On Hermite's problem, Jacobi-Perron type algorithms, and Dirichlet groups

Oleg Karpenkov, University of Liverpool

7 September 2021

Oleg Karpenkov, University of Liverpool On Hermite's problem

- I. Hermite's problem
- II. Euclidean algorithm and its generalisations
- **III.** New algorithms
- IV. Application to Dirichlet groups
- V. Idea of the proof

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

- I. Hermite's problem
- II. Euclidean algorithm and its generalisations
- **III.** New algorithms
- IV. Application to Dirichlet groups
- V. Idea of the proof

I. Hermite's problem

<ロ> <四> <ヨ> <ヨ>

Ð,

Oleg Karpenkov, University of Liverpool On Hermite's problem

・日・ ・ ヨ・ ・ ヨ・

臣

Rational numbers: periodic or finite decimal representations.

$$\frac{4}{3} = 1.3333333\ldots$$

・日・ ・ ヨ・ ・ ヨ・

臣

Rational numbers: periodic or finite decimal representations.

$$\frac{4}{3}=1.3333333\ldots$$

Quadratic numbers (roots of quadratic integer polynomials): periodic continued fractions (J.-L. Lagrange, 1770).

$$\frac{10+3\sqrt{7}}{4} = [4; (2, 15, 2, 3)].$$

向下 イヨト イヨト

Rational numbers: periodic or finite decimal representations.

$$\frac{4}{3}=1.3333333\ldots$$

Quadratic numbers (roots of quadratic integer polynomials): periodic continued fractions (J.-L. Lagrange, 1770).

$$\frac{10+3\sqrt{7}}{4} = [4; (2, 15, 2, 3)].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Cubic numbers (roots of cubic integer polynomials):

向下 イヨト イヨト

First steps.

— C. G. J. Jacobi (1868): algorithmic approach

— O. Perron (1907): first realisation of algorithmic approach, which is believed to be non-periodic.

同 ト イヨト イヨト

Development of geometry of numbers.

- F. Klein, V. Arnold, A. Veselov, E. Korkina, O. German, A.Ustinov, O.K., etc.: geometric approach to continued fractions.

Remark: geometry of numbers was limitedly used (overlooked) for multidimensional Euclidaen algorithms.

通 とう ほ とう ほう

Periodic modifications of the J-P algorithm.

- O.K. (2021) based on the geometry of c.f.:

向 ト イヨ ト イヨト

Periodic modifications of the J-P algorithm.

- O.K. (2021) based on the geometry of c.f.:
 - **Totally real case:** periodicity is **proved** for sin²-algorithm.

向下 イヨト イヨト

Periodic modifications of the J-P algorithm.

- O.K. (2021) based on the geometry of c.f.:

- **Totally real case:** periodicity is **proved** for sin²-algorithm.
- Complex case: heuristic APD-algorithm that provides periodicity (no proof).

通 と く ヨ と く ヨ と

Periodic modifications of the J-P algorithm.

- O.K. (2021) based on the geometry of c.f.:

- **Totally real case:** periodicity is **proved** for sin²-algorithm.
- Complex case: heuristic APD-algorithm that provides periodicity (no proof).
- Algebraic case of degree > 3: higher-dimensional heuristic APD-algorithm provides periodicity (no proof).

・ 回 ト ・ ヨ ト ・ ヨ ト …

II. Euclidean algorithm and its generalisations

・ロト ・回 ト ・ヨト ・ヨト

Extended Euclid's algorithm

Input: real numbers $(p, q) = (p_0, q_0)$ such that $q_0 > 0$.

回 とくほとくほど

Extended Euclid's algorithm

Input: real numbers $(p, q) = (p_0, q_0)$ such that $q_0 > 0$. **Step of the algorithm:** If $q_i \ge 0$:

$$(p_i,q_i)\mapsto (p_{i+1},q_{i+1})=(q_i,p_i-\lfloor p_i/q_i\rfloor q_i)$$

< 回 > < 三 > < 三 >

Extended Euclid's algorithm

Input: real numbers $(p, q) = (p_0, q_0)$ such that $q_0 > 0$. **Step of the algorithm:** If $q_i \ge 0$:

$$(p_i,q_i)\mapsto (p_{i+1},q_{i+1})=(q_i,p_i-\lfloor p_i/q_i\rfloor q_i)$$

 $a_i = \lfloor p_i/q_i \rfloor$ — the *i-th element* of the algorithm.

向下 イヨト イヨト

Extended Euclid's algorithm

Input: real numbers $(p, q) = (p_0, q_0)$ such that $q_0 > 0$. **Step of the algorithm:** If $q_i \ge 0$:

$$(p_i,q_i)\mapsto (p_{i+1},q_{i+1})=(q_i,p_i-\lfloor p_i/q_i\rfloor q_i)$$

 $a_i = \lfloor p_i/q_i \rfloor$ — the *i-th element* of the algorithm.

Termination of the algorithm: (p_i, q_i) with $q_i = 0$.

通 ト イ ヨ ト イ ヨ ト

Example For (21, 15) we have:

$$(21,15)\mapsto (15,6)\mapsto (6,3)\mapsto (3,0).$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Example For (21, 15) we have:

$$(21,15)\mapsto (15,6)\mapsto (6,3)\mapsto (3,0).$$

Output:

$$a_1 = 1$$
, $a_2 = 2$, and $a_3 = 2$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Example For (21, 15) we have:

$$(21,15)\mapsto (15,6)\mapsto (6,3)\mapsto (3,0).$$

Output:

$$a_1=1, \quad a_2=2, \quad \text{and} \quad a_3=2.$$

Note that

$$gcd(21, 15) = 3$$
 and $\frac{21}{15} = 1 + \frac{1}{2 + 1/2}$.

