (1, ξ, ξ2 + ξ) with ξ satisfying

x3 + 2x2 + x + 4 = 0.

The JP-algorithm generates a periodic sequence:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7

bz/yc -2 0 0 0 2 4 1 1

Matrix for the pre-period:

M1 =

 −1 1 0
1 0 0
−2 0 1

 ·
 1 1 0

1 0 0
0 0 1

3

·

 2 1 0
1 0 0
2 0 1

 ·
 6 1 0

1 0 0
4 0 1


=

 −22 −1 −3
51 2 7
−67 −3 −9

 ;
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Answer to Question 1: Example 1

Consider (1, ξ, ξ2 + ξ) with ξ satisfying

x3 + 2x2 + x + 4 = 0.

The JP-algorithm generates a periodic sequence:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7

bz/yc -2 0 0 0 2 4 1 1

Matrix for the period:

M2 =

 3 1 0
1 0 0
1 0 1

 ·
 7 1 0

1 0 0
1 0 1

 =

 22 1 3
7 0 1
8 0 1

 .
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Answer to Question 1: Example 1

Consider (1, ξ, ξ2 + ξ) with ξ satisfying

x3 + 2x2 + x + 4 = 0.

The JP-algorithm generates a periodic sequence:

1 2 3 4 5 6 2k + 1 2k + 2

bx/yc -1 1 1 1 2 6 3 7

bz/yc -2 0 0 0 2 4 1 1

Finally we get

M = M1M2(M1)−1 =

 5 −4 3
−12 9 −7
16 −12 9

 .

This concludes the computation of M.
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Answer to Question 1: Example 2

Consider v = (1, 3
√

4, 3
√

16).

Here Jacobi-Perron algorithm does not work.
Heuristic APD-algorithm produces

M =

 5 8 12
3 5 8
2 3 5

 .

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Answer to Question 1: Example 2

Consider v = (1, 3
√

4, 3
√

16).
Here Jacobi-Perron algorithm does not work.

Heuristic APD-algorithm produces

M =

 5 8 12
3 5 8
2 3 5

 .

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Answer to Question 1: Example 2

Consider v = (1, 3
√

4, 3
√

16).
Here Jacobi-Perron algorithm does not work.
Heuristic APD-algorithm produces

M =

 5 8 12
3 5 8
2 3 5

 .

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Answer to Question 3: Example

Consider an irreducible cubic polynomial

p(x) = 2x3 − 4x2 − 7x − 2

with roots α, β, γ ∈ R.
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Answer to Question 3: Example

Consider an irreducible cubic polynomial

p(x) = 2x3 − 4x2 − 7x − 2

with roots α, β, γ ∈ R.

Our goal is to compute two independent SL(3,Z)-matrices
with eigenvectors

ξ = (1, α, α2), ν = (1, β, β2), and µ = (1, γ, γ2).
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Answer to Question 3: Example

Consider an irreducible cubic polynomial

p(x) = 2x3 − 4x2 − 7x − 2

with roots α, β, γ ∈ R.

Direct computations using the heuristic APD-algorithm applied to
triples

(ξ, ν, µ), (ν, µ, ξ), and (µ, ξ, ν)

result in the following three matrices:

A =

 55 210 176
176 671 562
562 2143 1795

 ; B =

 −497 −1122 400
400 903 −322
−322 −727 259

 ;

C =

 185 172 −72
−72 −67 28
28 26 −11

 .
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Answer to Question 3: Example

Consider an irreducible cubic polynomial

p(x) = 2x3 − 4x2 − 7x − 2

with roots α, β, γ ∈ R.

A =

 55 210 176
176 671 562
562 2143 1795

 ; B =

 −497 −1122 400
400 903 −322
−322 −727 259

 ;

C =

 185 172 −72
−72 −67 28
28 26 −11

 .

Brute force search of the powers of matrices show that

A3B5C 7 = Id .
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Answer to Question 3: Example

Consider an irreducible cubic polynomial

p(x) = 2x3 − 4x2 − 7x − 2

with roots α, β, γ ∈ R.

Brute force search of the powers of matrices show that

A3B5C 7 = Id .

All these matrices represent different eigenvectors with maximal
eigenvalue, hence they there are two of them that are not powers
of each other.

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Part V

V. Idea of the proof
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Separating ξ-states

I Given a basis s0(ξ, ν1, ν2). Then

s = ((x0, y0, 1), (x1, y1, 1), (x2, y2, 1))

is a ξ-state if in some Z3-basis the coordinates the vectors of
s are proportional to the vectors of s0.

I A ξ-state (ξ(x0, y0, 1), ν1, ν2) is separating if
— ξ ∈ R3

+ and x0 > y0 > 1
— ν1, ν2 /∈ R3

+.