・日・ ・ ヨ ・ ・ ヨ ・

Example Now for $(2\sqrt{5}, 1)$:

$$(2\sqrt{5},1)\mapsto c_1(1+\sqrt{5}/2,1)\mapsto c_2(4+2\sqrt{5},1)\mapsto c_3(1+\sqrt{5}/2,1)\mapsto\ldots$$

where

$$c_1=2\sqrt{5}-4, \quad c_2=9-4\sqrt{5}, \quad c_3=34\sqrt{5}-76, \quad \dots$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Example Now for $(2\sqrt{5}, 1)$:

$$(2\sqrt{5},1)\mapsto c_1(1+\sqrt{5}/2,1)\mapsto c_2(4+2\sqrt{5},1)\mapsto c_3(1+\sqrt{5}/2,1)\mapsto\ldots$$

where

$$c_1=2\sqrt{5}-4, \quad c_2=9-4\sqrt{5}, \quad c_3=34\sqrt{5}-76, \quad \ldots$$

同トメミトメミト

臣

The vectors obtained on Step 1 and Step 3 are proportional.

Example Now for $(2\sqrt{5}, 1)$:

$$(2\sqrt{5},1)\mapsto c_1(1+\sqrt{5}/2,1)\mapsto c_2(4+2\sqrt{5},1)\mapsto c_3(1+\sqrt{5}/2,1)\mapsto\ldots$$

where

$$c_1=2\sqrt{5}-4, \quad c_2=9-4\sqrt{5}, \quad c_3=34\sqrt{5}-76, \quad \ldots$$

The vectors obtained on Step 1 and Step 3 are proportional. Hence the output is periodic:

$$a_1 = 4$$
, $a_{2k} = 2$, and $a_{2k+1} = 8$

向 ト イヨ ト イヨト

So
$$2\sqrt{5} = [4; 2:8:2:8:2:8:...] = [4; (2:8)].$$

Jacobi-Perron algorithm (1907)

Jacobi-Perron algorithm

```
Input: triples of real numbers (x, y, z).
```

同 ト イヨト イヨト

Jacobi-Perron algorithm

Input: triples of real numbers (x, y, z). **Step of the algorithm:** If $y_i \neq 0$.

$$(x_i, y_i, z_i) \mapsto (x_{i+1}, y_{i+1}, z_{i+1}) = \left(y_i, z_i - \left\lfloor \frac{z_i}{y_i} \right\rfloor y_i, x_i - \left\lfloor \frac{x_i}{y_i} \right\rfloor y\right)$$

同 ト イヨト イヨト

Jacobi-Perron algorithm

Input: triples of real numbers (x, y, z). **Step of the algorithm:** If $y_i \neq 0$.

$$(x_i, y_i, z_i) \mapsto (x_{i+1}, y_{i+1}, z_{i+1}) = \left(y_i, z_i - \left\lfloor \frac{z_i}{y_i} \right\rfloor y_i, x_i - \left\lfloor \frac{x_i}{y_i} \right\rfloor y\right).$$

The *i*-th element of the multidimensional continued fraction is

$$\left(\left\lfloor\frac{z_i}{y_i}\right\rfloor, \left\lfloor\frac{x_i}{y_i}\right\rfloor\right).$$

伺 ト イヨト イヨト

Jacobi-Perron algorithm

Input: triples of real numbers (x, y, z). **Step of the algorithm:** If $y_i \neq 0$.

$$(x_i, y_i, z_i) \mapsto (x_{i+1}, y_{i+1}, z_{i+1}) = \left(y_i, z_i - \left\lfloor \frac{z_i}{y_i} \right\rfloor y_i, x_i - \left\lfloor \frac{x_i}{y_i} \right\rfloor y\right).$$

The *i*-th element of the multidimensional continued fraction is

$$\left(\left\lfloor\frac{z_i}{y_i}\right\rfloor, \left\lfloor\frac{x_i}{y_i}\right\rfloor\right).$$

Termination of the algorithm: (x_i, y_i, z_i) with $y_i = 0$.

通 ト イ ヨ ト イ ヨ ト

Jacobi-Perron algorithm (1907)

Let ξ be a real root of the polynomial $x^3 + 2x^2 + x + 4$, namely

$$\xi = -rac{(53+6\sqrt{78})^{1/3}}{3} - rac{1}{3(53+6\sqrt{78})^{1/3}} - rac{2}{3}.$$

同ト・モート・モート

臣

Let ξ be a real root of the polynomial $x^3 + 2x^2 + x + 4$, namely

$$\xi = -rac{(53+6\sqrt{78})^{1/3}}{3} - rac{1}{3(53+6\sqrt{78})^{1/3}} - rac{2}{3}.$$

Now consider the vector (not a single number, which is senseless! One can have different periods with the same number)

 $(1, \xi, \xi^2 + \xi).$

Let ξ be a real root of the polynomial $x^3 + 2x^2 + x + 4$, namely

$$\xi = -rac{(53+6\sqrt{78})^{1/3}}{3} - rac{1}{3(53+6\sqrt{78})^{1/3}} - rac{2}{3}.$$

Now consider the vector (not a single number, which is senseless! One can have different periods with the same number)

$$(1,\xi,\xi^2+\xi).$$

Jacobi-Perron algorithm periodic output:

	1	2	3	4	5	6	2k + 1	2k + 2
$\lfloor x/y \rfloor$	-1	1	1	1	2	6	3	7
$\lfloor z/y \rfloor$	-2	0	0	0	2	4	1	1

向下 イヨト イヨト

Problem

(Jacobi's Last Theorem.) Let K be a totally real cubic field. Let $y, z \in K$ satisfy

- ▶ 0 < y, z < 1;</p>
- ▶ 1, y, and z are independent over \mathbb{Q} .

Does Jacobi-Perron algorithm generate an eventually periodic continued fraction starting with v = (1, y, z)?

伺 ト イ ヨ ト イ ヨ ト

Problem

(Jacobi's Last Theorem.) Let K be a totally real cubic field. Let $y, z \in K$ satisfy

- ▶ 0 < y, z < 1;</p>
- ▶ 1, y, and z are independent over \mathbb{Q} .

Does Jacobi-Perron algorithm generate an eventually periodic continued fraction starting with v = (1, y, z)?

It is believed that the answer is negative.

(I have learnt this fact from Cor Kraaikamp in 2006 in Leiden.)

向下 イヨト イヨト

Example

Let us consider the vector

$$v = (1, \sqrt[3]{4}, \sqrt[3]{16}).$$

Numerical computations (e.g., by L. Elsner and H. Hasse., 1967) shows

	1	2	3	4	5	6	7	8	9	10	11	12	• • • •	94	
$\lfloor x/y \rfloor$	0	1	13	1	6	1	1	3	2	3	4	1		476	
$\lfloor z/y \rfloor$	1	1	9	1	2	0	0	2	0	1	1	1		388	

回とくほとくほど

臣
Let us consider the vector

$$v = (1, \sqrt[3]{4}, \sqrt[3]{16}).$$

Numerical computations (e.g., by L. Elsner and H. Hasse., 1967) shows

	1	2	3	4	5	6	7	8	9	10	11	12	• • • •	94	
$\lfloor x/y \rfloor$	0	1	13	1	6	1	1	3	2	3	4	1		476	
$\lfloor z/y \rfloor$	1	1	9	1	2	0	0	2	0	1	1	1		388	

Compare:

 $\pi = [3:7;15;1;292;1;1;2;1;3;1;14;2;1;1;2;2;2;2;1;84;\ldots]$

★ E ► ★ E ► E

Jacobi-Perron algorithm (1907)

Gauss-Kuzmin statistics:

$$\frac{1}{\ln(2)}\ln\left(1+\frac{1}{k(k+1)}\right).$$

イロト イヨト イヨト イヨト

臣

Gauss-Kuzmin statistics:

$$\frac{1}{\ln(2)}\ln\left(1+\frac{1}{k(k+1)}\right).$$

Observe:

$$\frac{1}{\ln(2)}\ln\left(1+\frac{1}{k(k+1)}\right) = \frac{\ln[-1,0,k,k+1]}{\ln[-1,0,1,\infty]}.$$

・回 と く ヨ と く ヨ と

臣

Hint for us: this question involves geometry.

The same problem arise with the other Jacobi-Perron type algorithms:

- V. Brun (subtractive algorithm) 1958
- E. S. Selmer (general subtractive algorithm) 1961
- ► F. Schweiger (fully subtractive algorithm) 1995

etc.

向 ト イヨ ト イヨト

III. New algorithms

・ロン ・四と ・日と ・日と

Ð,

Definition

Consider $u, v, w \in \mathbb{C}^3$:

$$u = (u_1, u_2, u_3), \quad v = (v_1, v_2, v_3), \text{ and } w = (w_1, w_2, w_3)$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

Definition

Consider $u, v, w \in \mathbb{C}^3$:

$$u = (u_1, u_2, u_3), \quad v = (v_1, v_2, v_3), \text{ and } w = (w_1, w_2, w_3)$$

The *Markov-Davenport characteristic* is the form $\chi_{u,v,w}$:

$$\det \begin{pmatrix} x & y & z \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \cdot \det \begin{pmatrix} u_1 & u_2 & u_3 \\ x & y & z \\ w_1 & w_2 & w_3 \end{pmatrix} \cdot \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ x & y & z \end{pmatrix}$$

• • = • • = •

in variables x, y, and z (with respect to u, v, w).

Definition

Consider $u, v, w \in \mathbb{C}^3$:

$$u = (u_1, u_2, u_3), \quad v = (v_1, v_2, v_3), \text{ and } w = (w_1, w_2, w_3)$$

The Markov-Davenport characteristic is the form $\chi_{u,v,w}$:

$$\det \begin{pmatrix} x & y & z \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \cdot \det \begin{pmatrix} u_1 & u_2 & u_3 \\ x & y & z \\ w_1 & w_2 & w_3 \end{pmatrix} \cdot \det \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ x & y & z \end{pmatrix}$$

in variables x, y, and z (with respect to u, v, w).

Remark: MD-characteristic provides a "proper distance" to the cone generated by u, v, and w.

> < 물 > < 물 >

 JP-algorithm searching for the nearest lattice point. in a 2-plane y = 1.

- JP-algorithm searching for the nearest lattice point. in a 2-plane y = 1.
- ▶ While a proper point could be different.

- JP-algorithm searching for the nearest lattice point. in a 2-plane y = 1.
- ▶ While a proper point could be different.
- Here are the "closest" integer points w.r.t. MD-characteristics:

Oleg Karpenkov, University of Liverpool On Hermite's problem

Heuristic APD-algorithm

Input: atriple of real vectors (ξ, ν, μ) where $\xi = (x_0, y_0, z_0)$ with $z_0 > 0$.

Step 0: Similar to JP-algorithm:

$$T_0: (x, y, z) \mapsto \left(x - \left\lfloor \frac{x}{z} \right\rfloor z, y - \left\lfloor \frac{y}{z} \right\rfloor z, z\right),$$

namely we consider

$$(\xi_1, \nu_1, \mu_1) = (T_0(\xi), T_0(\nu), T_0(\mu)).$$

向下 く ヨト

Heuristic APD-algorithm

Step *i* for $i \ge 1$: We have $(\xi_i(x_i, y_i, z_i), \nu_i, \mu_i)$ with $\xi_i \in \mathbb{R}^3_+$.

同 とう モン・モン

Heuristic APD-algorithm

Step *i* for $i \ge 1$: We have $(\xi_i(x_i, y_i, z_i), \nu_i, \mu_i)$ with $\xi_i \in \mathbb{R}^3_+$.