Proposition (Nose sharpening.)

If s is a separating ξ-state, then Φ(s) is a separating ξ-state.

(Here Φ(s) is the iterative step of sin2-algorithm).
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Main theorem

Let s0 be the input separating state. Denote

I Ωε(s0) — the set of all ξ-states s where sinα(s) > ε.

I Ωmax(ξ; ν1, ν2) — the set of all ξ-states s satisfying

sin2 α(s) > sin2 α(Φ(s)).

Theorem
Let s = (ξ, ν1, ν2) be three conjugate cubic vectors. Assume that s
is separating. Then

(i) Ωε(ξ; ν1, ν2) is finite (∀ε > 0).

(ii) Ωmax(ξ; ν1, ν2) is finite.

Corollary

The dynamical system with a map Φ (on separating states) is
periodic for triples of cubic conjugate vectors.

Remark: There is a simple way to find the basis for s in which it is
separating.
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Proof of Item (i): finiteness statements

Integer distance = number of integer planes plus 1 between the
point and our plane:

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.
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Proof of Item (i): finiteness statements

Proposition

Let P be a triangular pyramid with vertex at O(0, 0, 0).
Let C be Cone(P) and d ∈ Z+.
Only finitely many: integer planes π satisfying
— integer distance(O, π) ≤ d;
— π divides C into two parts, one of which is bounded and
contains P.

1/k

1/k

1/k

q1

q2

q3

x

y

z

π

1
kT

O

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.
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Proof of Item (i): finiteness statements

Definition
Consider an integer plane π and a convex polygon P in it.
Let S be the basis square of the integer lattice in it.
Set integer area

Areaπ(P) =
Area(P)

Area(S)
.

Proposition

Consider a totally-real cubic cone C in R3 centered at the origin.
Then there exists M s.t.

Areaπ(C ∩ π) < M

uniformly for all planes at distance 1 to the origin and cutting C.

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Proof of Item (i): finiteness statements

Definition
Consider an integer plane π and a convex polygon P in it.
Let S be the basis square of the integer lattice in it.
Set integer area

Areaπ(P) =
Area(P)

Area(S)
.

Proposition

Consider a totally-real cubic cone C in R3 centered at the origin.
Then there exists M s.t.

Areaπ(C ∩ π) < M

uniformly for all planes at distance 1 to the origin and cutting C.

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.

Oleg Karpenkov, University of Liverpool On Hermite’s problem



Proof of Item (i): finiteness statements

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.
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Proof of Item (i): finiteness statements

Proposition

Let T be an arbitrary triangle on an integer plane π, and M ∈ R+.
Only finitely many: integer affine bases (O, e1, e2) in which all
absolute values of the coordinates of vertices of T are bounded by
M from above.

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.
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Proof of Item (i): finiteness statements

Proposition

Consider a totally-real cubic cone in R3 centered at O(0, 0, 0). Let
ε ∈ R+ .
Only finitely many (up to the action of Ξ+(C )): integer base
planes π on the unit integer distance to the origin satisfying

Vol
(
Pyr(C , π)

)
> ε.

Remark. This is due to finiteness of affine types of faces for
two-dimensional Klein’s continued fraction.
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Proof of Item (ii): case study

Ideas of the proof:
— Compactify the configuration space of all possible ξ-states (use
projectivisation and certain asymptotics).
— Split the configuration space to several cases and comute
finiteness for each of them separately.
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The end

Thank you.
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Klein polyhedra

F. Klein(1895) – geometric generalization.

H. Tsuchihasi(1973) – relation to cusp singularities.

V. Arnold(1990) – formulated many problems.

M. Kontsevich, Yu. Suhov (1998) – existence of Gauss-Kuzmin
statistic.
O. Karpenkov – general explicit formula via conformal geometry
(2007).

J. Lachaud (1993), E. Korkina (1993), O. German (2009) –
Lagrange theorem.

. . .
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From sail to torus decomposition

X

Y

Z

A sail for an algebraic operator A.
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From sail to torus decomposition

X

Y

Z

Let Ξ(A) is generated by X and Y .
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From sail to torus decomposition

X

Y

Z

X acts on the sail as a shift.
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From sail to torus decomposition

X

Y

Z

Y acts on the sail as a shift.
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From sail to torus decomposition

X

Y

Z

The orbits under the action of Ξ(A).
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From sail to torus decomposition

X

Y

Z

The fundamental domain of the action of Ξ(A).

Oleg Karpenkov, University of Liverpool On Hermite’s problem



From sail to torus decomposition

So the factor of the sail under the action of Ξ(A) is a compact
torus (finitely many faces).

Oleg Karpenkov, University of Liverpool On Hermite’s problem