▶ Stage 1: Determination of the element of the CF: we pick (a_i, b_i) satisfying: $-0 \le a_i \le \lfloor x_i/z_i \rfloor$; $-0 \le b_i \le \lfloor y_i/z_i \rfloor$; $-(a_i, b_i) \ne (0, 0)$ (exception: (0, 0) if $\lfloor x_i/z_i \rfloor < 1$ and $\lfloor y_i/z_i \rfloor < 1$);

御 と く ヨ と く ヨ と …

Heuristic APD-algorithm

Step *i* for $i \ge 1$: We have $(\xi_i(x_i, y_i, z_i), \nu_i, \mu_i)$ with $\xi_i \in \mathbb{R}^3_+$.

▶ Stage 1: Determination of the element of the CF: we pick (a_i, b_i) satisfying: — $0 \le a_i \le \lfloor x_i/z_i \rfloor$; — $0 \le b_i \le \lfloor y_i/z_i \rfloor$; — $(a_i, b_i) \ne (0, 0)$ (exception: (0, 0) if $\lfloor x_i/z_i \rfloor < 1$ and $\lfloor y_i/z_i \rfloor < 1$);

such that the triple $(a_i, b_i, 1)$ has minimal possible abs. value of the MD-characteristic $|\chi_{\xi,\nu,\mu}|$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Heuristic APD-algorithm

Step *i* for $i \ge 1$: We already have (ξ_i, ν_i, μ_i) with $\xi_i = (x_i, y_i, z_i) \in \mathbb{R}^3_+$ and (a_i, b_i) .

$$T_i: (x, y, z) \mapsto (y - b_i z, z, x - a_i z).$$

Here we construct

$$(\xi_{i+1}, \nu_{i+1}, \mu_{i+1}) = (T_i(\xi_i), T_i(\nu_i), T_i(\mu_i))$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Heuristic APD-algorithm

Step *i* for $i \ge 1$: We already have (ξ_i, ν_i, μ_i) with $\xi_i = (x_i, y_i, z_i) \in \mathbb{R}^3_+$ and (a_i, b_i) .

$$T_i: (x, y, z) \mapsto (y - b_i z, z, x - a_i z).$$

Here we construct

$$(\xi_{i+1}, \nu_{i+1}, \mu_{i+1}) = (T_i(\xi_i), T_i(\nu_i), T_i(\mu_i))$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Termination of the algorithm: when $z_i = 0$.

Conjecture

Heuristic APD-algorithm is periodic for all cubic triples of vectors.

.

Conjecture

Heuristic APD-algorithm is periodic for all cubic triples of vectors.

Remark

A triple of cubic vectors "__"

a triple of linearly independent eigenvectors for an integer matrix (and irreducible characteristic polynomial).

Conjecture

Heuristic APD-algorithm is periodic for all cubic triples of vectors.

Remark

A triple of cubic vectors "="

a triple of linearly independent eigenvectors for an integer matrix (and irreducible characteristic polynomial).

Remark

APD algorithm is defined for both totally real and complex cases.

向下 イヨト イヨト

Remark

APD algorithm has a straightforward generalisation to **higher dimensional cases**.

Consider:

$$\xi = (1, \sqrt[3]{4}, \sqrt[3]{16}) = (1, \sqrt[3]{4}, (\sqrt[3]{4})^2).$$

Note that $\sqrt[3]{4}$ is a root of $x^3 - 4$.

回 とう ヨン うちとう

臣

Consider:

$$\xi = (1, \sqrt[3]{4}, \sqrt[3]{16}) = (1, \sqrt[3]{4}, (\sqrt[3]{4})^2).$$

Note that $\sqrt[3]{4}$ is a root of $x^3 - 4$.

Let β and γ be the complex roots of $x^3 - 4$. Consider:

$$u = (1, \beta, \beta^2) \quad \text{and} \quad \mu = (1, \gamma, \gamma^2).$$

.

Consider:

$$\xi = (1, \sqrt[3]{4}, \sqrt[3]{16}) = (1, \sqrt[3]{4}, (\sqrt[3]{4})^2).$$

Note that $\sqrt[3]{4}$ is a root of $x^3 - 4$.

Let β and γ be the complex roots of $x^3 - 4$. Consider:

$$u = (1, eta, eta^2) \quad ext{and} \quad \mu = (1, \gamma, \gamma^2).$$

The output of the heuristic APD-algorithm for the triple (ξ, ν, μ) is **periodic**:

	0	1	2	3	4	5	6	4 <i>k</i> + 3	4k + 4	4k + 5	4k + 6
a ₁	0	0	1	0	0	0	1	1	1	0	0
b_1	0	0	2	1	1	1	5	0	1	1	6

In a few words:

the sin²-algorithm repeats heuristic APD-algorithm but it works with sin² $\alpha(u, v, w)$, where $\alpha(u, v, w)$ is the angle between the planes spanned by (u, v) and by (u, w).

直 ト イヨ ト イヨト

In a few words:

the sin²-algorithm repeats heuristic APD-algorithm but it works with sin² $\alpha(u, v, w)$, where $\alpha(u, v, w)$ is the angle between the planes spanned by (u, v) and by (u, w).

The sin²-algorithm is proven to be periodic for algebraic triples.

In a few words:

the sin²-algorithm repeats heuristic APD-algorithm but it works with sin² $\alpha(u, v, w)$, where $\alpha(u, v, w)$ is the angle between the planes spanned by (u, v) and by (u, w).

The sin²-algorithm is proven to be periodic for algebraic triples.

Remark

It is defined for the totally real case (when all u, v and w are real vectors).

sin²-algorithm

sin²-algorithm

Input: We are given three vectors ξ , ν , μ such that

$$-\xi(x,y,z) \text{ satisfy } x > y > z > 0;$$

— all coordinates for ν and μ are neither simultaneously positive nor simultaneously negative.

Step of the algorithm: Let us apply the following linear transformation

$$(\xi_i, \nu_i, \mu_i) \rightarrow (\Phi_i(\xi_i), \Phi_i(\nu_i), \Phi_i(\mu_i))$$

with

$$\Phi_i=T_iM_i.$$

sin²-algorithm

sin²-algorithm

$$\Phi_i=T_iM_i.$$

Here M_i is taken to be the minimiser of the value of sin². The minimisation is done among all the transformations

$$\begin{split} & \mathcal{N}_{\alpha,\beta,\gamma}:(x,y,z)\mapsto \left(x-\alpha z-\gamma(y-\beta z),y-\beta z,z\right) \quad \text{with} \\ & 0\leq \alpha\leq \left\lfloor\frac{x_i}{z_i}\right\rfloor, \quad 0\leq \beta\leq \left\lfloor\frac{y_i}{z_i}\right\rfloor, \quad \text{and} \quad 0\leq \gamma\leq \left\lfloor\frac{x_i/z_i-\alpha}{y_i/z_i-\beta}\right\rfloor, \end{split}$$

and the transformation

$$N_0 = (x, y, z) \mapsto (x - y, y, z - (x - y)),$$

which is considered only in case $z_i > x_i - y_i > 0$.

sin²-algorithm

sin²-algorithm $\Phi_i = T_i M_i.$ Set T_i as a basis permutation that puts the coordinates of

 $M_i(\xi)$ in decreasing order.

At each step the algorithm returns Φ_i as an output.

Termination of the algorithm: In the case that the last coordinate of ξ_i is zero (i.e. $z_i = 0$).

IV. Application to Dirichlet groups

ヘロト 人間 とくほど 人間とう

æ

Let

$$A=\left(egin{array}{ccc} 2 & 5 & -1 \ 3 & 6 & 1 \ 4 & 7 & 1 \end{array}
ight).$$

Find an integer matrix with unit determinant commuting with A?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Let

$$A=\left(egin{array}{ccc} 2 & 5 & -1 \ 3 & 6 & 1 \ 4 & 7 & 1 \end{array}
ight).$$

Find an integer matrix with unit determinant commuting with *A*? Let us first peek the answer to this question.

・日・ ・ ヨ・ ・ ヨ・

臣

Let

$$A=\left(egin{array}{ccc} 2 & 5 & -1 \ 3 & 6 & 1 \ 4 & 7 & 1 \end{array}
ight).$$

Find an integer matrix with unit determinant commuting with *A*? Let us first peek the answer to this question.

$$B = \begin{pmatrix} 88778750433916 & 1881948516620816 & -1642359549748757 \\ -77918418013751 & -849278651461089 & 759124773173459 \\ 534000559063825 & -721564227716990 & 360094549931638 \end{pmatrix}$$

<回> < 三> < 三>

臣

Let

$$A=\left(egin{array}{ccc} 2 & 5 & -1 \ 3 & 6 & 1 \ 4 & 7 & 1 \end{array}
ight).$$

Find an integer matrix with unit determinant commuting with *A*? Let us first peek the answer to this question.

$$B = \begin{pmatrix} 88778750433916 & 1881948516620816 & -1642359549748757 \\ -77918418013751 & -849278651461089 & 759124773173459 \\ 534000559063825 & -721564227716990 & 360094549931638 \end{pmatrix}$$

Brute force algorithm does not work...

Let

$$A = \left(\begin{array}{rrrr} 2 & 5 & -1 \\ 3 & 6 & 1 \\ 4 & 7 & 1 \end{array}\right)$$

Find an integer matrix with unit determinant commuting with A? Let us first peek the answer to this question.

$$B = \begin{pmatrix} 88778750433916 & 1881948516620816 & -1642359549748757 \\ -77918418013751 & -849278651461089 & 759124773173459 \\ 534000559063825 & -721564227716990 & 360094549931638 \end{pmatrix}$$

Brute force algorithm does not work... even if one notices that

 $B = -147205796095883A^2 + 1347947957556991A - 399030223241821$

Note: Input is nine 4-bit elements.

Dirichlet groups, Dirichlet's unit theorem

Definition. $A \in SL(n, \mathbb{R})$. $\Gamma(A)$ — all integer matrices commuting with A.

(i) The Dirichlet group $\Xi(A)$ — all invertible matrices in $\Gamma(A)$.

(ii) The positive Dirichlet group $\Xi_+(A) \subset \Xi(A)$: only positive real eigenvalues.

・ 同 ト ・ ヨ ト ・ ヨ ト …

2
Dirichlet groups, Dirichlet's unit theorem

Definition. $A \in SL(n, \mathbb{R})$. $\Gamma(A)$ — all integer matrices commuting with A.

(*i*) The Dirichlet group $\Xi(A)$ — all invertible matrices in $\Gamma(A)$. (*ii*) The positive Dirichlet group $\Xi_+(A) \subset \Xi(A)$: only positive real eigenvalues.

Dirichlet's unit theorem. Let *K* be a field of algebraic numbers of degree n = s + 2t, (s - number of real roots; 2t - number ofcomplex roots). Consider an arbitrary order *D* in *K*. Then *D* contains units $\varepsilon_1, \ldots, \varepsilon_r$ for r = s + t - 1 such that every unit ε in *D* has a unique decomposition of the form

$$\varepsilon = \xi \varepsilon_1^{\mathbf{a}_1} \cdots \varepsilon_r^{\mathbf{a}_r} \ ,$$

where a_1, \ldots, a_r are integers and ξ is a root of 1 contained in D.

Dirichlet groups, Dirichlet's unit theorem

Definition. $A \in SL(n, \mathbb{R})$. $\Gamma(A)$ — all integer matrices commuting with A.

(i) The Dirichlet group $\Xi(A)$ — all invertible matrices in $\Gamma(A)$.

(ii) The positive Dirichlet group $\Xi_+(A) \subset \Xi(A)$: only positive real eigenvalues.

Dirichlet's unit theorem in the matrix form. Let $A \in SL(n, \mathbb{Z})$ with irreducible characteristic (s real and 2t complex eigenvalues). Then there exists a finite Abelian group G such that

$$\Xi(A) \cong G \oplus \mathbb{Z}^{s+t-1}$$

$$\Xi_+(A) \cong \mathbb{Z}^{s+t-1}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Dirichlet groups, Dirichlet's unit theorem

Definition. $A \in SL(n, \mathbb{R})$. $\Gamma(A)$ — all integer matrices commuting with A.

(i) The Dirichlet group $\Xi(A)$ — all invertible matrices in $\Gamma(A)$.

(ii) The positive Dirichlet group $\Xi_+(A) \subset \Xi(A)$: only positive real eigenvalues.

Example

In the three-dimensional case:

• **Complex case:**
$$s = 1, t = 1$$
 then

$$\Xi(A)\cong \Xi_+(A)\cong \mathbb{Z}.$$

• Totally real case:
$$s = 3, t = 0$$
. Then

$$\Xi(A) \cong G \oplus \mathbb{Z}^2$$
 and $\Xi_+(A) \cong \mathbb{Z}^2$.

Questions that JP-type algorithms answer

Question 1. Given ξ — a cubic vector. Find $A \in SL(3, \mathbb{Z})$ such that

$$A\xi = \lambda\xi.$$

回 とう モン・モン

Questions that JP-type algorithms answer

Question 1. Given ξ — a cubic vector. Find $A \in SL(3, \mathbb{Z})$ such that

$$A\xi = \lambda\xi.$$

Question 2. Given $M \in Mat(3, \mathbb{Z})$ with irreducible characteristic polynomial over \mathbb{Q} . Find an $A \in SL(3, \mathbb{Z})$ such that

AM = MA.

白 ト イ ヨ ト イ ヨ ト

Questions that JP-type algorithms answer

Question 1. Given ξ — a cubic vector. Find $A \in SL(3, \mathbb{Z})$ such that

$$A\xi = \lambda\xi.$$

Question 2. Given $M \in Mat(3, \mathbb{Z})$ with irreducible characteristic polynomial over \mathbb{Q} . Find an $A \in SL(3, \mathbb{Z})$ such that

$$AM = MA.$$

Question 3. (in totally real case). Let $M \in SL(3, \mathbb{Z})$ -matrix. Find an $SL(3, \mathbb{Z})$ -matrix commuting with M that is not a power of M.

向下 イヨト イヨト

Consider $(1, \xi, \xi^2 + \xi)$ with ξ satisfying

$$x^3 + 2x^2 + x + 4 = 0.$$

The JP-algorithm generates a periodic sequence:

向 ト イヨ ト イヨト

Consider $(1, \xi, \xi^2 + \xi)$ with ξ satisfying

$$x^3 + 2x^2 + x + 4 = 0.$$

The JP-algorithm generates a periodic sequence:

	1	2	3	4	5	6	2k + 1	2k + 2
$\lfloor x/y \rfloor$	-1	1	1	1	2	6	3	7
$\lfloor z/y \rfloor$	-2	0	0	0	2	4	1	1

向 ト イヨ ト イヨト

Consider $(1, \xi, \xi^2 + \xi)$ with ξ satisfying

$$x^3 + 2x^2 + x + 4 = 0.$$

The JP-algorithm generates a periodic sequence:

	1	2	3	4	5	6	2k + 1	2k + 2
$\lfloor x/y \rfloor$	-1	1	1	1	2	6	3	7
$\lfloor z/y \rfloor$	-2	0	0	0	2	4	1	1

Matrix for the pre-period:

$$M_{1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ -2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{3} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 6 & 1 & 0 \\ 1 & 0 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -22 & -1 & -3 \\ 51 & 2 & 7 \\ -67 & -3 & -9 \end{pmatrix};$$

Consider $(1, \xi, \xi^2 + \xi)$ with ξ satisfying

$$x^3 + 2x^2 + x + 4 = 0.$$

The JP-algorithm generates a periodic sequence:

	1	2	3	4	5	6	2k + 1	2k + 2
$\lfloor x/y \rfloor$	-1	1	1	1	2	6	3	7
$\lfloor z/y \rfloor$	-2	0	0	0	2	4	1	1

Matrix for the period:

$$M_2 = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 7 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 22 & 1 & 3 \\ 7 & 0 & 1 \\ 8 & 0 & 1 \end{pmatrix}$$

伺 ト イ ヨ ト イ ヨ ト

Consider $(1, \xi, \xi^2 + \xi)$ with ξ satisfying

$$x^3 + 2x^2 + x + 4 = 0.$$

The JP-algorithm generates a periodic sequence:

	1	2	3	4	5	6	2k + 1	2k + 2
$\lfloor x/y \rfloor$	-1	1	1	1	2	6	3	7
$\lfloor z/y \rfloor$	-2	0	0	0	2	4	1	1

Finally we get

$$M = M_1 M_2 (M_1)^{-1} = \left(egin{array}{cccc} 5 & -4 & 3 \ -12 & 9 & -7 \ 16 & -12 & 9 \end{array}
ight).$$

This concludes the computation of M.

Consider $v = (1, \sqrt[3]{4}, \sqrt[3]{16}).$

Oleg Karpenkov, University of Liverpool On Hermite's problem

(4回) (4 回) (4 回)

臣

Consider $v = (1, \sqrt[3]{4}, \sqrt[3]{16}).$

Here Jacobi-Perron algorithm does not work.

・日・ ・ ヨ・ ・ ヨ・

Consider $v = (1, \sqrt[3]{4}, \sqrt[3]{16}).$

Here Jacobi-Perron algorithm does not work. Heuristic APD-algorithm produces

$$M = \left(\begin{array}{rrrr} 5 & 8 & 12 \\ 3 & 5 & 8 \\ 2 & 3 & 5 \end{array}\right)$$

.

回 とくほとくほど

Consider an irreducible cubic polynomial

$$p(x) = 2x^3 - 4x^2 - 7x - 2$$

with roots $\alpha, \beta, \gamma \in \mathbb{R}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Consider an irreducible cubic polynomial

$$p(x) = 2x^3 - 4x^2 - 7x - 2$$

with roots $\alpha, \beta, \gamma \in \mathbb{R}$.

Our goal is to compute two independent $\mathsf{SL}(3,\mathbb{Z})\text{-matrices}$ with eigenvectors

$$\xi = (1, \alpha, \alpha^2), \quad \nu = (1, \beta, \beta^2), \quad \text{and} \quad \mu = (1, \gamma, \gamma^2).$$

< 回 > < 回 > < 回 >

æ

Consider an irreducible cubic polynomial

$$p(x) = 2x^3 - 4x^2 - 7x - 2$$

with roots $\alpha, \beta, \gamma \in \mathbb{R}$.

Direct computations using the heuristic APD-algorithm applied to triples

 $(\xi, \nu, \mu), \quad (\nu, \mu, \xi), \quad \text{and} \quad (\mu, \xi, \nu)$

result in the following three matrices:

$$A = \begin{pmatrix} 55 & 210 & 176 \\ 176 & 671 & 562 \\ 562 & 2143 & 1795 \end{pmatrix}; \quad B = \begin{pmatrix} -497 & -1122 & 400 \\ 400 & 903 & -322 \\ -322 & -727 & 259 \end{pmatrix};$$
$$C = \begin{pmatrix} 185 & 172 & -72 \\ -72 & -67 & 28 \\ 28 & 26 & -11 \end{pmatrix}.$$

Consider an irreducible cubic polynomial

$$p(x) = 2x^3 - 4x^2 - 7x - 2$$

with roots $\alpha, \beta, \gamma \in \mathbb{R}$.

$$A = \begin{pmatrix} 55 & 210 & 176 \\ 176 & 671 & 562 \\ 562 & 2143 & 1795 \end{pmatrix}; \quad B = \begin{pmatrix} -497 & -1122 & 400 \\ 400 & 903 & -322 \\ -322 & -727 & 259 \end{pmatrix};$$
$$C = \begin{pmatrix} 185 & 172 & -72 \\ -72 & -67 & 28 \\ 28 & 26 & -11 \end{pmatrix}.$$

Brute force search of the powers of matrices show that

$$A^3B^5C^7=\mathsf{Id}\,.$$

向 ト イヨ ト イヨト

Consider an irreducible cubic polynomial

$$p(x) = 2x^3 - 4x^2 - 7x - 2$$

with roots $\alpha, \beta, \gamma \in \mathbb{R}$.

Brute force search of the powers of matrices show that

 $A^3B^5C^7=\operatorname{Id}.$

All these matrices represent different eigenvectors with maximal eigenvalue, hence they there are two of them that are not powers of each other.

V. Idea of the proof

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Ð,

Separating ξ -states

• Given a basis $s_0(\xi, \nu_1, \nu_2)$. Then

$$s = ((x_0, y_0, 1), (x_1, y_1, 1), (x_2, y_2, 1))$$

is a ξ -state if in some \mathbb{Z}^3 -basis the coordinates the vectors of s are proportional to the vectors of s_0 .

向 ト イヨ ト イヨト

Separating ξ -states

• Given a basis $s_0(\xi, \nu_1, \nu_2)$. Then

$$s = ((x_0, y_0, 1), (x_1, y_1, 1), (x_2, y_2, 1))$$

is a ξ -state if in some \mathbb{Z}^3 -basis the coordinates the vectors of s are proportional to the vectors of s_0 .

Separating ξ -states

• Given a basis $s_0(\xi, \nu_1, \nu_2)$. Then

$$s = ((x_0, y_0, 1), (x_1, y_1, 1), (x_2, y_2, 1))$$

is a ξ -state if in some \mathbb{Z}^3 -basis the coordinates the vectors of s are proportional to the vectors of s_0 .

• A
$$\xi$$
-state $(\xi(x_0, y_0, 1), \nu_1, \nu_2)$ is separating if
— $\xi \in \mathbb{R}^3_+$ and $x_0 > y_0 > 1$
— $\nu_1, \nu_2 \notin \mathbb{R}^3_+$.

Proposition (Nose sharpening.)

If s is a separating ξ -state, then $\Phi(s)$ is a separating ξ -state.

(Here $\Phi(s)$ is the iterative step of sin²-algorithm).

Let s_0 be the input separating state. Denote

・ 回 と く き と く き と

臣

Let s_0 be the input separating state. Denote

• $\Omega_{\varepsilon}(s_0)$ — the set of all ξ -states s where sin $\alpha(s) > \varepsilon$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

크

Let s_0 be the input separating state. Denote

- $\Omega_{\varepsilon}(s_0)$ the set of all ξ -states s where sin $\alpha(s) > \varepsilon$.
- $\Omega_{\max}(\xi; \nu_1, \nu_2)$ the set of all ξ -states *s* satisfying

$$\sin^2 \alpha(s) > \sin^2 \alpha(\Phi(s)).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

크

Let s_0 be the input separating state. Denote

- $\Omega_{\varepsilon}(s_0)$ the set of all ξ -states s where sin $\alpha(s) > \varepsilon$.
- $\Omega_{\max}(\xi; \nu_1, \nu_2)$ the set of all ξ -states s satisfying

$$\sin^2 \alpha(s) > \sin^2 \alpha(\Phi(s)).$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Theorem

Let $s = (\xi, \nu_1, \nu_2)$ be three conjugate cubic vectors. Assume that s is separating. Then

(i) $\Omega_{\varepsilon}(\xi; \nu_1, \nu_2)$ is finite $(\forall \varepsilon > 0)$.

(ii) $\Omega_{\max}(\xi; \nu_1, \nu_2)$ is finite.

Let s_0 be the input separating state. Denote

- $\Omega_{\varepsilon}(s_0)$ the set of all ξ -states s where sin $\alpha(s) > \varepsilon$.
- $\Omega_{\max}(\xi; \nu_1, \nu_2)$ the set of all ξ -states *s* satisfying

$$\sin^2 \alpha(s) > \sin^2 \alpha(\Phi(s)).$$

Theorem

Let $s = (\xi, \nu_1, \nu_2)$ be three conjugate cubic vectors. Assume that s is separating. Then

(i)
$$\Omega_{\varepsilon}(\xi; \nu_1, \nu_2)$$
 is finite $(\forall \varepsilon > 0)$.

(ii) $\Omega_{\max}(\xi; \nu_1, \nu_2)$ is finite.

Corollary

The dynamical system with a map Φ (on separating states) is periodic for triples of cubic conjugate vectors.

(本部) (本語) (本語) (二語

Let s_0 be the input separating state. Denote

- $\Omega_{\varepsilon}(s_0)$ the set of all ξ -states s where $\sin \alpha(s) > \varepsilon$.
- $\Omega_{\max}(\xi; \nu_1, \nu_2)$ the set of all ξ -states *s* satisfying

$$\sin^2 \alpha(s) > \sin^2 \alpha(\Phi(s)).$$

Theorem

Let $s = (\xi, \nu_1, \nu_2)$ be three conjugate cubic vectors. Assume that s is separating. Then

(i)
$$\Omega_{\varepsilon}(\xi; \nu_1, \nu_2)$$
 is finite $(\forall \varepsilon > 0)$.

(ii) $\Omega_{\max}(\xi; \nu_1, \nu_2)$ is finite.

Corollary

The dynamical system with a map Φ (on separating states) is periodic for triples of cubic conjugate vectors.

Remark: There is a simple way to find the basis for *s* in which it is separating.

Proof of Item (i): finiteness statements

<u>Integer distance</u> = number of integer planes plus 1 between the point and our plane:

• • = • • = •

Proposition

Let P be a triangular pyramid with vertex at O(0,0,0).

Let C be Cone(P) and $d \in \mathbb{Z}_+$.

Only finitely many: integer planes π satisfying

- integer distance(O, π) $\leq d$;

— π divides C into two parts, one of which is bounded and contains P.

Definition

Consider an integer plane π and a convex polygon P in it. Let S be the basis square of the integer lattice in it. Set *integer area*

$$\operatorname{Area}_{\pi}(P) = rac{\operatorname{Area}(P)}{\operatorname{Area}(S)}.$$

同 とう モン うけい

Definition

Consider an integer plane π and a convex polygon P in it. Let S be the basis square of the integer lattice in it. Set *integer area*

$$\operatorname{Area}_{\pi}(P) = rac{\operatorname{Area}(P)}{\operatorname{Area}(S)}.$$

Proposition

Consider a totally-real cubic cone C in \mathbb{R}^3 centered at the origin. Then there exists M s.t.

$$\operatorname{Area}_{\pi}(C \cap \pi) < M$$

uniformly for all planes at distance 1 to the origin and cutting C.

Proof of Item (i): finiteness statements

Oleg Karpenkov, University of Liverpool On Hermite's problem

イロト イヨト イヨト イヨト

臣

Proposition

Let T be an arbitrary triangle on an integer plane π , and $M \in \mathbb{R}_+$. Only finitely many: integer affine bases (O, e_1, e_2) in which all absolute values of the coordinates of vertices of T are bounded by M from above.

Proposition

Consider a totally-real cubic cone in \mathbb{R}^3 centered at O(0,0,0). Let $\varepsilon \in \mathbb{R}_+$.

Only finitely many (up to the action of $\Xi_+(C)$): integer base planes π on the unit integer distance to the origin satisfying

 $\operatorname{Vol}(\operatorname{Pyr}(\mathcal{C},\pi)) > \varepsilon.$

・ 同 ト ・ ヨ ト ・ ヨ ト …
Proposition

Consider a totally-real cubic cone in \mathbb{R}^3 centered at O(0,0,0). Let $\varepsilon \in \mathbb{R}_+$.

Only finitely many (up to the action of $\Xi_+(C)$): integer base planes π on the unit integer distance to the origin satisfying

 $\operatorname{Vol}(\operatorname{Pyr}(\mathcal{C},\pi)) > \varepsilon.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remark. This is due to finiteness of affine types of faces for two-dimensional Klein's continued fraction.

Ideas of the proof:

— Compactify the configuration space of all possible ξ -states (use projectivisation and certain asymptotics).

— Split the configuration space to several cases and comute finiteness for each of them separately.

向 ト イヨ ト イヨト

Thank you.

・ロン ・四と ・日と ・日と

Ð,

Klein polyhedra

- F. Klein(1895) geometric generalization.
- H. Tsuchihasi(1973) relation to cusp singularities.
- V. Arnold(1990) formulated many problems.

M. Kontsevich, Yu. Suhov (1998) – existence of Gauss-Kuzmin statistic.

O. Karpenkov – general explicit formula via conformal geometry (2007).

. . .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

J. Lachaud (1993), E. Korkina (1993), O. German (2009) – Lagrange theorem.

A sail for an algebraic operator A.

Let $\Xi(A)$ is generated by X and Y.

X acts on the sail as a shift.

Y acts on the sail as a shift.

The orbits under the action of $\Xi(A)$.

The fundamental domain of the action of $\Xi(A)$.

/⊒ ▶ ∢ ∃

So the factor of the sail under the action of $\Xi(A)$ is a compact torus (finitely many faces).